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Abstract—Characterization of carotid plaque composi-
tion, more specifically the amount of lipid core, fibrous
tissue, and calcified tissue, is an important task for the
identification of plaques that are prone to rupture, and thus
for early risk estimation of cardiovascular and cerebrovas-
cular events. Due to its low costs and wide availability,
carotid ultrasound has the potential to become the modality
of choice for plaque characterization in clinical practice.
However, its significant image noise, coupled with the small
size of the plaques and their complex appearance, makes it
difficult for automated techniques to discriminate between
the different plaque constituents. In this paper, we pro-
pose to address this challenging problem by exploiting the
unique capabilities of the emerging deep learning frame-
work. More specifically, and unlike existing works which
require a priori definition of specific imaging features or
thresholding values, we propose to build a convolutional
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neural network (CNN) that will automatically extract from the
images the information that is optimal for the identification
of the different plaque constituents. We used approximately
90 000 patches extracted from a database of images and cor-
responding expert plaque characterizations to train and to
validate the proposed CNN. The results of cross-validation
experiments show a correlation of about 0.90 with the clini-
cal assessment for the estimation of lipid core, fibrous cap,
and calcified tissue areas, indicating the potential of deep
learning for the challenging task of automatic characteriza-
tion of plaque composition in carotid ultrasound.

Index Terms—Atherosclerosis, carotid artery, convo-
lutional neural networks (CNNs), plaque composition,
ultrasound.

I. INTRODUCTION

CARDIOVASCULAR and cerebrovascular events, other-
wise referred to as myocardial infarction and stroke, are

major causes of mortality and morbidity in the developed world
[1], [2]. These serious accidents occur when atherosclerotic
plaques in the arteries suddenly rupture, leading to the obstruc-
tion of the blood flow to the heart or to the brain. Early and
accurate prediction of individuals at high risk of myocardial
infarction and stroke would allow for preventive (e.g., diet mod-
ifications), therapeutic (e.g., lipid lowering therapy), or surgical
(e.g., stenting) measures to be applied to the patient before any
of these life threatening events take place.

In clinical practice, the identification of high-risk individu-
als is carried out thus far by using risk prediction calculators,
which combine standard risk factors such as age, smoking, blood
pressure, family history, diabetes, and body mass index [3], [4].
However, these risk predictions do not take into account patient-
specific information describing the presence and the type of any
existing atherosclerotic plaques, resulting in estimations that
are approximate averages over population risk factors. In con-
trast, in the era of personalized medicine, plaque image analysis
[5] has the potential to extract valuable information about the
plaques and thus to identify more accurately the patients at risk
of plaque rupture. It is now well established that the tissue com-
position plays a central role for the stability or vulnerability
of atherosclerotic plaques [6], [7]. More specifically, plaques
with large lipid cores and thin fibrous caps are more prone to
rupture, while plaques that contain calcified tissue tending to
be more stable [8]. In contrast, several studies have shown that
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Fig. 1. Four examples of carotid ultrasound images, incorporating
noise, artifacts, shadowing, and reverberation. All of these examples con-
tain plaques, but their detection and characterization is challenging even
for an expert clinician, resulting in tedious and inconsistent assessments.

morphological measures used in current practice, such as the
intima-media thickness, have limited prediction powers [9].

It is therefore important to develop computational techniques
that can automatically and objectively determine the plaque
constituents of atherosclerotic plaques from image data. But the
task remains challenging due to the small size of the plaques
and the complexity of the tissue appearance. So far, most of
the computational techniques for plaque tissue characterization
have been developed for multicontrast MRI [10]–[19], which
provides relatively high resolution and good quality images of
the plaques. However, multicontrast MRI has cost and scanning
limitations that make its use in daily clinical practice limited,
thus remaining largely dedicated for research purposes. In con-
trast, B-mode ultrasound is widely used for the assessment of
atherosclerosis in the carotid artery due to its ease of use, very
low costs, and wide availability [20]. Histology-based studies
have shown the capability of ultrasound to separate the lipid,
fibrous, and calcified tissues in the carotid [21]–[23]. Due to
these benefits, carotid ultrasound has significant potential as the
modality of choice for atherosclerosis assessment in clinical
practice [20].

As illustrated by the examples of Fig. 1, ultrasound images
of the carotid bifurcation have typically lower image quality
[24], incorporating significant noise, artifacts, shadowing, and
reverberation. Under these conditions, the detection and charac-
terization of the plaques becomes tedious and inconsistent, even
for an expert clinician.

An automated technique is thus required to obtain fast, ro-
bust, and user-independent analyses of the plaque composition.
Thus far, this has been achieved in the literature largely based on
thresholding of the imaging intensities inside the plaque [21],

[23], [25], with each of these papers using different threshold
values for the plaque constituents. A recent study by Pazinato
et al. [26] has shown that there is significant overlap between
the intensity distributions of the different constituents in ultra-
sound, thus leading to accuracy results just over 50% even with
the choice of optimal threshold values [26]. The authors pro-
posed instead to estimate imaging features from patches around
each pixel before classification, improving the identification of
the plaque constituents to over 70% accuracy. However, this
technique required the use of predefined standard imaging
features such as statistical moments or histograms of oriented
gradients. Furthermore, the validation was carried out with a
small sample size of only six real datasets, thus with limited
variability in the type and appearance of the plaques.

In this paper, we investigate a deep learning approach in order
to address the challenging task of automatically characterizing
plaque composition in carotid ultrasound. The proposed tech-
nique does not require the predefinition of intensity thresholds
or imaging features. Instead, we built a convolutional neural
network (CNN) that can extract automatically from a training
sample of imaging patches around each pixel position the im-
age information in the ultrasound data that are optimal for the
discrimination of the different plaque constituents. We trained
and validated our deep learning architecture using a total of
56 in vivo cases acquired from clinical practice and represent-
ing different plaque characteristics and types.

II. METHODS

A. Deep Learning

Deep learning is a promising machine learning tools for the
automatic classification and interpretation of medical image
data. In the last year, the paradigm has been applied exten-
sively in several medical imaging applications, such as for brain
[27], [28], lung [29], [30], and breast [31], [32] imaging. Its
application to arterial structures such as the carotid artery and
for noisy image data as those found in ultrasound of the carotid
bifurcation has not been reported yet.

Essentially, deep learning attempts to extract high level rep-
resentations of the data that are most relevant to a specific
learning task by using a deep graph composed of multiple
processing layers. One key attribute of deep learning is the
ability to build multiple layers encoding different levels of ab-
stractions, each contributing to the discriminative or prediction
power of the whole [33]. For the analysis of images, deep learn-
ing can be used to transform an image into a set of hierarchical
nonlinear processing units representing visual or statistical in-
formation (e.g., edges/shapes, intensity profiles, statistical pat-
terns), such that this information is optimal for a given image
analysis task (e.g., object recognition, image classification, im-
age quantification).

One of the promises of deep learning is thus to replace generic
imaging features (e.g., wavelets, spatial textures, statistical mo-
ments) with processing layers that are more complex as well
as more specific to the data and task in question, leading to an
optimal use of information and improved prediction power. In
the case of plaque characterization, our hypothesis is that the
complex and overlapping appearance of the plaque constituents
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Fig. 2. Examples of input image patches for different plaque tissue
classes. The yellow frames outline the input to the CNN. (a) Lipid core.
(b) Fibrous tissue. (c) Calcified tissue.

Fig. 3. Illustration of the advantage of using image patches around
each pixel position in the plaque for the characterization of the con-
stituents. In this example, by looking only at the central intensity value in
(a), the corresponding tissue (green rectangle) in (b) can be potentially
mistaken for an early stage classified tissue, instead of a fibrous tissue.
However, by looking at the entire intensity patch as shown in (c), the
presence of a brighter component (blue rectangle) can be exploited by
the deep learning model to eliminate potential ambiguities, thus correctly
classifying the tissue of interest into fibrous tissue.

in noisy and low-resolution ultrasound data cannot be repre-
sented with standard imaging features and that deep learning
can extract new discriminative features combining both global
and local imaging information of the plaque.

B. Plaque Image Patches

The characterization of plaque composition at each pixel posi-
tion based solely on the intensity value at that pixel, as proposed
in several papers [21], [23], [25], is challenging due to the signif-
icant overlap between the intensity distributions of the different
plaque constituents, as demonstrated in this recent study [26].
Instead, using patches around each pixel position (see examples
of Fig. 2) would enable to take context into account in the clas-
sification, by learning the relative appearance of each pixel with
respect to other tissue components, as illustrated in the example
of Fig. 3. Pazinato et al. [26] considered patches around the
pixel position but only to calculate predefined imaging features,
such as statistical moments and histograms of oriented gradi-
ents before the learning and classification stages. This means
not all the information contained in the patches was used for
the plaque discrimination. In the proposed approach, the idea
is to use the entire patch as the input of the deep learning,
which will then choose automatically the information that is
most relevant and optimal to the discrimination of the differ-
ent plaque constituents. With this method, the imaging features
are not chosen empirically before the learning stage but instead
are optimally extracted as part of the learning and classification
tasks. In this paper, we empirically selected an image patch size
15 × 15 pixels for our CNN model, which we found to be suffi-

cient to adequately encode intervariability between neighboring
constituents.

C. Plaque Intensity Normalization

One of the limitations of ultrasound data is the variability in
the appearance of tissues between different image acquisitions
depending on the equipment, operator, patient, and imaging set-
tings. Consequently, it is important to develop methods that can
address the variability in the appearance of ultrasound images
and of their tissues. Traditionally, this has been achieved using
image normalization, i.e., by transforming the image data such
that same tissues have approximately similar intensity values.

For carotid ultrasound imaging, normalization has been done
through manual interaction, i.e., through an operator who marks
two corresponding regions in different images, which are then
used as the references for intensity normalization of the dy-
namic ranges of the images. In most works, such as the recent
study using support vector machine (SVM) [26], the operator
is required to draw manually two regions corresponding to the
blood and to the adventitia wall. Such an approach, however,
is dependent on the user input, which can change significantly
due to the variability in the appearance of both the blood and
the adventitia in the same image that result from the presence
of shadowing, reverberations, and inconsistencies within same
tissues.

In this paper, our hypothesis is that the deep learning paradigm
can extract high-level features from the imaging patches that
take into account relative values of the constituents and, there-
fore, that are less sensitive to image normalization. Accord-
ingly, we have applied a linear scaling between the minimum
and maximum values of the full image as a standard method for
normalization, without the use of any user interaction.

D. Plaque CNN Architecture

CNNs are types of deep learning architectures that use con-
volutional filters (i.e., kernels of varying sizes) at each layer to
extract new features from training images that are relevant for
the image interpretation task. They have shown their promise by
successfully addressing a number of challenging image recog-
nition tasks [34].

Mathematically, given a training dataset of images {Ii} and
the corresponding class labels {ci}, the goal of CNNs is to
learn an optimal mapping F (I) = c in the form of an L-level
composition F (I) = FL ◦ . . . ◦ f1(I). Each of the functions
fl define the lth layer of the CNN, where the 0th layer correspond
to the input data, i.e., f0 = I . In this notation, the lth layer is a
convolution of the previous layer with a kernel Wl with added
bias bl , i.e., fl = f(Wl

∗fl − 1 + bi), where f is a nonlinearity
function, e.g., f(.) = max(0, .) + αmin(0, .). The kernels Wl

and bias terms bl representing the new discriminative features
are learned at the training phase, while the number of layers
L and the kernel sizes are defined by the architecture design
depending on the image analysis problem.

For our plaque characterization problem, as it can be seen
from Figs. 2 and 3, the composition of the plaque is distin-
guishable at a neighborhood close to 15 × 15 and therefore
we adapted a CNN to describe such context. Specifically, we
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Fig. 4. Schematic diagram of the CNN architecture used for automatic
characterization of plaque constituents in carotid ultrasound images. The
architecture consisted of four convolutional (Conv) and three FC layers
with L-ReLU nonlinearity functions, and an FC layer with class scores
followed by the softmax function.

implemented a design consisting of four convolutional layers
with kernel sizes of 3 × 3 and three fully connected (FC) layers
each followed by leaky rectified linear units (ReLU) as illus-
trated schematically in Fig. 4. We used the cross-entropy loss
function with L2 regularization penalty on the weights, as well
as dropout layers [35] after the convolutional and FC layers at
training phase. We solved the optimization problem using the
Adam method [36].

Furthermore, we used a batch size of 1000 for training and
the recommended fixed hyper-parameters for the leaky ReLU
(L-ReLU) slope (0.01). Hyper-parameter optimization was per-
formed to select the weight decay (0.005) and the initial learning
rate (0.001) in an inverse annealing scheme.

III. EVALUATION

A. Datasets

The evaluation of the proposed deep learning approach for
the characterization of the plaque constituents was achieved
based on a total of 56 in vivo cases obtained from the University
Hospital Arnau de Vilanova, Lleida, Spain. We selected only 56
cases for this study due to the highly tedious and time consuming
work required to obtain ground truth in clinical practice for
plaque composition. However, this sample translates into about
90 000 imaging patches, which are sufficient to train the CNN
architecture described in Section II-D. Furthermore, as shown
in Table I, the validation sample displays significant variability
in the properties of the plaque and images. In particular, the
plaque composition varies highly between the 56 cases (see
the variation in the percentages of the different constituents in
Table II), thus enabling the validation of the proposed technique
with respect to various plaque types.

TABLE I
METADATA OF THE PLAQUES USED FOR THE VALIDATION

OF THE DEEP LEARNING APPROACH

Variability: From To

Size of plaque (mm2) 5.6 196.3
Percentage of lipid core (%) 0.4 82.9
Percentage of fibrous tissue (%) 13.2 69.5
Percentage of calcified tissue (%) 0.9 86.1
Maximal intensity 180 255

TABLE II
SUMMARY OF THE PIXEL-BASED ACCURACY OBTAINED BY THE PROPOSED

AND EXISTING SVM TECHNIQUES

Median Mean Std. Min Max % best result

Single-scale SVM 0.66 0.61 0.17 0.21 0.87 7.2
Multiscale SVM 0.70 0.69 0.16 0.20 0.94 14.3
Proposed CNN 0.80 0.75 0.16 0.26 0.97 78.5

TABLE III
SENSITIVITY AND SPECIFICITY OF THE DEEP LEARNING TECHNIQUE

FOR THE THREE TISSUE COMPONENTS

Sensitivity Specificity

Lipid core 0.83 ± 0.12 0.90 ± 0.13
Fibrous cap 0.70 ± 0.16 0.80 ± 0.14
Calcified tissue 0.76 ± 0.15 0.89 ± 0.12

TABLE IV
CONFUSION MATRIX OF THE DEEP LEARNING TECHNIQUE FOR THE THREE

PLAQUE CONSTITUENTS (IN %)

Predicted lipids Predicted fibrous Predicted calcium

Actual lipids 83.4 16.2 0.4
Actual fibrous 12.6 70.2 17.2
Actual calcium 2.4 21.0 76.6

The images of the carotid bifurcation were acquired in B-
mode using a general electric Vivid-i system equipped with a
4–7 MHz transducer. An image resolution of 8.5 pixels/mm
was obtained. Note that all the carotid ultrasound scans were
performed between 2009 and 2013.

B. Clinical Assessment

As ground truth, we used in this study the clinical results
obtained from the Unit for the Detection and Treatment of
Athero-thrombotic Diseases, Lleida, Spain. This specialized and
accredited center has decades of experience in the assessment
of atherosclerosis using carotid ultrasound data. The expert ob-
server for this study was our co-author Dr. A. Betriu, who first
delineated for each image the boundaries of the plaque. Subse-
quently, each plaque constituent was defined inside the plaque
(lipid core in red, fibrous tissue in yellow, and calcified tis-
sue in green, see examples in Fig. 8). Finally, for each plaque
constituent, the area in mm2 was calculated and was used as



52 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 1, JANUARY 2017

Fig. 5. Figure showing degree of agreement between expert and au-
tomated area estimations for the lipid core.

Fig. 6. Figure showing degree of agreement between expert and
automated area estimations for the fibrous cap.

the basis to assess the potential vulnerability or stability of the
plaque.

Our aim is not to define accurately every pixel but rather to
assess whether our CNN can automatically reproduce similar
results than those obtained in clinical practice.

C. Pixel-Based Accuracy Results

In this section, we assessed the strength of the proposed
classification technique for plaque tissue characterization by
computing accuracy as the percentage of correctly classified
pixels.

Although we acknowledge that the ground truth provided
by the expert observer cannot be consistently accurate for each
individual pixel within the plaque, in particular at the boundaries

Fig. 7. Figure showing degree of agreement between expert and
automated area estimations for the calcified tissue.

TABLE V
EFFECT OF THE TRAINING SAMPLE SIZE ON THE ACCURACY

OF THE TISSUE COMPONENTS CLASSIFICATION (IN %)

Training size Mean Std. Min Max.

1/5th (11 cases) 0.70 0.16 0.21 0.94
2/5th (22 cases) 0.72 0.16 0.21 0.96
3/5th (33 cases) 0.75 0.14 0.23 0.98

between the different constituents, this evaluation provides an
indication of the improvement achieved by the proposed deep
learning approach.

For comparison, we implemented the technique based on
support vector classification and statistical moment descriptors
(SVM-SMD) recently proposed in [26]. We used the optimal
implementation as reported by the authors, i.e., by calculat-
ing seven SMDs (mean, standard deviation, skewness, kurtosis,
median, entropy, and range) from 13 × 13 windows as the
underlying imaging features for the SVM classification. We
also implemented the multiscale SVM technique by consider-
ing 9 × 9, 11 × 11, and 13 × 13 image patches as recommended
by the authors in [26]. We used the dot product kernel function
for the SVM classification.

Note that all experiments were carried out using five-fold
cross-validation, i.e., one fifth of the cases were used for testing
and the rest for training and optimizing the CNN architecture.
For a fair comparison, both the proposed and existing methods
were trained and validated with the exact same datasets.

The accuracy results are summarized in Table III, where it
can be seen that the CNN approach improves all the accu-
racy statistics (median, mean, standard deviation, minimum, and
maximum) in comparison to the SVM approaches. Specifically,
the CNN approach outputs the best classification in 78.5% of
the cases, versus 14.3% for the multiscale SVM and 7.2% of the
cases for the single-scale SVM. The CNN obtains a mean ac-
curacy of 0.75 ± 0.16 (median 0.80), which is an improvement



LEKADIR et al.: CNN FOR AUTOMATIC CHARACTERIZATION OF PLAQUE COMPOSITION IN CAROTID ULTRASOUND 53

Fig. 8. Visual examples of the classification results obtained by the CNN model for varying degrees of accuracy (red: lipid core, yellow: fibrous
tissue, green: calcified tissue). The accuracy values for these examples (1–4) are 0.96, 0.82, 0.67, and 0.48, in this order. (a) Image. (b) Observer.
(c) CNN.

over the results of the single-scale SVM (mean: 0.63 ± 0.14),
as well as the multiscale SVM (mean: 0.69 ± 0.16). This trans-
lates into an average improvement of 21.4% over the single-scale
SVM and 14.2% over the multiscale SVM approaches. These re-
sults clearly indicate the benefits of minimal loss of information
achieved with deep learning by extracting optimal features for
tissue classification, instead of using predefined features such
as the SMDs.

In Table IV, the sensitivity and specificity of the deep learning
technique for the three tissue constituents are summarized. It can
be seen that the classification performance is higher for the lipid
core as it appears bright in the images. On the contrary, the
fibrous cap is the tissue classified with the lowest performance
due to its generally more variable appearance and small size. All
tissues were classified with sensitivity over 0.70 and specificity
over 0.80.

Additionally, the derived confusion matrix for the deep learn-
ing technique is given in Table IV. It can be noted that the
highest confusion is obtained between the fibrous and calci-
fied tissues due to similar appearances depending on the quality
of the ultrasound scan. Nevertheless, the classification perfor-
mance remains above the 70% mark for all constituents, and is
particularly high for the lipid core, which plays an important
role in defining the vulnerability of the plaques.

D. Area-Based Quantification Results

In clinical practice, the important quantification to be used
for the assessment of plaque composition is not the classifica-
tion of each individual pixel, which can be difficult to determine
consistently for all pixels and which can furthermore vary be-
tween expert observers. Instead, clinicians estimate the amount
of tissue for each of the constituents, which then give an indi-
cation of the type of plaque under investigation. For example,
a plaque with a large lipid core applies higher pressure forces
toward its walls and is thus more prone to rupture. On the other
hand, plaques with large calcified tissue tend to be more stable
and less at risk of rupture.

Thus, after having established the superiority of the deep
learning approach for tissue classification, we calculated the
areas in mm2 of the different constituents as obtained by
the expert clinician and the proposed automatic technique.

The agreement between the two methods is visually assessed in
Figs. 5–7, for the lipid core, fibrous tissue, and calcified tissue,
respectively.

It can be seen from these figures that there is good agree-
ment between the automatic and expert assessments of the
three tissue components (except for a few minor outliers), with
Pearson’s correlation coefficients equal to 0.92, 0.87, and 0.93,
for the lipid core, fibrous tissue, and calcified tissues, respec-
tively. This means the automatic measurements can be used to
make clinical predictions on the type of the plaques that are un-
der investigation. Note that the correlation coefficients obtained
with the SVM-based techniques were 0.88, 0.82, and 0.86, in
the same order.

E. Visual Illustrations

Fig. 8 shows four examples of visual results with varying
degrees of accuracy by the CNN technique (red: lipid core,
yellow: fibrous tissue, green: calcified tissue). In the examples
1 and 2, good separation of the plaque components is obtained
by the CNN classification, with only minor localized errors
(the classification accuracy equals 0.96 and 0.82, respectively).
The examples 3 and 4 are associated with higher misclassifi-
cations by the proposed technique due to a particularly limited
contrast inside the plaque as compared to the general quality
of the images in the sample, which can be due to ultrasound
suboptimal scanning by the operator (the classification accu-
racy equals 0.67 and 0.48, respectively). In this case, the CNN
classification still manages to identify all the main constituents
but with underestimated lipid and calcified tissues respectively
for the examples 3 and 4.

F. Effect of Training Size

Finally, we evaluated the effect of the training size on the
accuracy of the CNN classifier, thus to estimate whether the per-
formance is near an optimal classification based on the 56 cases,
or whether improvement of the classification accuracy is
possible by adding more data to the training. To continue with
the five-fold validation used in this paper, we subdivided in each
test randomly the 56 cases as follows:

1) Testing subset: 1/5th of the sample (12 cases).
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2) Validation subset: 1/5th (11 cases).
3) Training subset: 1/5th, then 2/5th, and 3/5th of the sample

(i.e., 11 cases, then 22, then 33).
The obtained results in Table V indicate that all statistics

(mean, standard deviation, minimum, and maximum) continue
to improve progressively as the training size increases, though
at a relatively modest rate. This increase is indicative of the
method’s potential to further improve the result by training on
larger datasets when possible.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a deep learning approach for au-
tomatic characterization of plaque composition in carotid ul-
trasound images. The validation with a highly variable sample
of 56 in vivo cases shows that the proposed technique improves
upon the results obtained with the most advanced recent method
based on SVM and predefined imaging features, with an im-
provement in 78.5% of the cases. Furthermore, the quantitative
results indicate good agreement between the expert and auto-
matic measurements for the estimation of the amount of the
different constituents, with about 0.90 correlations between the
two methods. This means the automatic measurements can
be used to make clinical predictions on the type of the plaques
that are under investigation.

In terms of time complexity, while the duration of the training
is relatively long (an average of 1.5 h ± 0.6 h), the testing stage
was achieved in near real time, i.e., 52 ms ± 13 ms for each
individual image. These running times were obtained using a
GPU server on NVIDIA K20 graphics card.

This study has some limitations that are important to mention.
First, we used only 56 cases for the training and validation of
the CNN model. This is because it is very tedious and time con-
suming for an expert observer to delineate the different plaque
constituents in such small and complex atherosclerotic plaques.
However, due to the use of a patch-based approach, our sample
translates into about 90 000 input imaging patches for the CNN
model. Furthermore, this sample displays significant variability
in their characteristics as shown in Table I. In comparison, the
most recent technique on the topic was validated with only six
real datasets [26].

Second, the ground truth for this study was provided by a sin-
gle expert clinician, though with decades of experience working
with carotid ultrasound data. Nevertheless, the CNN architecture
is precisely designed to imitate and reproduce the assessment of
such an expert clinician automatically, with the goal to obtain
consistent and fast measurements in daily clinical practice, such
as to measure response to drug therapy.

In previous works, such as in Moeskops et al. [37], it was
found that patch size can play an important role in the perfor-
mance of the CNN classification. However, in our application,
by varying the patches between 9 × 9, 11 × 11, 13 × 13, and
15 × 15 sizes, as well as by fusing these multiple scales in a
multipath CNN framework, the change in accuracy is minimal
(around 0.003). This can be explained by the fact that the con-
stituents and plaques are generally very small compared to the
rest of the image and artery, so increasing the patch size does

not add much information to the classification in our case. In
contrast, in the work of Moeskops et al., the entire brain was
segmented and the various brain structures have significantly
different sizes, thus the influence of patch size is more evident.

Similarly, data augmentation [34], such as using image flip-
ping, rotation, and translation, has been used to boost the
classification in many medical imaging applications. In our
work, we have augmented our training data by flipping the im-
ages in both axis of the plane (two flips), and small rotations of
the original and flipped patches around the ground truth position
(± pi/8), which resulted in a nine-fold boost of the number of
training patches. However, this resulted in very similar results
(less than 1% differences). This is because data augmentation
does not change the plaque composition itself but only the po-
sition of the plaque in the image, which explains the limited
impact for our specific application.

Based on the results of the experiments in Section III-E,
showing steady improvement with increase training size, our
goal is to progressively build a larger database of training cases
together with our clinical partner to further enrich the plaque
CNN classification over time as new datasets become available
and to make it more robust to larger variability.
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