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Abstract
A second opinion about cancer stage is crucial when clinicians assess patient treatment progress. Staging is a process that
takes into account description, location, characteristics, and possible metastasis of tumors in a patient. It should follow
standards, such as the TNM Classification of Malignant Tumors. However, in clinical practice, the implementation of this
process can be tedious and error prone. In order to alleviate these problems, we intend to assist radiologists by providing
a second opinion in the evaluation of cancer stage. For doing this, we developed a TNM classifier based on semantic
annotations, made by radiologists, using the ePAD tool. It transforms the annotations (stored using the AIM format), using
axioms and rules, into AIM4-O ontology instances. From then, it automatically calculates the liver TNM cancer stage. The
AIM4-O ontology was developed, as part of this work, to represent annotations in the Web Ontology Language (OWL). A
dataset of 51 liver radiology reports with staging data, from NCI’s Genomic Data Commons (GDC), were used to evaluate
our classifier. When compared with the stages attributed by physicians, the classifier stages had a precision of 85.7% and
recall of 81.0%. In addition, 3 radiologists from 2 different institutions manually reviewed a random sample of 4 of the 51
records and agreed with the tool staging. AIM4-O was also evaluated with good results. Our classifier can be integrated into
AIM aware imaging tools, such as ePAD, to offer a second opinion about staging as part of the cancer treatment workflow.
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Introduction

In radiology and oncology, evaluating the response to
cancer treatments depends critically on the results of image
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analysis by experts. However, the information obtained
from this analysis is not easily interpreted by machines.
Medical images in clinical tasks are important as they allow
specialists to diagnose, plan, and track patients [1]. Thus,
a considerable number of computer applications have been
developed. Most of them are focused on extracting visual
features with the help of image processing algorithms.

Although these algorithms can help physicians to process
image findings for cancer treatment, they have problems
when an abstract query is made in the context of cancer
patient classification, for example, when an oncologist
wants to know if a tumor is at an advanced stage and it
expanded to some region near the origin of cancer but not
for other parts of the body [2]. There are difficulties during
image interpretation, because the semantic information,
implicit in the image reports, is not accessible to these
algorithms.

Although medical images and reports provide a signifi-
cant amount of information to physicians, this information
is not easily integrated into advanced medical applications,
such as clinical decision support systems to treat patients
with cancer, specifically when physicians assess individual
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progress of a cancer patient to decide new treatment mea-
sures [3]. Appropriate treatment options are supported by
information about cancer staging. Cancer staging is a clas-
sification process based on characteristics such as tumor
size and location in the body. This classification process
can be automated in order to optimize the work of physi-
cians, which may become cumbersome and error prone as
the number of patients increases [4].

There are few tools that allow radiologists to easily
capture semantic structured information as part of their
routine research workflow [5]. The Annotation and Image
Markup (AIM) [6, 7] project, from the cancer Biomedical
Informatics Grid (caBIG) [8], provides a XML schema to
describe the anatomical structure and visual observations
about images using the RadLex ontology [9]. It allows the
representation, storage, and consistent transfer of semantic
meanings in images. Tools using the AIM format, such
as the ePAD [5] tool, can help to reduce the effort to
collect structured semantic information about images. It also
permits making inferences about this information (cancer
lesions) using biological and physiological relationships
between image metadata.

Image metadata, in AIM format, does not allow the
representation of information about image findings in a
format that is directly suitable for reasoning. AIM provides
only a format for data transfer and storage. We can see then
that there is a lack of semantic methods to make inferences
about cancerous lesions from semantic annotations of
images, based on standard formats (such as AIM). Thus,
in this work, we developed a reasoning approach based
on a staging system: the Tumor-Node-Metastasis (TNM)
classification (stages, definitions, and examples can be
found in [10] and Fig. 6 respectively), published by the
Union for International Cancer Control (UICC).

Part of the novelty of this approach is to apply
semantic methods for image-based reasoning to automate
the reasoning tasks in TNM currently done by humans.
This TNM classifier was evaluated using 51 actual
patient’s radiology reports (from The NCI’s Genomic Data
Commons). When compared with the stages attributed by
physicians, the classifier had a precision of 85.7% and
recall of 81.0%. Furthermore, 3 radiologists from 2 different
institutions manually reviewed a random sample of 4 of
the 51 records and agreed with the tool staging. We also
compared semantic search, using the AIM4-O ontology, to
keyword search in the task of searching patient reports.
Semantic search had better precision and recall in all but one
case.

A classifier, like the one we are proposing, makes sense
only if formats for semantic image metadata (like AIM) are
adopted more widely by imaging tools. In that sense, it is
a glimpse of what semantic metadata could do for image
processing.

We recognize that even though radiology imaging is a
crucial component in determining cancer stage it alone may
not be enough. Physicians may also combine it with EHR
and laboratory/pathology data to reach a classification. Our
goal is to show a working automated method for staging
based on imaging that can be extended to include non-image
info in the future. Ultimately, a tool based on this method
will meet the requirements to be incorporated into semantic
annotation tools for medical images, such as the electronic
Physician’s Annotation Device (ePAD) [8], to automatically
stage cancer patients.

Objective

The objective of this work is to automatically determine
the cancer stage of lesions present in medical images, using
ontologies and reasoning technologies, to process semantic
annotations made by experts and provide clinicians with a
second opinion on the classification of their patients. These
semantic annotations are made using tools that use the
AIM format (used by the ePAD tool) to describe and save
image findings. Automatic cancer staging can increase the
efficiency of radiologists and oncologists and improve the
quality and uniformity of image interpretation by experts.
It is important to mention that our work focuses on staging
liver cancer due to data availability.

This paper is organized as follows. The “Related Work”
section presents related approaches. The “Method Description”
section describes our methodology composed of three main
components: the ontological representation of the AIM 4.0
model, the conditions to implement the TNM classifier (Gen-
eral Ontology), and the formal representation of cancer stag-
ing. The “Experimental Study and Results” section analy-
ses experimental data to assess our TNM classifier rele-
vance. Conclusions are found in the “Conclusion” section.

RelatedWork

Currently, in clinical research, there are similar cancer
staging systems. Cancer staging is a classification process
to determine how much cancer there is on the whole body
and where it is located. Some efforts on tumor staging,
based on a formal representation of a classification system
(such as TNM), have been using semantic annotations from
a controlled vocabulary for discovering implicit knowledge.
However, they are not open source and their classification
methods cannot be analyzed or reused openly [5].

Among the proposed approaches, Dameron et al. [11]
and Marquet et al. [12] perform reasoning based on
classification systems, such as TNM and WHO [13], using
an ontology class–based reasoning approach. However,
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this approach often leads to an underlying drawback: the
creation of unnecessary classes, increasing the complexity
of the ontology. In addition, they performed closed-world-
based reasoning in a context of open-world assumption
(OWA) [14] by modeling patient conditions using classes,
avoiding the reasoning based on instances. However, it is
possible to perform reasoning based on instances supported
by data structures (that will be described in detail in
following sections).

Some authors create ontologies in OWL-DL for TNM
[15–22]. However, the idea of having an ontology for each
type of body organ is undesirable, as in the case of Zillner
et al. [19] and Tutac et al. [15]. We believe in the approach
of having an ontology representing directly image findings
(such as the ontology model of AIM) and, besides that, the
classification tasks for cancer staging should be guided only
by rules and axioms.

In three articles [16, 23, 24], the authors used semantic
image annotations and perform a classification based on the
Nottingham Grading System (NGS) supported by OWL and
SWRL. The fact of creating a new ontology, depending on
the conditions you want to analyze, is a limiting factor. It
does not occur in our approach, which provides an ontology
based on the AIM standard.

Möller et al. [25] and Zillner et al. [3] use the closest
approach to our proposal. However, ignoring the fact that
the data used are not available for all the necessary analysis,
the lymphoma staging system that has been implemented in
this study is relatively simpler than TNM staging system.
For example, we can see that Zillner et al. [26] do not
consider the size of a lesion as an important factor. However,
this fact is very important in staging systems such as TNM
for liver, lung, etc. Moreover, we can see that the process
of aligning all ontologies generated in this study is not
described explicitly.

Gimenez et al. [27] and Kurtz et al. [28] are recent
works that use the ePAD tool. The authors propose an
image retrieval framework based on semantic annotations.
They used semantic correlations based on semantic terms
that are used to describe medical image findings. Their
automated approach helps radiologists by showing them
images associated with a similar diagnosis.

In the literature, we found similar systems where
semantic annotations are stored in different formats that do
not allow their integration for reasoning processes. Often,
these formats are also proprietary. Some of these studies
also allow the creation of image annotations in AIM format,
but these are not suitable for reasoning. AIM provides only
a transfer and storage format.

Our work is focused on helping cancer specialists in
automatic patient classification (staging) using semantic
annotations in images. The classification is made using
semantic reasoning on annotations encoded in AIM and

these annotations, made by radiologists, describe lesions in
images.

Method Description

In this section, we describe our methodology. It is comprised
by three main tasks:

1. Ontological representation of the AIM 4.0 model.
2. Creating conditions to implement reasoning based on

TNM rules, using OWL instances.
3. Formal representation of cancer staging.

Ontological Representation of AIMModel

In order to perform inference and classify image annotations
based on the AIM standard, we need a language equipped
with formal semantic. Using this semantic, inferences
about an ontology together with a set of individual
instances of classes can be made. In this context, the
Web Ontology Language (OWL), a language for building
ontological representations of information models, was
used. In our work, we transformed the AIM data model
into an equivalent ontological representation, using OWL2.
This transformation was performed by creating classes and
properties in OWL that are user understandable and suitable
for inference.

We developed an OWL model, based on the ontology
provides by Bulu, Hakan and Rubin, Daniel L. [29]1, which
represented an older version of AIM. Therefore, in order
to represent the AIM 4.0 model, which is the version used
to store image annotations generated using tools (such as
ePAD [30]), we modified Bulu’s ontology to represent AIM
4.0 model concepts. Our ontology is called AIM4-O.

AIM4-O Ontology

AIM4-O Classes

In general, the AIM 4.0 model is an extension of the
AIM Foundation model. There are nine classes that capture
lesion results and measurements derived during image-
based clinical analysis. In this work, we considered the
following six classes sufficient to achieve our goal:

1. AIM:Entity: It is an abstract class that represents the
existence of a thing, concept, observation, calculation,
measurement, and graphic design in AIM.

2. AIM:AnnotationCollection: It is an abstract con-
cept of a container that collects elements such as

1https://wiki.nci.nih.gov/display/AIM/Extending+the+AIM+Model
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Fig. 1 This diagram shows the AIM4-O ontology including the six classes modified from Bulu’s ontology. Ovals represent extended abstract
classes and instances of AIM:Entity, the relationships are represented as arrows

AnnotationOfAnnotation or
ImageAnnotation entities.

3. AIM:imageAnnotationCollection: Stores instances of
the AnnotationImages class. It associates with the
Person class that contains patient demographic infor-
mation.

4. AIM:ImagingPhysicalEntity: This class stores an
anatomical location as a coded term (i.e. RID2662,
femur, RadLex) based on controlled vocabularies such
as RadLex�, SNOMED CT�, or Unified Medical
Language System (UMLS).

5. AIM:ImagingPhysicalCharacteristic: This class
describes
the ImagingPhysicalEntity as a coded term.

6. AIM:MarkupEntity: This class captures textual infor-
mation and graphical representation as DICOM-SR
and SCOORD3D, for tridimensional and bidimensional
spatial coordinates.

AIM4-O Relationships

Relationships describe semantically how different concepts
relate to each other. For example, an ImageAnnotation
having an Observation entity that describes a lesion.
These relationships in our ontology enable the semantic

reasoning, which is a prerequisite for semantic classification
and searching.

One of the basic concepts in the AIM4-O ontology is the
ImageAnnotation entity. It allows us to describe data
properties of an image annotation in OWL, such as comments,
name, date, and time of its creation. For instance, the statement
imageAnnotation1 dateTime {2014-09-26T17
:07:58ˆˆdatetime} says that an annotation, referred
to as imageAnnotation1, was created at 2014-09-
26T17:07:58. There are more ImageAnnotation
entity relationships to other concepts, such as physical
location and observations on lesions found. These relations
can be seen in Fig. 1.

These relations can also be specified using OWL
relationships. A small example is given in Fig. 2. It
includes an OWL representation of an AIM 4.0 Ontology
instance and its usual relationships. This example shows
semantically equivalent concepts between AIM-XML
format and OWL model (Manchester serialization format)
that were used in this work. For example, an AIM Image
Annotation instance with the identifier value ‘‘unique
Identifier:9gs43xqj1kyl13l...’’, can be
represented in OWL and used for reasoning purposes. Sim-
ilarly, Fig. 3 shows that the concept PhysicalEntity ,
with the identifier value‘‘uniqueIdentifier:g08jn
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AIM-XML

Manchester syntax

21  <imageAnnotations> 
22  <ImageAnnotation> 

24  <typeCode code="RECIST"codeSysten="Tumor assessment"codeSystemName="Tumor assessment"/>  
23  <uniqueldentifier > root="9gs43xqj1ky1131mega0zhoenzvgeakkprft8fw8"/> 

25  <dateTime value="2014-10-05T22:15:43"/>
26  <name value="Liver2"/>
27  <comment value="CT / THORAX  1.0  B45F"/  273"/>
28  <imagingPhysica1EntityCollection>
29  <ImagingPhysicalEntity>
30  <uniqueIdentifier root="g08jnm9ow79tijgj1br3q8wd89nq69epjdnxxo30"/>
31  <typeCode code="RID58" codeSystem="liver" codeSystemName="Radlex" codeSystemVersion=""/>
32  <typeCode code="RID67" codeSystem="Couinaud hepatic segment  7" codeSystemName="Radlex.3.10"

codeSystemVersion="" />
33  <annotatorConfidence value="0.0" />
34  <label value="Location" />
35  </ImagingPhysicalEntity>
36  </imagingPhysica1EntityCollection>

3351  Individual: <http://www.owl-ontologies.com/

Ontology1311106921.owl#9gs43xqj1kyl13lmega0zhoenzvgeakkprft8fw8>

3353        Types:
3354                ImageAnnotation

3356        Facts:
3357          hasCalculationEntity  a41pf1nncfbvh5dljf6gfw6r6i3om1ece6270nix,
3358         hasImageReference  sj19n9gf050ap9uzkc2h98ye413rxd71jac28g3g,
3359         hasImagingObservation  hojggsv5f543pzsffj8jb1jgp11tnm9qdjow4ldd,
3360         hasLesion  Lesionhojggsv5f543zsffjj8jbijpg11thm9qdjow4idd, 
3361         hasMarkupEntity  jma0x979fa9y3k4cwypqjvtechwitqb3glvdzjyw,
3362         hasPhysicalEntity  g08jnm9ow79tijgj1br3q8wd89nq69epjdnxxo30,
3363         comment  "CT  /  THORAX   1.0   B45F  /  273"^^xsd:string,
3364         dateTime      "2014-10-05T22:15:43"^^xsd:dateTime,
3365         hasLesionBool    true,
3366         name     "Liver2"^^xsd:string,
3367         uniqueIdentifier "9gs43xqj1kyl13lmega0zhoenzvgeakkprft8fw8"^^xsd:string

Fig. 2 Sample of image annotations using AIM-XML and OWL Manchester serialization

m9ow79ti...’’, is related to the ImageAnnotation
instance by the hasPhysicalEntity Object Property.
Figure 3 shows more information about the syntax of a
PhysicalEntity instance in AIM 4.0 XML and the
equivalent OWL Manchester syntax for the same instance.

Creating Conditions to Implement Reasoning Based
on TNM Rules Using OWL Instances

The second step is to transform existing AIM-XML
documents to their equivalent in OWL (using the AIM4-
O ontology). To achieve this, we developed scripts, in the
Groovy language.2 First, we automatically map AIM-XML
entities to AIM Java classes, based on the AIM UML3

model (Fig. 4). We then create instances of the AIM4-O
ontology from these AIM Java classes, using the OWL API,
a Java API for creating, manipulating, and serializing OWL

2http://groovy-lang.org/
3https://wiki.nci.nih.gov/display/AIM/Extending+the+AIM+Model#
ExtendingtheAIMModel-AIMUMLModeling

ontologies. Finally, these instances populate a semantic web
knowledge base. This base is suitable for classification-
based and rule-based inference.

In order to automatically stage cancer, our approach must
have the support of an ontology to specify the semantics of
image observations from a particular domain. In this case,
this ontology should be able to represent the topology of a
human body organ (the organ in which cancer starts growing
and has its own TNM system). In this work, this organ was
the liver. Furthermore, it is considered necessary to include
an OWL representation of RadLex�[31] vocabulary in
order to facilitate handling AIM4-O individuals, because
these individuals have Radlex terminology in their structure.
Finally, a set of rules to do the actual staging, based on the
TNM liver system, was added to the ontology. The final
result was the General Ontology.

General Ontology

The General ontology is divided into 4 files, as seen in
Fig. 5:
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AIM-XML

Manchester syntax

.

.

.

.

.

.

28  <imagingPhysicalEntityCollection> 
29  <ImagingPhysicalEntity> 

31  <typeCode code="RID58"  codeSysten="liver"  codeSystemName="RadLex"    codeSystemVersion= ""/>  
30  <uniqueldentifier > root="g08jnm9ow79tijgj1br3q8wd89nq69epjdnxxo30"/> 

 codeSystenVersion=""/>
32  <typeCode code="RID67"  codeSysten="Couinaud hepatic segment 7"  codeSystemName="RadLex.3.10"  

33  <annotatorConfidence   value="0.0" />
34  <label   value="Location" />
35  </ImagingPhysicalEntity> 
36  </imagingPhysicalEntityCollection> 

4715  Individual: g08jnm9ow79tijgj1br3q8wd89nq69epjdnxxo30 

4717       Types:
4718                ImagingPhysicalEntity

4716 

4720         Facts:
4719 

4721          annotatorConfidence   0.0f,
4722          label     "Location"^^xsd:string,
4723           typeCode  "{codeSystemName=RadLex, codeSystem=liver, code=RID58,

codeSystemVersion=}"^^xsd:string,
4724           typeCode  "{codeSystemName=RadLex.3.10, codeSystem=Couinaud hepatic segment 7,

code=RID67,  codeSystemVersion=}"^^xsd:string,
4725           uniqueIdentifier    "g08jnm9ow79tijgj1br3q8wd89nq69epjdnxxo30 "^^xsd:string

Fig. 3 Sample of AIM PhysicalEntity in AIM-XML and OWL Manchester serialization format

Fig. 4 Mechanism to transform
AIM-XML documents to
encoded AIM4-O individuals
using OWL

AIM-xml annotations 
linked to images

Script Parser

OWL-API

OWL-API

OWL-API

AIM4-O.owl

Individuals
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Fig. 5 The General Ontology
imports (TNM rules, axioms,
moduleRadlex.owl, and
Onlira.owl) needed in order to
classify liver cancer

– The AIM4-O ontology with individuals (“AIM4-O
Ontology”).

– Onlira.owl: The Liver Ontology (based on the Onlira
ontology [32]).

– Radlex lexicon module (ModuleRadlex.owl4).
– General concepts of TNM (axioms and SWRL rules).

The following sections give a description of the
ontologies used as part of the General Ontology.

Ontology of the Liver for Radiology

The Ontology of the Liver for Radiology (ONLIRA)
ontology5 was developed as part of the CaReRa project. It
aims to model imaging observations of the liver domain with
an emphasis on properties and relations between the liver,
hepatic veins, and liver lesions. This ontology is used as
an ontological representation of the liver and its topological
features.

RadLex Terminology

The AIM model provides an XML schema that describes
anatomical structures, visual observations and other

4http://bioportal.bioontology.org/ontologies/RADLEX/classes
5https://bioportal.bioontology.org/ontologies/ONLIRA

information relevant to images using the RadLex terminol-
ogy. We extracted a module from the Radlex lexicon to
represent this information. The RadLex module is used by
the General ontology to permit a formal representation (in
OWL) of TNM criteria. The TNM criteria are based on
knowledge about the way cancer develops and disseminates.
For this reason, it is important that the General ontology rep-
resents not only the anatomical entities mentioned in TNM
but also other direct and indirect related anatomical entities
to consider the relative proximity between them. For exam-
ple, to the N and M criteria (in TNM) we added 2 super
classes, the adjacentOrganGroup, which describes the
set of organs adjacent to a main organ (e.g., the liver), and
the noadjacentOrganGroup, which describes organs
based on the most common sites of tumor dissemination
[10]. For the liver, we included lungs and bones as no
adjacent organs, as seen in Fig. 8.

Classes to Represent TNM System Concepts

In order to create an OWL representation for each TNM
stage, we had to interpret each stage definition. Although it
is not mentioned explicitly, the TNM criteria are exclusive,
so the corresponding OWL classes were made disjoint. For
example, the T2 stage is represented by two constraints: a
single tumor (of any size) that has grown into blood vessels
concept (T2 a class) and a single tumor no larger than “x”
cm concept (T2 b class).

J Digit Imaging (2020) 33:287–303 293
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Table 1 American Joint Committee on Cancer/International Union against Cancer TNM classification system

Primary tumor (T)

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

T1 Solitary tumor (any size) without vascular invasion

T2 = T2 a or T2 b Solitary tumor (any size) with vascular invasion or multiple tumors none < 5 cm

T3a Multiple tumors, with at least one tumor > 5 cm

T3b Single tumor or multiple tumors of any size involving a major branch of the portal vein or hepatic vein

T4 Tumors with direct invasion of adjacent organs other than the gallbladder or with perforation of visceral peritoneum

Regional lymph nodes (N)

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Regional lymph node metastasis

Distant metastasis (M)

M0 No distant metastasis

N0 Distant metastasis

Formal Representation of TNM Cancer Staging

In the previous sections, several steps were necessary to
create the General ontology for a TNM classifier. First,
we created classes and properties in order to fill the
semantic gap between the tumor features and the AIM4-0
classes definitions. Then, we provided formal definitions for
the TNM stages, liver’s topological features, and RadLex
terminology, in order to represent them in OWL. Finally,
we defined formal mechanisms for reasoning (using only
OWL and SWRL expressivity) such as OWL classes,
intersections, equivalences, disjunctions between classes,
and a set of rules in order to determine cancer stage from
image annotations. This last step will be described below.

In order to discover the limits of the OWL concepts
and SWRL rules, we attempted to formally define and
implement the conditions that TNM staging demands. TNM
cancer staging is divided in two main steps. The first step
consists in giving a score starting from the description of
the tumor (T), its spreading into lymphatic nodes (N), and
possible metastasis (M) (see Table 1).

The second step consists in determining the stage
according to the previous scores (see Fig. 6). To make
the aforementioned tasks possible, we decided that the
following conditions reflect a desirable staging process:

– Condition 1 : Staging should consider the existence of
solitary or multiple tumors on the same site.

LesionA4NE-1 admin
Length: 6.286cm (85.599px)

LesionA4NE-2 admin

Length: 2.803cm (38.171px)

Length: 2.807cm (38.210px)

LesionA4NE-3 admin

a b

Fig. 6 a Axial, contrasted CT image shows multiple HCC tumors
(green lines), identified and annotated using the ePAD tool. There

was no regional lymph node involvement or metastasis. b The dia-
gram shows multiple HCCs with at least one > 5 cm. This patient was
classified as having TNM stageIIIA (T3a, N0, M0). Adapted from [10]
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– Condition 2 : Staging should consider if tumors are
either bigger or minor than a certain size in cm.

– Condition 3 : Staging should consider lesions in
adjacent organs.

Asserting Conditions Using OWL

Condition 1: Staging should consider the existence of
solitary or multiple tumors on the same site.

The AIM4-O ontology does not give us the explicit
mechanics such as classes, subclasses, or properties, that
allows us to infer whether a patient has a single or multiple
tumors. In the case of multiple tumors, we constructed
the following rule MoreThanOneTumor (in SWRL
notation):

This rule classifies an ImageStudy as a member
of the MorethanOneTumor class if an image study
“X” is referenced by more than one image annotation.
In order to classify something as MorethanOneTumor,
we created a new concept called isImageStudyOf .
This concept is the inverse of the hasImageStudy
object property. The hasImageStudy property relates an
ImageAnnotation entity to an ImageStudy entity.

In the scenario of classifying patients with one solitary
tumor, we did not find axioms or rules that satisfied
this requirement, due to the fact that OWL works
under the open-world assumption. Open world means that
just because something is not said it does not mean
that it is not true. For example, I can say that the
patient annotation describes a cancer lesion, using the
ImagingObservation entity of the AIM4-O ontology
model, but unless I explicitly say that there are no other
lesions, it is assumed that there may be other lesions that I
just have not mentioned or described.

We have tried to solve this problem (the open-
world assumption) by considering some alternatives such
as modeling again our AIM4-O ontology (e.g., setting
the hasImagingObservation object property as a
primitive class). But, this did not seem intuitive to us.
Instead, we decided to state the number of lesions explicitly
by creating one new concept named singleLesion, as
a data property of an ImageStudy entity. This concept

denotes if an ImageStudy describes exactlyone solitary
tumor. We assumed that an ImageStudy entity describes
only one tumor ("singleLesion {true}") if and only
if it is referenced by only one ImageAnnotation entity.
However, it was not possible to formulate this using only
OWL. Instead, this information was provided by a data
structure that was generated as part of the process of
parsing the AIM-XML image annotations to create AIM4-
O individuals. Finally, to classify annotations that describe
a single lesion, we constructed the rule SingleTumor (in
SWRL notation):

Condition 2: Staging should consider if tumors are either
bigger or minor than a certain size in cm.

This condition was easily implemented by get-
ting the value from the data property values on
the CalculationResult entity. This entity is
related to the ImageAnnotation entity through the
hasCalculationEntity object property. In order to
satisfy this condition, we assert the following rules taking
5 centimeters as the longest dimension of the target liver
lesion (in SWRL notation):

LessThan5cmTumor:

MoreThan5cmTumor:
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Condition 3: Staging should consider lesions in adjacent
organs.

To satisfy this condition, the most complicated criterion of
classification, we had to consider the fact that a cancerous
tumor can spread throughout the body. For that, we needed
to create one new concept, based on the Lesion class
from the Onlira ontology [32]. The Lesion class handles
important characteristics of a lesion, such as composition,
density, size, and shape. But, unfortunately, they are not
enough for TNM classification and reasoning. For this
reason, we added 3 properties to it and created the subclass
OutsideLesion; these properties are:

– hasLocation (object property): This property indi-
cates the lesions location based on RadLex taxonomy.
This property relates Onlira Lesion class instances
to RadLex AnatomicalEntity class instances (see
Fig. 7).

– isRegionalLymphNodeAffected (data prop-
erty): This property denotes whether a lesion is found in
some lymph node. It was useful to enable classification
criteria such as N0 and N1 (see Fig. 7).

– isAdjacentOrgan (data property): This property
denotes whether a lesion with a hasLocation value
‘‘X’’ is close to any adjacent organ. In accordance
with the TNM liver classification criterion, which is the
case of study in this work, we considered as adjacent
organs to the liver [10]; the pancreas, duodenum,
and colon (see Fig. 8). Furthermore, we grouped
these concepts as organs in RadLex representation,
creating two new classes, AdjacentOrganGroup
and NoAdjacentOrganGroup:

AdjacentOrganGroup and NoAdjacentOrgan
Group classes indicate whether a body organ is consid-
ered adjacent or not to the organ where the primary tumor
was located. The primary organ defines the type of staging
system to use; in our case, this organ was the liver. Finally,
we constructed the following rule (in SWRL notation) to
indicates whether an OutsideLesion is located in an
adjacent organ:

Once the above requirements were adequately covered
using OWL and SWRL rules, we constructed the axioms
and rules in order to be able to automatically classify cancer
lesions, based on the TNM system. We noticed that the way
we modeled things mattered. For example, it was easier to
define N1a and N0 criteria and reuse their definitions for
M0, rather than to start with the definition of M0 and end
up handling complex closures. With the use of the AIM4-O
ontology, anatomical concepts can easily be related to each
other as demonstrated previously.

Experimental Study and Results

In this section, we first describe our experimental datasets,
based on actual medical images and reports. Then, we
evaluate the expressivity of the AIM4-O ontology. Finally,
we present a quantitative evaluation of our TNM classifier
for semantic image findings, which is the objective of this
work, using precision and recall.

Datasets

Our first dataset is a set of real clinical reports of
Hepatocellular Carcinoma (HCC) patients from The NCI’s
Genomic Data Commons (GDC). In this work, all

Onlira:Lesion

Onlira Ontology

Radlex:anatomical_entity

Radlex Module

:outside_Lesion

General Ontology

:hasSubclass

:hasLocation

Radlex:radlex_entity

:Tumor

:hasSubclass

Onlira:Hepatic_Vascularity

:isCloseToVein

Fig. 7 General Ontology adds to the Onlira:Lesion class 2 properties defined as necessary for the TNM representation
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Anatomical Representation

Pancreas

Stomach

Spleen

Lymph Nodes

Intestines

Gallbladder

Liver

Ontological Representation(based on Radlex)

Fig. 8 Getting the subclass-hierarchy from Radlex.
AdjacentOrganGroup (Pancreas, Spleen, Stomach,
Gallblader,and Colon) and NoAdjacentOrganGroup

(Lymph nodes, Lung) classes are created regarding the organ
where the primary tumor was located (in this case, the liver)

Table 2 Description logic and keyword representation for four queries

Query ID DL query Keyword query

Q1 hasAnnotations some (hasImageAnnotations some (hasImagin-
gObservation some (ImagingObservationEntity and label value
“Lesion type” )))

Tumor

Q2 hasAnnotations min 2 Multiple tumor

Q3 hasAnnotations some (hasImageAnnotations some (hasCalculatio-
nEntity some (hasCalculationResult some (some values float [¿
8.0f]))))

Tumor size greater than 8 cm

Q4 hasImagingObservationCharacteristic 1 min Vascular tumor invasion mass

Table 3 Table showing precision and recall using the two gold standards (Stanford and Marilia) for the four queries

id Semantic search—DL Keyword search

Precision Recall Precision Recall

Stanford Marilia Stanford Marilia Stanford Marilia Stanford Marilia

Q1 15/15 13/15 15/15 13/13 12/12 12/12 12/15 12/13

1.0 0.87 1.0 1.0 1.0 1.0 0.8 0.92

Q2 5/5 5/5 5/5 5/5 2/5 2/5 2/5 2/5

1.0 1.0 1.0 1.0 0.4 0.4 0.4 0.4

Q3 9/10 9/10 9/10 9/10 0/10 0/10 0/10 0/10

0.9 0.9 0.9 0.9 0.0 0.0 0.0 0.0

Q4 10/15 9/15 10/10 10/10 7/7 7/7 7/10 7/10

0.67 0.6 1.0 1.0 1.0 1.0 0.7 0.7

J Digit Imaging (2020) 33:287–303 297



experiments were supported by the GDC data. An important
requirement to enable a feasible clinical evaluation was
to have an image dataset to validate the results of the
GDC clinical reports. To cover this requirement, we used
the TCIA database [33]. It hosts a large archive of
medical images about cancer, it is accessible for public
download and it is related to the GDC records by a
patient subject ID. The imaging modality selected was
computed tomography (CT). The downloaded images were
loaded into the ePAD annotation tool and annotated.

While TNM staging could be applied to other types of
cancer, this work focuses on staging liver cancer. One reason
was the availability of clinical data and images for this
kind of cancer. For a given patient, the input to our TNM
classifier consists of AIM files (image annotations) and the
output consists of the Cancer Staging for this patient.

Quantitative Assessment of AIM4-O Ontology

According to Blomqvist et al. [34], “the ontological
evaluation is the process of assessing an ontology with
respect to certain criteria, using certain measures.” In this
work, we undertook the evaluation of the AIM4-O ontology
from the functional point of view. To achieve this, we carried
out a task-focused assessment and inference requirements
[32]. In order to evaluate the AIM4-O ontology, we studied
and evaluated how it could help in searching clinical reports
that describe image findings (reports about cancer). For this
purpose, we compared two different approaches:

– Ontology-based (semantic) search: If the clinical
reports are described as AIM4-O individuals, these
reports can be searched using description logic query
languages (DL query).

– Natural Language process-based (keyword) search:
Clinical reports and image findings are usually written
in natural language. There are many ways to implement
keyword search. We decided to use a very popular
full-text search engine that can be used from various
programming languages: the Apache Lucene.6

In the literature, ontology-based search performs better than
keyword-based search [32]

One of the reasons is that ontology search can search
for information not explicitly mentioned in the text. For
instance, it is possible to search for reports not having
some features: Find all records of tumors not in the liver.
Using keyword search, the best one can do is to find reports
without the word liver. Many reports with the word liver
may talk about tumors in other organs.

If an ontology-based search system, using the AIM4-
O ontology, outperforms a keyword search system

6http://lucene.apache.org/

implemented using Apache Lucene it is a good positive
quantitative assessment for the ontology.

In order to highlight the differences between the two
approaches, we used four queries expressed both in DL (DL
query) and keywords (see Table 2):

1. Q1—Find all reports related to an image observation
(tumor observation).

2. Q2—Find all reports that describe multiple tumors.
3. Q3—Find all reports that contain a tumor observation

that has a size greater than 8 cm.
4. Q4—Find all reports that contain a tumor observation

with descriptors (e.g., invasion, mass, vascular).

The DL queries were processed using the ontology
editor Protégé7 (using its default reasoner HermiT). For
the keywords, a small Java program was created to read
the report texts, read the keywords and use the class
StandardAnalyser8, from the Apache Lucene library, to
make the search.

We have considered the following points in order to
evaluate both approaches:

– The evaluation was based on GDC reports: We
randomly took 15 radiology reports of different patients
written in natural language and converted them into
AIM4-O instances.

– A report was retrieved if it satisfied the DL query or it
collects all keywords in the search query.

– Finally, we compared the precision and recall against
a gold standard. Precision is the proportion of truly
retrieved reports to the total number of reports retrieved.
Recall is the proportion of truly retrieved reports to the
total number of reports that should have been retrieved
[32].

The gold standard was determined manually by 3 radiology
professors from two different institutions: one from
Stanford University School of Medicine and two from the
Faculty of Medicine of Marilia (Brazil). They manually
evaluated each query to decide which of the 15 reports
should be retrieved.

The four queries with corresponding precision and recall
results are shown in Table 3.

By analyzing the four queries, we can see that the
semantic search has the greatest number of relevant
documents retrieved:

Q1: With the semantic approach, 15 reports were
retrieved with an average precision of 0.95 and recall of

7https://protege.stanford.edu/
8https://lucene.apache.org/core/6 4 2/core/org/apache/lucene/analysis/
standard/StandardAnalyzer.html
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Fig. 9 A CT image of the liver annotated using the TNM template (on the right of the image)

1.0. The keyword approach returned 12 reports with 1.0
precision and 0.96 average recall.

Q2: With the semantic approach, 5 reports were retrieved
with a 1.0 precision and recall. Much better than the 2
reports retrieved by the keyword with just 0.4 precision
and recall.

Q3: In this question, the keyword approach was very
poor with no reports retrieved. There were no reports
containing the queried words (i.e., “lesion size greater
than 8 cm”). Keyword search is not well suited for
queries with numerical relations, but such relations are
very important when searching for tumors. The semantic
approach returned 10 reports with 0.9 precision and
recall.

Q4: The semantic approach retrieved more reports (15 vs
7) with 0.67 precision and 1.0. When compared with the
keyword approach (precision 1.0 and recall 0.7), it had
a similar performance with 0.80 F1 versus 0.82 of the
keyword search.

The semantic search approach performance was better, with
recall values close to 1 and always better than the keyword
search in both golden ratio values. Also, in all but one case,
precision values were better for the semantic search. That
shows that the AIM4-O ontology is able to semantically
represent the information in the reports well enough to
outperform keyword search. Its representation can also be
used by reasoners to successfully compute information note

explicitly stated in the report (such as the fact of a tumor be
bigger than a given size, question Q3).

Automatic TNM Clinical Stage

In this section, we calculated the classification rate of the
TNM classifier. At first, we created an ePAD template
named “TNM template” in order to provide radiologists
with a prespecified set of semantic terms for image
annotations. These image annotations, which are compatible
with the ePAD tool, were stored in the AIM-XML format.
An example of an annotated image is presented in Fig. 9.

After, the generated image annotations (in AIM-XML
format) were classified automatically using the TNM
criteria. This process was duly evaluated and correctly

Table 4 Confusion matrix of cancer stages predicted by the TNM
classifier versus the values the physicians placed in the reports

n = 51 Actual stages

I II IIIA IIIB IVA

Predicted stages I 24 2 0 0 0

II 0 10 2 0 0

IIIA 0 1 8 0 0

IIIB 0 0 0 2 1

IVA 0 0 0 0 1
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Fig. 10 Confusion matrix for
TNM multi-stage classification

accepted by two radiology professors from two different
institutions (Stanford University School of Medicine and
Faculty of Medicine of Marilia). They also analyzed the
accuracy of the generated annotations in terms of semantics.
The process we followed was:

– The data set used came from the following open
databases:

– The NCI’s Genomic Data Commons (GDC)9.
– The Cancer Imaging Archive (TCIA)10 (col-

lects only images, the number of series and
studies): As we were working with TNM
classification from the liver, we searched
for “LIHC - Liver hepatocellular carcinoma”
obtaining 52 patients with information avail-
able in both databases (images and reports).
However, the information about tumor size
was obtained by manual review of the medical
reports. These reports are also available in The
NCI’s Genomic Data Commons.

– After reading the medical reports, the radiologist was
provided with an excel spreadsheet that provided
information about medical findings, such as lesion size,
vascular invasion, and others.

– Based on this excel file and the GDC data, we created
AIM-XML annotations and integrated them into our
knowledge base (as AIM4-O ontology individuals).

9https://gdc.cancer.gov/
10https://public.cancerimagingarchive.net/ncia/login.jsf

– The AIM files were used as inputs for our TNM
classifier. The produced output was compared with the
TNM values that physicians reported.

The AIM image annotations were generated based
on 52 different clinical reports. Our automatic staging
approach was evaluated by using precision and recall
values. The cancer stages generated by our TNM classifier
were compared to those described by the physicians who
created the original clinical reports (our gold standard).
We used the 7th edition of TNM [10]. One patient, with
the subject ID “TCGA-DD-A1EJ,” was removed from this
analysis. Our radiology professors considered that the TNM
classification, reported by the physician in his respective
clinical report, was incorrect (more information below).

For the calculation of precision and recall, the result is
considered positive when the automatic staging coincides
with the stage given by physicians who created the original
clinical reports (see Table 4).

Precision was 85.7% and recall 81.0% (for 51 patients).
This means that, for precision, at 85.7% of the time the
system agreed with the staging given by physicians. For the
recall, this means that, of all the times that a given stage was
reported by a physician, in 81.0% of cases the system agreed
with him/her. It is important to note that, even when the
system diverged from physicians, the maximum difference
between them was only one stage.

In Fig. 10 we show the results of the evaluation
summarized in the color scale matrix. It represents our
confusion matrix for a multi-stage classification. The darker
the square in the diagonal of the matrix means that the
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Fig. 11 Summary of histograms for each TNM stage from the
confusion matrix (51 reports): FN—false negatives, FP—false
positives, and TP—true positives

respective class was better classified. The other squares in
grays, outside of the diagonal, indicates that the class in
the vertical axis was confused by the classifier with the
corresponding class on the vertical axis.

For early stages of cancer, such as I, II, and IIIA, the
percentage of misclassifications (e.g., false positives and
false negatives) was very small. They are represented by
the highlighted diagonal of the matrix (Fig. 10). For more
advanced stages of cancer, such as IIIB or IVA, it was larger
(Fig. 11). This may have happened simply because we had
few patients at these stages or because these stages are
described by relatively more complex concepts.

We also performed a sanity check of what was recorded
in the AIM and the output produced by the classifier. The
3 radiologists that participated in this validation manually
reviewed the whole process (including the stage assigned
in the patient report), using the patient images and reports,
for 3 randomly chosen patients. In all cases, the whole
process for generating the AIM representation and staging
classification was correct.

Our classifier also revealed the fact that there are clinical
reports with inaccurate staging diagnosis. An example of
this situation was the clinical case with subject ID “TCGA-
DD-A1EJ.” This case was the only in which the difference
between the classifier’s stage and the physician’s evaluation
differed by more than one level, our radiologists decided
to analyze how thus case was processed. They concluded
that the case has been processed correctly and that the
result of the classifier was also correct. The stage predicted
was Stage I; however, the stage described by the medical
report was Stage III.11 They recommended us to not use this
patient’s data, so this report was excluded from our analysis.
Examples, like this, serve to warrant the importance of

11https://portal.gdc.cancer.gov/cases/52292ffc-0902-4d97-b461-2072
3987a177

improving clinical decision support systems (through the
use of image metadata in cancer treatment).

Conclusion

Cancer staging entails an intensive work, this often requires
an accurate interpretation of the cancer findings in images
by medical experts (oncologists and radiologists). Expert
accuracy is achieved through training and experience [35],
but variations in image interpretation is a human observer
limitation. In this context, we developed an automatic
staging approach (a TNM classifier). It can help physicians
to obtain a higher accuracy rate for image interpretation.

To achieve this, first an ontology to represent AIM4
annotations, called AIM4-O, was developed and validated
using a task-focused assessment of actual clinical cases.
Using the ontology to semantically search reports, we got
much higher precision and recall values when compared to
keyword (no semantics) search. Subsequently, the General
ontology, integrating the AIM4 ontology, Onlira ontology
(a subset of the RadLex vocabulary) and SWRL rules for
TNM staging, was developed and used to develop a TNM
classifier using the Groovy language.

This TNM classifier was evaluated using actual cancer
cases. Our experimental data showed that, when compared
to 51 staging values given in actual physician reports, the
classifier generated results had 85.1% precision and 81.0%
recall. When the classifier stages differed from physician’s
reported stages, that difference was, at most, of 1 stage.

The TNM classifier also revealed one patient report
with inconsistencies in the diagnostics. It is important to
note that this automatic staging procedure does not give
clinicians new information. It is merely a second opinion
for the purposes of quality in clinical diagnosis. We also
highlighted some limitations of description logics, such as
the open-world assumption.

Our TNM classifier can be used in automated clinical
workflows, where AIM based image annotations are
produced by imaging systems. Automatic TNM staging can
be as easy as pushing a button in such systems.

We believe that our approach could be also applied to
other kinds of cancer such as lung or colon, by modifying
only the rules and axioms that represent the TNM criteria.
That can be done avoiding the creation of an entirely new
ontology for each type of cancer.

Besides cancer staging, other tasks, such as RECIST
cancer criteria can also be automated using this combination
of AIM, OWL ontologies, and SWRL rules.

Future work will include more varied data sets for
evaluation, expansion of the classifier to other organs, and
incorporation into existing information systems (such as
ePAD). The TNM classifier has the potential to be integrated
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into larger software systems. A Specific Domain Language
(DSL) to describe TNM criteria can be developed as a
communication tool between physicians and TNM criteria
formal representation (axioms and SWRL rules). It would
allow physicians to modify the classifier rules themselves.

A limitation to this work is that a relatively small dataset
was used in our evaluation. One reason is the requirement
that both medical images (CT) and clinical reports have
to be present for the same patient for optimal validation.
Another is the time constraint for radiologists and the
difficulties to get them to review large datasets.
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