
Automated detection of foveal center in SD-OCT images using the saliency of
retinal thickness maps

Sijie Niua)
School of Information Science and Engineering, University of Jinan, Jinan 250022, China
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Qiang Chena)

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350121, China

Luis de Sisternes
Department of Radiology, Stanford University, Stanford, CA 94305, USA

Theodore Leng
Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA 94303, USA

Daniel L. Rubin
Department of Radiology, Stanford University, Stanford, CA 94305, USA

(Received 30 December 2016; revised 19 September 2017; accepted for publication 23 September
2017; published 3 November 2017)

Purpose: To develop an automated method based on saliency map of the retinal thickness map to
determine foveal center in spectral-domain optical coherence tomography (SD-OCT) images.
Methods: This paper proposes an automatic method for the detection of the foveal center in SD-
OCT images. Initially, a retinal thickness map is generated by considering the axial distance between
the internal limiting membrane (ILM) and the Bruch’s membrane (BM). Both the ILM and BM
boundaries are automatically segmented by a known retinal segmentation technique. The macular
foveal region is identified as a salient feature in the retinal thickness map, and segmented by the sal-
iency detection method based on a human vision attention model. Finally, the foveal center is identi-
fied by searching for the lowest point from the determined macular fovea region.
Results: Experimental results in 39 scans from 35 healthy eyes and 58 scans from 29 eyes diagnosed
with several stages of age-related macular degeneration (AMD), from mild or intermediate stages to
severe dry or wet stages, demonstrated that the proposed method achieves good performance. The
mean radial distance error of the automatically detected foveal center locations when compared to
consensus manual determination established by repeated sessions from two expert readers was
52 � 56 lm for the normal eyes and 73 � 63 lm for AMD eyes.
Conclusions: The proposed algorithm was more effective for detecting the foveal center automati-
cally in SD-OCT images than the state-of-art methods. © 2017 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.12614]
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1. INTRODUCTION

The development of spectral-domain optical coherence
tomography (SD-OCT) has allowed for advanced noninvasive
imaging of intraretinal structures at high resolution, enabling
clinicians to rapidly identify possible lesion locations and to
measure macular thickness quantitatively. Quantitative mea-
surement of central macular thickness (CMT) is important
because it may help clinicians to objectively monitor disease
progression1,2 or make a treatment decision.3 CMT is mea-
sured as the retinal thickness within a 1 mm diameter circle
of the Early Treatment Diabetic Retinopathy Study (ETDRs)
grid,4 centered at the fovea pit center, and it has been shown
to be closely associated with visual acuity. Macular SD-OCT
scans normally cover a region of 6 9 6 mm of the macula
region. As macular thickness can strongly vary when

measured at different scan locations, the accurate determina-
tion of the foveal center location within the OCT scan plays a
vital role in obtaining adequate CMT measurements. Mea-
surement in an inaccurate location within the scan would lead
to erroneous CMTvalues. Manual determination of the foveal
center is subject to user-variability, yielding subtle but poten-
tially important differences. A reliable automated approach to
identify the foveal center would eliminate such errors.

Currently, there are numerous approaches for automati-
cally detecting the foveal center in color fundus images,5–17

but few have been described for SD-OCT images (e.g., the
postdetection method in the Cirrus HD-OCT software18).
Most foveal location approaches in color fundus images5–11

are based on finding the minimum intensity (darker region)
within the image and considering the distance from the optic
disk to a candidate foveal center while others take advantage
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of the vessel density.12–16 However, such methods are not
directly applicable to SD-OCT imaging, as the complexity
and sampling of the data acquired are different (two-dimen-
sional in color fundus images versus three-dimensional in
SD-OCT) and pathological characteristics that may be
exploited for the fovea center location appear differently in
the two imaging techniques.

The pathological characteristic of the foveal center in SD-
OCT images of an average healthy eye is the lowest point
(highest axial depth) in the foveal depression on both hori-
zontal and vertical planes (as shown in Fig. 1), and this char-
acteristic is normally taken as the key feature in fovea center
determination.18 Previous studies18–21 have reported that
automated postdetection of the foveal center improves the
measurement of macular thickness using the Cirrus HD-OCT
software, although specific details for this method are not
publicly available. Several intraretinal segmentation algo-
rithms22–24 also proposed their own simple foveal center
determination method by searching the minimum thickness
between the different layers. However, irregularity in retinal
structures or the presence of disease can cause thinning and
loss in isolated regions of different retinal layers, altering the
internal limiting membrane (ILM) depth locally and limiting
the ability of previous methods to identify the foveal center
for both normal eyes and diseased eyes. Additional difficul-
ties are derived from possible eye tilting or incorrect align-
ment in the acquired images. Due to the above limitations, a
simple algorithm relying on finding the local minimum point
within the ILM surface or simply searching for the smallest

distance between different layers would not be a robust
approach to accurately determine the position of foveal cen-
ter. Taking into consideration the saliency of the full retinal
thickness and assuming that the foveal depression should pre-
sent a localized region of thinning in the macula can improve
the detection of the foveal center. Full retina thickness maps
can be generated by considering the axial distance between
the ILM and the Bruch’s membrane (BM). Although disease
can also affect such topographic maps, foveal center detection
seems relatively more robust by including such considera-
tions rather than adopting a simple algorithm based on find-
ing the minimum ILM to BM distance.

The foveal center, being located at the foveal depression,
can be recognized as saliency of the retinal thickness map, as
shown in Fig. 1(e), which can provide a key feature for its
automatic detection. In computer vision,17,25 saliency detec-
tion has been widely studied in a variety of nonmedical appli-
cations for object recognition,26 image quality assessment,27

video summarization,28 and other applications.29,30 Com-
pared with traditional regional segmentation methods, sal-
iency detection methods utilize a human vision attention
model for detecting a salient object. Several methods have
been proposed to extract saliency information, including
“center-surround” difference,28 graph-based visual saliency,31

spectral residual-based saliency detection,32 Bayesian proba-
bilistic framework,33,34 global contrast-based salient region
detection,35 and partial differential equation learning for sal-
iency detection.36 Modern methods37,38 are based on a non-
parametric estimation of the likelihood of saliency,

FIG. 1. Location of the fovea center in example SD-OCT data. (a) Representation of 3D SD-OCT cube data. The fovea center is identified in the lowest point of
fovea depression on both the horizontal scan (b) and the vertical scan (c). The y direction represents a B-Scan location; x direction represents an A-Scan within
the B-scan; z direction represents axial depth. (d) Summed projection of 3D OCT data along the axial direction. (e) Retina thickness map as distance from ILM
to BM. (f) 3D representation of ILM and BM surfaces in OCT data. The color bar indicates axial depth with respect to the innermost location in the data.[Color
figure can be viewed at wileyonlinelibrary.com]
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employing local steering kernels as features, which extract
local data structure information exceedingly well and accu-
rately detect salient objects from images without any back-
ground knowledge. Although the current methods37,38

present some advantages, defects related to retinal disease
and potential errors in layer segmentation (a necessary pre-
processing step to determine retinal thickness) can affect sal-
iency detection and produce erroneous determination when
directly applied to retinal thickness maps. The main reason
for these difficulties is that only local steering kernels are
taken as features for detecting an object within the images.
On the other hand, orientation features and location informa-
tion should also be important when generating a saliency
map in topographic retinal images produced from SD-OCT
data. An improved method with local orientation feature and
location information, similarly as used in “feature integration
theory”,29 is proposed here to overcome these difficulties.

In this work we introduce a novel algorithm for detecting
the foveal center in SD-OCT images using saliency of the
retinal thickness map and we evaluate it in healthy eyes and
in eyes with mild to severe age-related macular degeneration
(AMD) — a challenging problem not solved to date. The key
idea is to search for the lowest point within the foveal region
segmented by a modified saliency detection method.

2. METHODS

The proposed method searches for the foveal depression
region in the retinal thickness map to identify the foveal cen-
ter. An overview of the proposed approach is shown in Fig. 2.
In order to produce the retinal thickness map, the axial loca-
tion of the ILM and BM are first estimated for all locations in
a horizontal/vertical plane by an automated layer segmenta-
tion method.22 The depression region can be seen in the
thickness map as the location of reduced thickness sur-
rounded by regions of increased thickness, increasing visibil-
ity and human visual attention, as shown in Fig. 1(e). This
foveal region is segmented by an improved saliency detection
method and the foveal center is then identified by finding the
lowest point of depression within such region.

2.A. Retinal layer segmentation

The location of multiple intraretinal boundaries within the
SD-OCT image can be determined using an automated retinal
layer segmentation method, allowing a posterior quantitative
analysis of axial thickness between different boundaries.

Here, a total retina thickness map is produced by measuring
the axial distance between BM and ILM as shown in
Fig. 1(e). The axial position of both boundaries is automati-
cally estimated by employing a previously published segmen-
tation method.22

2.B. Saliency map detection

We identify the fovea depression region by employing an
improved saliency detection method. The method includes
improvements made in local orientation features, local data
structure features and location information, similar to those
in “feature integration theory”.28 Orientation feature captures
the orientation information within local neighborhoods. Local
data structure feature considers the data similarity between a
center pixel and its neighborhood pixels. Location feature
locates the salient region at the center of the image. An over-
view and image example with advanced dry AMD (i.e., geo-
graphic atrophy) is shown in Fig. 3. Three saliency feature
images are computed (orientation feature, local data structure
feature, and location feature), which later contribute to the
computation of the saliency map.

2.B.1. Extraction of orientation feature

Given the location of pixel i, indicated by ui 2 ½X; Y �,
where i ¼ 1; 2; � � �M, and M is the total number of pixels in
the given image, X and Y are the coordinates on the horizontal
and vertical directions, respectively, the orientation feature is
extracted from the retinal thickness image IðuiÞ using ori-
ented Gabor pyramids O r; h;uið Þ, where r 2 0; 1; � � � 8½ �
denotes the scales and h 2 0o; 45o; 90o; 135of g represents the
orientation.39 The orientation feature is detected from the
input image using a center-surround differences strategy as
proposed by Itti et al.28 The across-scale differences between
a “center” location at scale c 2 2; 3; 4f g and a “surrounding”
location at scale s ¼ cþ d, with d 2 3; 4f g are computed for
each input image as follows:

# c; s; h;uið Þ ¼ O c; h;uið Þ � O s; h;uið Þj j (1)

The orientation feature map SO uð Þ is then computed by
combining the results of the six possible across-scale differ-
ences for a given orientation h; and subsequent combination
for a set of the four different orientations. For a particular
pixel location ui:

SO uið Þ ¼
X

h2 0o;45o;90o;135of g

X4
c¼2

Xcþ4

s¼cþ3

N # c; s; h;uið Þð Þ (2)

where N # c; s; h;uið Þð Þ is a function defined to normalize the
center-surround differences as in the reference.28

2.B.2. Extraction of local data structure feature

As similarly done by Hae Jong Seo et al.37,38 for detecting
the local saliency map, we categorize each pixel position ui

SD-OCT cube
Retinal layer 
segmentation

Retinal thickness 
map

Saliency mapMacular foveal 
region

Foveal center

FIG. 2. The overview of the foveal center identification method. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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in the given image using a saliency mask (describing whether
a pixel is salient or not) as follows:

Smi ¼ 1 if/i is salient
0 otherwise

�
(3)

The local data structure feature at a pixel position ui is
defined by the posterior probability with respect a given fea-
ture set:

SiD ¼ Pr Smi ¼ 1 Fjð Þ (4)

where F ¼ ½FN�i; . . .;FiþN � indicates a feature set defined as
a matrix of feature vectors obtained not only from the center
pixel location but also from a surrounding region. N indicates
the width of feature vectors considered around the center
pixel ui. Fi ¼ f 1i ; � � � ; f Li

� �
is the feature vector collected in a

local window centered at the pixel location ui, with L being
the number of pixels contained in such local window. For a
square local window of size 5 9 5 (as used in the experi-
ments presented here) centered at the location ui, the feature
vector would be Fi ¼ f 1i ; � � � ; f 25i

� �
.

The feature vector Fi is extracted using the local steer-
ing kernel function K ul � uið Þ. In practice, this function
is calculated at every pixel location and normalized as
follows:

f li ¼
K ul � uið ÞPL

l¼1
K ul � uið Þ

; i ¼ 1; � � �M; l ¼ 1; � � � ; L (5)

K ul�uið Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Clð Þp
h2

exp � ul�uið ÞCl ul�uið Þ0
2h2

� �
(6)

where h is a global smoothing parameter (assigned as 0.2 in
the experiments presented here) and the matrix Cl

(Cl 2 R2�2) is a Hessian matrix of size 2 9 2 defined from
the collection of gradients within the local window centered
at a position ul.

According to the Bayes’ theorem, Eq. (4) can be rewritten
as:

SiD ¼ p F Smi ¼ 1jð Þp smi ¼ 1ð Þ
p Fð Þ (7)

Without any prior knowledge, we can consider that the
saliency probability of a given pixel follows a uniform distri-
bution (pixels are equally likely to be salient given no infor-
mation about them). The probability p Fð Þ can also be written
as p Fð Þ ¼ p F Smi ¼ 1jð Þp Smi ¼ 1ð Þ þ p F Smi ¼ 0jð Þp Smið
¼ 0Þ. Therefore, Eq. (7) indicates that saliency is mainly pro-
portional to the conditional probability p FjSmi ¼ 1ð Þ. As in
previous work,40,41 a kernel can be employed to estimate such
probability, using a center value of normalized adaptive ker-
nel G �ð Þ to estimate it at a pixel position ui:

SD uið Þ / p F Smi ¼ 1jð Þ ¼ Gi Fi;Fi
� 	

PN
j¼1

Gi Fi;Fj
� 	 (8)

where Gi Fi;Fj
� 	 ¼ 1

2prD
exp

� Fi�Fjk k2

2
2r2D

� �
, Fi ¼ f 1i

Fik k2 ;
h

� � � f Li
Fik k2

i
, and rD is a control parameter.

Inspired by the earlier studies,42,43 the kernel function Gi can
be rewritten by using the concept of matrix cosine similarity 42 as:

FIG. 3. The proposed saliency map detection method. Red values in saliency map represent higher saliency while blue values denote lower saliency. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Gi Fi;Fj
� 	 ¼ 1

2prD
exp

�1þ q Fi;Fj
� 	

r2D

� �
(9)

where q Fi;Fj
� 	

is the matrix cosine similarity between two nor-

malized feature matrices Fi;Fj, defined as the “Frobenius inner
product” between normalized features matrices q Fi;Fj

� 	 ¼
\Fi;Fj [ . This similarity matrix can be rewritten as
a weighted sum of the standard cosine similarity

q Fi;Fj
� 	 ¼PL

l¼1
f li

kFik2
f lj

kFjk2, with the detailed derivation found

in 37,38. Considering Eqs. 8 and 9, and the fact that
q Fi;Fið Þ ¼ 1 and therefore Gi Fi;Fi

� 	 ¼ 1
2prD

, the local data

structure feature map at a pixel position ui is determined as fol-
lows:

SD uið Þ / Gi Fi;Fi
� 	

PN
j¼1

Gi Fi;Fj
� 	 ¼ 1PN

j
exp

�1þq Fi;Fjð Þ
r2D

� � (10)

The normalized kernel function G �ð Þ depicts the local
structure of images by analyzing pixel similarity between
center pixel ui and the surrounding pixel in a local window,
which is achieved by using a local steering kernel. As
shown in Eq. (10), the estimated probability density (i.e.,
SD uið Þ / p FjSmi ¼ 1ð Þ) reveals how salient a pixel is, consid-
ering the similarity between its neighborhood features Fi and
the surrounding feature matrices Fj. A high probability density
indicates that the pixel position ui presents a high salient.

2.B.3. Extraction of location feature

In a retinal thickness map, the macular fovea is normally
near the center of the image I(u), which is more conspicuous
to human attention. We use a Gaussian distribution to esti-
mate the location feature at every pixel position ui:

SL uið Þ ¼ 1ffiffiffiffiffiffi
2p

p
rL

exp � ui � ick k2
2r2L

 !
(11)

where ic is the coordinates center of the given image and rL
is a control parameter.

2.C. Saliency map computation

The orientation feature, local data structure feature and
location feature are normalized (taking values within the
interval [0 1]) and multiplied pixel-by-pixel to form the final
saliency maps:

S uð Þ ¼ SO uð Þ � SD uð Þ � SL uð Þ (12)

where SO, SD and SL indicate the orientation saliency, local
saliency, and location saliency maps, respectively, and the
product indicates pixel-by-pixel multiplication.

2.D. Identification of the foveal center

A foreground saliency region is segmented by threshold-
ing the saliency map obtained in the previous subsection.
The mean value recorded in the saliency map is taken as a
threshold th, and the foreground saliency region is deter-
mined as follows:

MSK uið Þ ¼ 1 if S uið Þ[ th
0 otherwise

�
(13)

MSK represents a mask where the saliency region is pre-
sented (example shown in Fig. 4(a)). The foveal center is
identified by searching the location of minimum total retina
thickness within the foreground saliency region as follows:

P ¼ arg min
ui2 MSK uið Þ¼1f g

RTM uið Þf g (14)

where RTM uð Þ is the retinal thickness map. Figure 4(a)
shows an example foreground saliency region with the identi-
fied foveal center indicated with a red dot. Figure 4(b) shows
the identified foveal center on the retinal thickness image.

3. RESULTS

3.A. Experimental data and evaluation studies

Our algorithm was implemented in Matlab (The Math-
Works, Inc.) and run on a 2.16 GHz Pentium Dual PC with 3
GB RAM memory. Each foveal center computation in an

(a) (b)

FIG. 4. The foveal center (shown as a red dot) and macular central fovea region detected by the proposed method. (a) Binary masked saliency image with foveal
center; (b) Foveal center on the retinal thickness image. [Color figure can be viewed at wileyonlinelibrary.com]
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OCT cube took approximately 10 s. Two datasets were com-
piled to validate the proposed method. The first longitudinal
dataset is used to tune the parameters, including 13 SD-OCT
cubes from 13 healthy eyes and 57 SD-OCT cubes from 41
eyes having different stages of severity in age-related macular
degeneration (AMD): 6 scans (2 eyes) diagnosed with inter-
mediate AMD, 30 scans (18 eyes) diagnosed with advanced
dry AMD (presence of geographic atrophy), 15 scans (15
eyes) diagnosed with diabetic and no diabetic retinopathy,
and 6 scans (6 eyes) diagnosed with nonproliferative diabetic
retinopathy. We tested our algorithm by compiling the second
longitudinal dataset that included 39 SD-OCT cubes from 35
healthy eyes and 58 SD-OCT cubes from 29 eyes having dif-
ferent stages of severity in age-related macular degeneration
(AMD): 4 scans (3 eyes) diagnosed with mild AMD, 11 scans
(8 eyes) diagnosed with intermediate AMD, 32 scans (7 eyes)
diagnosed with advanced dry AMD (presence of geographic
atrophy), 2 scans (2 eyes) diagnosed with advanced wet
AMD (evidence of choroidal neovascularization), 2 scans (2
eyes) diagnosed with diabetic and no diabetic retinopathy and
7 scans (7 eyes) diagnosed with nonproliferative diabetic
retinopathy.

All eyes were scanned with a Cirrus SD-OCT device
(Carl Zeiss Meditec, Inc., Dublin, CA, USA) by a single
experienced technician who was certified by an image
reading center for OCT imaging. The scanned area cov-
ered a 6 9 6 mm2 area on the retina, and the scanning
macular protocol was a 1024 9 512 9 128 raster scan
(corresponding to 2 9 696 mm3 volume). When acquiring
the SD-OCT data, the scan location was centralized in the
macula region and these scan centers may deviate the
actual foveal center. The operator later adjusted the scan
center manually if necessary.

The relative position of the foveal center in each SD-
OCT dataset was represented in X and Y coordinates based
on a 512 9 128 sampling grid (the SD-OCT cubes were
acquired with 512 and 128 A-scans in the horizontal and
vertical directions, respectively). The foveal center in each
cube was manually identified by two different specialists in
two repeated separate reading sessions. The repeated ses-
sions were separated by roughly a week interval so as to
eliminate any prior knowledge of the images in the set. The
specialists identified the A-scan location of the lowest point
of the foveal depression in the ILM boundary within the B-
Scan that more clearly showed such depression, visually
scanning the B-scans throughout each SD-OCT cube. Ri;j

represents the foveal center location as identified by the ith
reader in the jth session, while we employ R to represent
an established consensus location between readers and ses-
sion, computed as described previously19,44 and taken as
the gold standard in our evaluation. The location of the
foveal center was also detected by our proposed algorithm
and labeled as AC. The label SC indicates the location of
the geometric scan center, which coordinates were (256,
64) in our dataset. For those advanced AMD scans where
the original Cirrus data were available (24 scans), we also
collected the fovea center location automatically detected

by Cirrus HD software (version 6.0.2.81) for comparison
(labeled as Cirrus).

We used two different criteria in the evaluation of the pro-
posed algorithm: (a) quantification of the possible discrepan-
cies found in the manual identification results by different
specialists (interobserver agreement) and by the same special-
ist in the two repeated sessions (intraobserver agreement); (b)
a comparison of the differences between different methods
(e.g., automated method (AC), geometric scan center (SC),
Cirrus HD-OCT software (Cirrus)) and manual identification
results (R) with the measured observed interobserver and
intraobserver agreements.

We employ three metrics to assess the differences between
pairs of the detection methods: Signed differences of X and Y
coordinates (xdif and ydif , respectively) and the radial
distance (RD)

xdif ði; j; kÞ ¼ xik � xjk (15)

ydif ði; j; kÞ ¼ yik � yjk (16)

RD i; j; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xik � xjk
� 	2 þ yik � yjk

� 	2q
(17)

where xik and xjk indicate X coordinates in the k-th scan
detected by the methods i and j, respectively. yik and yjk indi-
cate Y coordinates in the k-th scan detected by the methods i
and j, respectively.

3.B. Parameters evaluation

We tuned the parameters employed in our method by
examining the mean radial distance across scans in the
first dataset as we varied their values, with results shown
in Fig. 5. For rD and rL, we experimented with values
ranging from 0.1 to 1 and from 1 to 10, respectively. Fig-
ure 5(c) displays mean radial distance as a function of
these two parameter values, where L, N, and h were set
up to 5, 5, and 0.4, respectively. rD had relatively limited
influence on performance for the ranges examined, while
rL seemed to produce adequate results with values 5.
Consequently, rD and rL were set up to have values of
0.4 and 5, respectively. We also varied the values of size
of feature vector and local window from 3 to 9 in incre-
ment steps of 2 to test their influence. Figure 5(b) indi-
cates these two parameters had limited influence on
performance. Overall, adequate performance was achieved
with the choice of L = 5 9 5 and N = 5 9 5. Figure 5(a)
displays the mean radial distance as the global smoothing
parameter h varies from 0.1 to 1 with increments of 0.1.
We observed that an adequate performance for a value of
0.2, which was assigned for the experiments.

3.C. Qualitative evaluation

Figures 6 and 7 display examples of foveal center deter-
mined by our automated method (white) and reader (yellow)
in healthy eyes and AMD eyes, respectively. The cases
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displayed in Fig. 6 show the relative simplicity of determin-
ing the fovea center in healthy eyes. The AMD eye examples
displayed in Fig. 7 show cases with increasing levels of dis-
ease status and complexity, with higher disruptions in the
normal layer appearance. We can observe in the third and

fourth row of Fig. 7 that the disease notably disrupted the
axial location of the ILM, which would present a challenge
identifying the foveal center for most known methods. It can
be seen from Fig. 7 the proposed method was able to esti-
mate the precise foveal center.

FIG. 5. Mean radial distance for the parameter selection of the proposed method. (a) Mean radial distance for the selection of smoothing parameter h. (b) Mean
radial distance for different L and N values. (c) Mean radial distance for different rD and rL values. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Examples displaying the automatically detected foveal center location on SD-OCT fundus images (left column) and B-scan images (right columns) in
normal eyes. [Color figure can be viewed at wileyonlinelibrary.com]
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3.D. Quantitative evaluation

Bland–Altman plots45 were used to assess intraobserver
and interobserver agreement. The analysis was performed
separately for the X and Y coordinates of foveal center loca-
tions. Figures 8 and 9 display the Bland–Altman plots for
intra- and interobserver differences (in microns) for healthy
eyes and eyes with AMD, respectively. For normal eyes, dif-
ferences produced by manual identification of two different
readers presented a slightly higher level of agreement than
those produced by each specialist at two separate sessions, as
shown in Fig. 8, which may be an effect of the inevitable
error when making repeated manual annotations. On the
other hand, the interreader differences in the X coordinate

were higher than those observed at separate sessions from the
same specialist in eyes with AMD, but such differences were
comparable. Y coordinate intrareader agreement was similar
for the two readers and for both normal eyes and AMD eyes,
while differences were higher than compared to the X coordi-
nate. The reason is that 128 horizontal B-scans (Y coordi-
nate) are taken in a span of 6 mm while 512 A-scan in each
horizontal B-scan (X coordinate) are taken in a span of
6 mm. It is important to note that the differences are dis-
played in micron units, and the interreader agreements in
both X and Y coordinates are similar for both normal eyes
and AMD eyes (128 horizontal B-scans taken in a span of
6 mm versus 512 A-scan in each horizontal B-scan taken in a
span of 6 mm). We also observed very high correlation in

FIG. 7. Results of the automated foveal center detection on examples with AMD. The left column and right column are SD-OCT fundus images and B-scan
images, respectively. The first row shows the results in a mild AMD example, the second and third row show the results in advanced dry AMD examples (with
geographic atrophy (GA)), and the fourth row shows the results in an eye with advanced wet AMD. [Color figure can be viewed at wileyonlinelibrary.com]
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both the X and Y foveal center coordinates as identified by
the two different manual readers (interobserver differences)
or by each reader at separate sessions (intraobserver differ-
ences), all with Pearson’s correlation coefficients higher than
0.9. The foveal center location differences in X and Y coordi-
nates for the two different manual readers and for each reader
at separate sessions showed no statistical significance, pre-
senting very high P-values in a U-test (all with P > 0.05).

Table I summarizes the radial distance measurements in
normal eyes and AMD eyes between the two observers,
between each observer at separate sessions, between the gold
standard (R) and scan center (SC), and between R and our
proposed automated method (AC). Additionally, we also
compared the radial distance results between R and two addi-
tional foveal center determination methods: as generated by
finding the saliency map of the deepest depression region
from the ILM surface (ILM algorithm), and as generated by
searching the smallest distance between ILM and BM (ILM-
BM algorithm23,24). The radial distances between our auto-
mated method and the gold standard for both normal eyes
and eyes with AMD was smaller in average than those
between SC and R, between ILM algorithm and R, and

between ILM-BM algorithm and R, but slightly higher than
those observed between the readers. One of the main reasons
for the larger difference is that irregularity in retinal structures
or the presence of disease can cause thinning and loss in iso-
lated regions of different retinal layers, limiting the ability of
previous methods to identify the foveal center for both normal
eyes and diseased eyes. These comparison results demon-
strate that the proposed method provides accurate and robust
identification. Figure 10 displays the Bland–Altman plots of
differences between R and AC for the X and Y coordinates of
the determined foveal centers for the normal and AMD eyes.
The Pearson’s correlation coefficients observed in X and Y
coordinates of the foveal centers between AC and R were 0.89
and 0.71 for normal eyes, and 0.88 and 0.86 for AMD eyes,
respectively. The differences of X and Y coordinates between
R and AC for normal eyes and eyes with AMD were higher
when compared to intrareader and interreader variability,
while the differences are comparable. Figure 11 shows the
differences in X and Y coordinates between the gold standard
and the foveal center detected by the automated algorithm,
and between the gold standard foveal center and the geomet-
ric scan center. In both normal and AMD eyes, the

FIG. 8. Bland–Altman plots of intraobserver agreement and interobserver agreement for normal eyes, where the top, middle, and bottom horizontal lines are
Mean+2SD, Mean, and Mean-2SD, respectively. The first and second columns display the Bland–Altman plots for the X and Y center coordinates, respectively.
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differences between the automated method and gold standard
were not significantly different in both coordinates (with a U-
test P-value >0.05), while the differences between geometric
scan center and gold standard were significantly different
(with P < 0.05) in the Y coordinate and not significantly dif-
ferent (with P > 0.05) in the X coordinate.

In our image dataset, only 24 advanced AMD scans had
original data in Cirrus format. Thus, these raw data with
advanced AMD were accessible to be interpreted by a com-
merically available software package that also estimated the
foveal center location (Cirrus review software) and were
selected for comparison to results produced by our algorithm.
The mean radial distances between our proposed method and
the gold standard in these scans (99 � 83 lm) were much
smaller than those between Cirrus and the gold standard
(502 � 1057 lm). These differences between the proposed
method and gold standard were not significant (P > 0.05),
while they were significant for the Cirrus software (P < 0.05).
In these scans, the correlation observed in the X and Y coordi-
nates of the foveal center locations between our method and
the gold standard (all with Pearson’s correlation coefficient
cc > 0.80) were higher than those between Cirrus and the gold
standard (all with Pearson’s correlation coefficient cc < 0.30).

We also analyzed the central macular retinal thickness by
using the Early Treatment Diabetic Retinopathy Study
(ETDRS) regions,4 as centered considering the location
determined by R, AC, and SC. Mean and standard deviation
retinal thickness measurements for each of the nine standard
subfields are shown in Fig. 12. As expected, subfield

TABLE I. Mean radial distance measurements of the two observers, each
observer at separate sessions, R, SC, AC, ILM algorithm, and ILM-BM algo-
rithm, in both normal eyes and AMD eyes.

Normal AMD

Scans/eyes 39/35 58/29

Exp. R11–Exp. R12 29 � 21 26 � 33

Exp. R21–Exp. R22 32 � 19 41 � 36

Exp. R11&R12–Exp. R21&R22 13 � 24 31 � 45

SC–R 113 � 121 139 � 112

ILM algorithm–R 123 � 460 260 � 534

ILM-BM algorithm–R 1889 � 1074 1713 � 1083

AC–R 52 � 56 73 � 63

ILM algorithm, finding the saliency map of the deepest depression region from
the ILM surface; ILM-BM algorithm, searching the smallest distance between
ILM and BM. (unit: lm).

FIG. 9. Bland–Altman plots of intraobserver and interobserver agreement for AMD eyes, where the top, middle, and bottom horizontal lines are Mean+2SD,
Mean, and Mean-2SD, respectively. The first and second columns display the Bland–Altman plots for the X and Y center coordinates, respectively.
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thickness measurements are sensitive to the differences in the
determination of the foveal center, but to a limited extent
given the large regions used to compute an average value. In
both normal and AMD eyes, all subfield thickness differences
between AC and R were not statistically significant
(P > 0.05), while the differences between SC and R were sta-
tistically significant (P < 0.05) for the central fovea location
and not significant (P > 0.05) for the rest of the locations.
This result highlights the importance of accurate foveal center
determination when computing average thickness in the cen-
tral fovea region.

4. DISCUSSIONS

During retinal image acquisition, centering the scan at the
macular foveal region depends on the patient’s cooperation

and their ability to maintain visual fixation, as well as the
SD-OCT operator’s judgment. As a result of the eye’s move-
ment or the operator’s misjudgment, the foveal center
detected by the OCT acquisition device may deviate from the
true foveal center, which may cause an imprecise measure-
ment of central macular thickness. Using an automated post-
detection method of the foveal center can reduce the
dependency on the participant’s cooperation and the SD-
OCT operator’s judgment. Previous studies18,19,44 have
demonstrated the value of automated foveal center detection
algorithms, indicating that the true foveal center produces a
proper more precise and reproducible thickness map. In this
paper, we propose an automated postdetection method of the
foveal center in SD-OCT images.

The mean radial distance between our method and gold
standard (52 lm) was lower than that between the geometric

FIG. 10. Bland–Altman plots comparing R and AC for healthy eyes (first row) and AMD eyes (second row). The first and second columns display the Bland–
Altman plots for the X and Y center coordinates, respectively.

FIG. 11. The distribution of differences between automated method (AC) and manual gold standard and image center (SC) with gold standard (R). The difference
of X coordinate between AC and R are computed using XAC-XR, the difference of Y coordinate between AC and R are computed using YAC-YR. The units are in
lm. [Color figure can be viewed at wileyonlinelibrary.com]
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center and gold standard (113 lm) for the healthy eye scans.
For the eyes with AMD, the differences for both automati-
cally detected foveal center and geometric scan center were
relatively larger, with mean radial distances increasing to 73
and 139 lm for the automated foveal center and the scan cen-
ter, respectively. These effects can be also observed in
Fig. 11. The larger differences and radial distances in the
AMD cases may be due to the presence of large lesions that
may change the structure of retinal layers and cause difficul-
ties to determine the foveal center accurately and consistently.
On the other hand, the foveal center locations that were esti-
mated using the Cirrus HD-OCT software presented higher
errors, causing the mean radial distance between Cirrus and
the gold standard to become larger.

In practice, the foveal center is usually identified as the
lowest point of ILM, whereas the proposed algorithm also
included analysis of the salient of retinal thickness map to
identify the foveal depression. The foveal depression is
more clearly identified in salient thickness maps than only
analyzing the ILM surface, which makes its detection more
accurate. As a separate analysis and comparison, we also
used the proposed saliency map detection method to iden-
tify the foveal center using ILM surface locations instead

of retinal thickness maps, evaluating the same scans
included in this work. When compared to the gold standard
locations (R), the radial distances (123 � 460 lm and
260 � 534 lm for normal and AMD eyes, respectively)
were higher than when thickness maps were considered
(52 � 56 lm and 73 � 63 lm for normal and AMD eyes,
respectively, as indicated in Table I). As an additional com-
parison, we also identified the foveal center by simply
searching the smallest distance between ILM and BM. The
mean radial distances between the results of this simple
method and gold standard (R) in our dataset for both nor-
mal and AMD eyes were 1889 � 1074 lm and
1713 � 1083 lm (as indicated in Table I), respectively. A
comparison of results with the proposed method illustrate
that this simple search for the smallest distance between
ILM and BM is not as robust. For each scan, all of these
methods used the same axial location of the ILM and BM
which are estimated by an automated layer segmentation
method.22 We believe the higher accuracy when using the
salient of thickness maps may be derived from the fact that
although when severe irregularities are present in the ILM
and BM surface, the salient of thickness maps between
ILM and BM remains relatively robust.

FIG. 12. Macular retinal thickness measurements using Early Treatment Diabetic Retinopathy Study4 (ETDRS) centered on the foveal center as determined by
the manual gold standard (R), our proposed method (AC) and the scanning center (SC) for both normal and AMD eyes. [Color figure can be viewed at wileyonli-
nelibrary.com]
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Automated detection of the foveal center can improve
the accuracy of the retinal thickness measurements com-
pared with the measurements obtained using the geometric
scan center, as shown in Fig. 12. Therefore, the automated
detection method may provide a more accurate and reliable
way to quantify and detect changes in retinal disease. Fur-
thermore, it eliminates the dependence of scan placement
at the presumed foveal center during SD-OCT acquisition.
Thus, potential errors caused by poor patient cooperation
and SD-OCT operator’s judgment are reduced or possibly
eliminated. The automated detection of the foveal center
may also be used to register multimodal retinal images,
such as color fundus images (CFIs) and SD-OCT fundus
images (SVPIs).

It is important to note that the foveal center identification
is a challenge when eyes with significant retinal disease
where disruption of retina tissue is present. This effect is due
to the lower total retina thickness caused by the macular
deformities, such as the presence of severe GA presence, and
macular edema. Two cases with diabetic retinopathy had
macular edema were shown in Fig. 13, indicating that the
results obtained by our method may deviate the real position.
Although the proposed method can estimate the foveal center
in OCT images with different server diseases, the perfor-
mance may be affected by the layers segmentation or the dis-
ruption of retina tissue. We plan to include the determination
of a set of constraints and weights within our method pro-
posed here to better handle such complicated cases in future
work.

5. CONCLUSION

This paper presents a novel algorithm for detecting the
foveal center automatically in SD-OCT images using the

saliency of the retinal thickness map. Quantitative experimen-
tal results demonstrate that the proposed method can achieve
good performance for normal and abnormal cases with differ-
ent severe disruption of the retinal anatomy when compared
to a consensus manually detected foveal center. Automated
foveal center detection by the proposed method could result
in more accurate retinal quantitative analysis in SD-OCT
images, such as in the foveal center identification for the
advanced AMD eyes (especially in eyes with Geographic
Atrophy), in the computation of retinal thickness in ETDRS
regions, and in multimodal retinal image registration or
fusion. This method also provides an opportunity to place the
foveal center of the scan on the true center while reducing the
need for patient cooperation in the process or clinician
judgment.
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