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ABSTRACT

Objective: Distributional semantics algorithms, which learn vector space representations of words and phrases

from large corpora, identify related terms based on contextual usage patterns. We hypothesize that distribu-

tional semantics can speed up lexicon expansion in a clinical domain, radiology, by unearthing synonyms from

the corpus.

Materials and Methods: We apply word2vec, a distributional semantics software package, to the text of radiol-

ogy notes to identify synonyms for RadLex, a structured lexicon of radiology terms. We stratify performance by

term category, term frequency, number of tokens in the term, vector magnitude, and the context window used

in vector building.

Results: Ranking candidates based on distributional similarity to a target term results in high curation efficiency:

on a ranked list of 775 249 terms, >50% of synonyms occurred within the first 25 terms. Synonyms are easier to

find if the target term is a phrase rather than a single word, if it occurs at least 100� in the corpus, and if its vec-

tor magnitude is between 4 and 5. Some RadLex categories, such as anatomical substances, are easier to iden-

tify synonyms for than others.

Discussion: The unstructured text of clinical notes contains a wealth of information about human diseases and

treatment patterns. However, searching and retrieving information from clinical notes often suffer due to varia-

tions in how similar concepts are described in the text. Biomedical lexicons address this challenge, but are ex-

pensive to produce and maintain. Distributional semantics algorithms can assist lexicon curation, saving

researchers time and money.
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INTRODUCTION
Information retrieval from clinical documents depends heavily on bio-

medical lexicons and ontologies, which contain structured information

about the entities in a domain, their attributes, and the relationships

that connect them.1,2 Lexicons and ontologies also play a pivotal role

in clinical practice, serving as the underpinnings of structured docu-

mentation and enabling interoperability between clinical systems. As

more biomedical information becomes available electronically, they

will likely form the glue that integrates different software systems and

enables large-scale information retrieval and patient phenotyping.3,4
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However, even the most accurate and complete ontology will

fail in clinical settings unless real clinical data, structured and un-

structured, can be mapped to concepts and relations from the ontol-

ogy. For example, a clinical text-mining system must understand

that the raw strings “Crohn’s disease,” “Crohn disease,” “regional

enteritis,” “Chron disease” (spelling error), and “crohn disease”

(capitalization variant) all refer to the same concept. It must also

overcome writers’ differences in style and word preference, which

can vary by geographic region, subject area, clinical setting, and the

individual.

Distributional semantics algorithms,5,6 which learn vector

space representations of words and phrases based on usage pat-

terns in large corpora, can potentially help us identify these var-

iants automatically. Not only would this method dramatically

speed up the process of lexicon and ontology expansion, it would

also enable us to efficiently create structured lexicons and ontolo-

gies for new and unusual clinical domains. Here we apply distribu-

tional semantics to the task of expanding RadLex, a manually

created lexicon of radiology terms, using distributional informa-

tion on words and phrases from a corpus of nearly 6 million radiol-

ogy reports. We discuss the benefits and pitfalls of this approach

and develop a set of heuristics to facilitate its application in other

clinical domains.

METHODS

A graphical outline of our methods, including preprocessing, vector

creation, and evaluation steps, can be found in Figure 1.

Radiology corpus: RadCore and STRIDE
Our corpus consisted of the complete RadCore database7 and a cor-

pus of additional radiology reports from the Stanford Translational

Research Integrated Database Environment (STRIDE).8 RadCore is

a multi-institutional database of radiology reports aggregated in

2007 from 3 major health care organizations: Mayo Clinic (812

reports), MD Anderson Cancer Center (5000 reports), and Medical

College of Wisconsin (1 893 819 reports). From STRIDE, we added

4 056 227 radiology reports of 564 210 patients seen at Stanford

Hospital and Clinics since 1998.

Both the RadCore and Stanford radiology report corpora were

deidentified by the institutions where they were produced. This ret-

rospective study was approved by the Stanford Institutional Review

Board.

The RadLex lexicon
RadLex is a lexicon of radiology concepts and associated terms cre-

ated manually over a decade by members of more than 30 profes-

sional radiology organizations.9 The lexicon contains 62 531 terms

mapped to 46 037 unique concepts. There are 24 129 unique pairs

of terms within RadLex for which both terms map to the same con-

cept (we call these “synonyms”). We parsed the raw RadLex

comma-separated file to identify the synonym pairs, as well as all of

the parent-child hierarchical relationships in the lexicon.

We recorded the parent category for each unique term in

RadLex. Every RadLex term can be traced upward to 1 of 16 gen-

eral categories: anatomical entity, property, procedure, procedure

step, imaging observation, clinical finding, RadLex descriptor, tem-

poral entity, obsolete term, nonanatomical object, nonanatomical

substance, report component, imaging modality, process, RadLex

non-anatomical set, and metaclass/other. In our analysis, we focused

on the 8 most frequent categories represented among the terms in

our corpus, which are italicized above.

Preprocessing: tokenization and concatenation
We used the Stanford CoreNLP toolkit10 to tokenize the text of ev-

ery narrative report in our combined corpus (The Stanford tokenizer

is free and open source; however, there are also other tokenizers that

would be appropriate for this task, such as the WordPunctTokenizer

from Python’s Natural Language Toolkit.) After lowercasing each

token, we wrote the entire corpus to an intermediate text file, with

individual tokens separated by spaces. We applied the word2phrase

tool11 to this file to concatenate likely phrases. For example, if

the words “heterogeneously” and “dense” occurred as the phrase

“heterogeneously dense” with high enough frequency, word2phrase

would concatenate them in the text using an underscore:

“heterogeneously_dense.” We used the default parameters for

word2phrase.

Building word and phrase vectors
We used the word2vec package11,12 to build vector representations

of all terms in our preprocessed corpus. Word2vec’s vectors repre-

sent each word or phrase as a mathematical combination of the

words and phrases surrounding it within a linear context window

(Figure 2). Terms with similar contexts will tend to have similar vec-

tors. The word2vec package allows the user to set several parame-

ters, including the vector dimension, the size of the linear context

window, and the choice of model (continuous bag-of-words vs skip-

gram). We used the skip-gram model with vector dimension 100

(the standard dimension for word2vec) and a window width of 1, 3,

5, or 7, and default settings for all other parameters. No vectors

were built for terms occurring <5 times in the corpus.

Synonym retrieval by vector and target term

parameters
We performed several experiments to see if word2vec’s ability to

recognize synonyms varied by vector and/or term properties. For

each term in RadLex that (1) had a vector and (2) had a synonym

that also had a vector, we ranked all of the corpus terms (with vec-

tors) by cosine similarity to the target term’s vector, and found the

position of the synonym on the list. We investigated the position of

synonyms with respect to: vector context window width, parent cat-

egory in RadLex, number of tokens in the target term (whether it

was a single word or a phrase), term frequency, and term vector

magnitude (measured as its Euclidean, or L2, norm). Where applica-

ble, we quantitatively compared distributions of synonym ranks us-

ing Kolmogorov-Smirnov tests.

RESULTS

RadLex representation in the corpus
Word2vec was able to build vectors for 775 248 unique words and

phrases in our corpus. Of the 62 531 unique strings in RadLex, 5308

(8.5%) were associated with vectors. A further 187 (0.3%) occurred

in the corpus <5 times, so no vectors could be built. The final

57 036 (91.2%) did not occur in the corpus at all. Of the 5308 terms

with vectors, 5210 (98.2%) belonged to one of the eight RadLex

categories we investigate in this paper. Of the 24 129 unique syno-

nym pairs in RadLex, both terms were associated with vectors in

2383 pairs (9.9%).
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Properties of the synonym pairs
For the 906 synonym pairs in which both terms had vectors, the me-

dian term frequency for the more frequent term was 3967, while the

median term frequency for the less frequent term was 283. There

was low correlation between the higher and lower term frequencies

(Pearson correlation: 0.30). A very frequent term could have a very

infrequent synonym, or a term and its synonym could occur with

nearly equal frequency.

Synonym retrieval by vector window width
Figure 3 shows the percentage of synonyms recovered at each rank

cutoff for vectors of varying context window width. On a list

775 247 terms long (1 fewer than the total number of terms with

vectors, since the target term was not included), �50% of synonyms

occurred before rank 25. Approximately 75% occurred before rank

2700. Kolmogorov-Smirnov tests revealed no differences between

distributions from different window widths (P >> .05 for all

comparisons).

Synonym retrieval by ontology category
Information about each of the 8 RadLex categories we examined, in-

cluding example terms, median corpus frequencies, and fractions of

terms with vectors, is shown in Table 1. Figure 4 shows the percent-

age of synonyms recovered by RadLex category. Based on the per-

centage of synonyms recovered before rank 100, terms from the

category anatomical entity were distributionally closest to their syn-

onyms; 68.1% occurred before rank 100. Terms from the category

nonanatomical substance were distributionally farthest from their

synonyms, with only 9.1% occurring before rank 100.

Synonym retrieval by number of tokens
Figure 5 shows the percentage of synonyms recovered by the number

of tokens in the target term; that is, whether the term was a word

(1 token) or a phrase (2 tokens). Phrases were distributionally more

similar to their synonyms than single words; 68.3% of phrases’ syn-

onyms were recovered before rank 100, compared to 49.9% of sin-

gle words’ synonyms.

Synonym retrieval by term frequency and vector

magnitude
Figure 6 shows the percentage of synonyms recovered by the fre-

quency of the target term in the corpus (Figure 6A), and by the mag-

nitude of the target term’s vector (Figure 6B). A term will generally

be distributionally closer to its synonym the more frequently it

occurs in the corpus, although there is little improvement beyond

about 1000 occurrences, and, in fact, performance declines slightly

for terms with extremely high frequencies. If the target term occurs

in the corpus at least 100 times, its synonym will be found within

the first 100 terms on the ranked list 63.4% of the time. If the target

term occurs <10 times in the corpus, its synonym will only occur

within the first 100 terms 8.5% of the time.

As for vector magnitude, synonyms are distributionally closest

when the target term’s vector magnitude is between 4 and 5. For tar-

get terms in this range, 70.8% of synonyms will be found within the

top 100 ranked terms. For target terms with very high or low vector

magnitude, performance suffers considerably; synonyms will only

occur within the top 100 terms 9.1% of the time when the vector

magnitude is <2, and 12.5% of the time when the vector magnitude

is �8.

DISCUSSION

Interpretation and implications
We observed several key findings that may help guide future lexicon

creation efforts. First, the majority of terms in RadLex (91.5%) did

not occur in our corpus with sufficient frequency for vector creation.

This means that either (1) the majority of RadLex concepts are not

discussed in the text of clinical notes, or (2) these concepts are refer-

enced in reports, but always in ways that are distinct from those

Figure 1. Illustration of our approach to preprocessing, vector creation, and evaluation.

Figure 2. Illustration of the context window sizes for different vector types.

The context window for the width-7 vector is not shown.

Figure 3. Synonyms recovered by rank cutoff for 4 different vector context

window widths.
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listed in RadLex. Since RadLex was built specifically for the task of

streamlining radiology reporting in the context of clinical documen-

tation, we find the second interpretation more likely.

Unfortunately, the second interpretation also highlights the ma-

jor weakness of distributional approaches: one must always start

with a known target term of interest that also has a vector. If the tar-

get term is unknown (ie, if you want to add terms for a brand-new

concept to the lexicon) or does not have a vector, these approaches

are of limited utility. For example, the terms medial_intercondylar_-

eminence_of_tibia and interlobar_vein_of_right_kidney are both

RadLex terms without vectors. It is possible that (1) these concepts

are never described in the reports from our corpus, or (2) they are

simply described so inconsistently that no pattern occurs frequently

enough for a vector to be built for them. One could address (1) by

simply gathering a larger corpus, but (2) is challenging even when

the corpus is large.

Second, we found only weak correlation between the frequencies

of terms and their synonyms. However, on average, the less frequent

synonyms tended to be about 7% as frequent as the more frequent

synonyms in the corpus. If we assume that the more frequent terms

are the search terms and that terms and their synonyms are used in

distinct sets of documents (eg, from 2 different institutions), we can

Table 1. Examples of terms from each of 8 RadLex categories

Category Total terms Total terms with vectors (%) Median term frequency in corpus Example terms

Anatomical entity 51 564 1662 (3.2) 963 bone_marrow

pisiform

sphenoid_sinus

pyloric_sphincter

vitreous_chamber

Clinical finding 3106 1360 (43.8) 736 Cholangiohepatitis

osteochondroma

hepatocellular_carcinoma

hemolytic_anemia

motor_dysfunction

Imaging modality 125 40 (32.0) 13 173 Qct

fluoro

spectroscopy

mrs

tomosynthesis

Imaging observation 1540 181 (11.8) 1125 dromedary_hump

linguine_sign

corkscrew_collaterals

smooth_margin

homogeneous_enhancement

Nonanatomical substance 630 280 (44.4) 312 Chlorine

zinc

lu

tc-99m_hsa

iodine-131_hippuran

Procedure 856 359 (41.9) 425 Steroid_injection

echocardiogram

splenectomy

renal_autotransplantation

jejunoileal_bypass

Property 1807 322 (17.8) 1366 Straining

hyperflexion

flow

inspiration

deviation

RadLex descriptor 1747 980 (56.1) 3282 Truncated

high_resolution

angulated

circumscribed

sharply-defined

Figure 4. Synonyms recovered by rank cutoff for 8 different RadLex categories.
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estimate that, on average, we would retrieve roughly 7% more

documents for each synonym we identify. This could make a mate-

rial difference for many applications, and highlights the need for ef-

ficient methods of identifying likely synonyms.

Upon beginning the search for synonyms, one must start with a

target term. There are several features of the target term that indi-

cate a greater chance of success in the synonym search. High term

frequency (>100 occurrences in the corpus) and a target term that is

a phrase rather than a single word will lead to greater success identi-

fying synonyms using distributional approaches. Vector magnitude,

a measure both of term frequency and of the consistency of a term’s

context,13 is also an indicator of likely success: intermediate vector

magnitudes are optimal, indicating terms that occur quite

frequently, but not so frequently that they are dispersed over a wide

variety of different contexts (eg, “the,” “it”).

The term’s category also plays a role. In the case of RadLex, it

was easier to recover synonyms for target terms that were anatomi-

cal entities, clinical findings, and imaging observations than it was

to recover synonyms for properties and nonanatomical substances,

even though the median term frequencies among the various catego-

ries did not differ substantially (Table 1). Anatomical terms and

disease names tend to be very specific and used in specific contexts,

whereas properties like “flow” and “inspiration” and nonanatomi-

cal substances like “chlorine” and “zinc” have a variety of biologi-

cal meanings and can be used in several different contexts. We

suspect this is the source of the discrepancy.

Finally, and surprisingly, we observed virtually no difference in

performance when we used vectors built with different context win-

dow sizes. It appears that most of the distributional information

that allows us to identify synonyms for radiology terms occurs

within the words immediately preceding and following the target

term.

Some challenges for distributional lexicon learning
Some examples of ranked term lists for three different RadLex target

terms are shown in Table 2. It is immediately obvious that very few

pairs of distinct biomedical terms are actually genuine synonyms. In-

stead, what distributional approaches produce are terms that are

used in similar contexts, which can include highly related terms that

are not true synonyms (eg, two different joints) or even antonyms.

This highlights the need for manual review of all findings. However,

it could also be seen as a positive feature for broader lexicon cura-

tion. Since the curation process we describe is likely to yield new

term candidates that are used contextually in ways similar to exist-

ing lexicon terms, it may be possible to discover brand-new lexicon

concepts with this approach.

As we can see from the term “heterogeneous” in Table 2, the

concatenation of multiword terms also represents a potential issue

for distributional methods, since separate vectors are often built for

a phrase and the individual words within that phrase. What’s more,

each occurrence of the phrase “heterogeneously dense,” for exam-

ple, will contribute to only one vector: the “heterogeneously_dense”

vector if that occurrence happens to be concatenated, and the two

individual word vectors if it is not. All three vectors are distinct, and

the vector for “heterogeneously_dense” is not a simple mathemati-

cal combination of the other two. This is a problem for distribu-

tional approaches in general and an active area of research.

Finally, lexicon expansion (the task we address here) is a differ-

ent, and in some ways simpler, task than actually identifying lexicon

terms in a new corpus. The latter task would require, in addition to

the lexicon itself, a set of rules that address issues like word sense

disambiguation; the noun “test” and the verb “test” share a vector,

for example, but perhaps we only want the noun. There are ways

this might be approached from a distributional perspective, but they

are beyond the scope of this paper.

Related work in biomedical lexicon and ontology

learning
Our work builds on decades of former work in biomedical text min-

ing, mostly within the field of biomedical named entity recognition

and normalization.14–18 Several authors have investigated which

features provide the best performance in biomedical named entity

recognition, including distributional features.19,20 We also draw

Figure 5. Synonyms recovered by rank cutoff for terms 1 token long (words)

and 2 tokens long (phrases).

Figure 6. (A) Synonyms recovered by rank cutoff for terms with different fre-

quency of occurrence in the corpus. (B) Synonyms recovered by rank cutoff

for terms with vectors of different magnitude.
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heavily on previous work in biomedical ontology learning.21–23 The

problem of recognizing biomedical synonyms and normalizing them

to database identifiers automatically was attacked head-on by the

biomedical natural language processing community in the BioCrea-

tive competitions.24,25 Our work expands on these approaches by

applying them to a new domain (radiology) and by considering the

problem of lexicon expansion in a practical, curator-oriented

context.

Related work in clinical text annotation
Ultimately, the goal of building a lexicon for a domain such as radi-

ology is to extract structured information from the unstructured text

of clinical documents. There are alternative approaches to this task

that do not start from lexicons, although many clinical information

extraction systems incorporate lexicons within larger rule-based or

statistical frameworks. Examples of such systems include MedLee,26

cTakes,27 and MetaMap28; these have been compared head to head

on at least one task.29

CONCLUSIONS AND FUTURE WORK

Distributional approaches represent a practical and principled way

to approach lexicon curation and expansion. Although they still re-

quire curators to manually review term lists, this is preferable to

more ad hoc approaches, and it captures many unusual spelling and

concatenation variants that a human might not think of on his or

her own. We have developed several practical heuristics for lexicon

building using this approach in the radiology domain, most of which

we have kept largely qualitative in an effort to assist lexicon creation

across multiple domains.

We hope that our work inspires others to apply distributional

methods to assist a variety of curation tasks.
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Table 2. The 10 closest corpus terms to 3 example RadLex terms

RadLex Term Synonym candidate Comment

hyperemia hyperemia

hyperemic

wall-thickening

pericholecystic_fluid

blood_flow

increased_flow/hyperemia

hyperemia

wall_hyperemia

pericholecystic_fluid

wall_thickening

* misspelling

*

symptom

*

* misspelling

*

symptom

carpometacarpal_joint interphalangeal_joint

carpal_metacarpal

metacarpophalangeal_joint

dip_joint

first_carpometacarpal

carpal-metacarpal_joint

carpometacarpal_joints

third_dip

ip_joint

second_mcp

different joint

*

different joint

"

*

*

*

different joint

"

"

heterogeneous heterogeneous

somewhat_heterogeneous

heterogeneously

inhomogeneous

mildly_heterogeneous

markedly_heterogeneous

heterogeneously

somewhat_heterogeneous

lobulated

diffusely_heterogeneous

* spelling variant

*

*

*

*

*

*

*

error

*

Asterisks indicate terms that are synonymous with the RadLex terms or more specific versions of them.

684 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article-abstract/25/6/679/4797401 by Law
 Library user on 28 O

ctober 2018



the perspective of practicing radiologists. RBA edited the manuscript

and advised BP and YZ throughout. All authors were involved in

the preparation of the final manuscript.

REFERENCES

1. Rubin DL, Shah NH, Noy NF. Biomedical ontologies: a functional per-

spective. Brief Bioinform. 2008;9(1):75–90.

2. Bodenreider O. Biomedical ontologies in action: role in knowledge man-

agement, data integration and decision support. Yearb Med Inform.

2008:67–79.

3. Oellrich A, Collier N, Groza T, et al. The digital revolution in phenotyp-

ing. Brief Bioinform. 2016;17(5):819–30.

4. Harispe S, Ranwez S, Janaqi S, Montmain J. The semantic measures li-

brary and toolkit: fast computation of semantic similarity and relatedness

using biomedical ontologies. Bioinformatics. 2014;30(5):740–42.

5. Turney PD, Pantel P. From frequency to meaning: vector space models of

semantics. J Artif Intell Res. 2010;37:141–88.

6. Cohen T, Widdows D. Empirical distributional semantics: methods and

biomedical applications. J Biomed Inform. 2009;42(2):390–405.

7. Hassanpour S, Langlotz CP. Information extraction from multi-

institutional radiology reports. Artif Intell Med. 2016;66:29–39.

8. Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE: An integrated

standards-based translational research informatics platform. In AMIA

Annu Symp Proc. 2009:391–95.

9. Langlotz, CP. RadLex: a new method for indexing online educational

materials. RadioGraphics. 2006;26(6):1595–97.

10. Manning CD, Surdeanu M, Bauer J, et al. The Stanford CoreNLP natural lan-

guage processing toolkit. In ACL (System Demonstrations). 2014: 55–60.

11. Mikolov T, Sutskever I, Chen K, et al. Distributed representations of

words and phrases and their compositionality. In Advances in Neural In-

formation Processing Systems. 2013: 3111–3119.

12. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word rep-

resentations in vector space. arXiv preprint arXiv:1301.3781. 2013.

13. Schakel AMJ, Wilson BJ. Measuring word significance using distributed

representations of words. arXiv preprint arXiv:1508.02297. 2015.

14. Jimeno A, Jimenez-Ruiz E, Lee V, et al. Assessment of disease named en-

tity recognition on a corpus of annotated sentences. BMC Bioinformatics.

2008;9(3):S3.

15. Krallinger M, Leitner F, Rabal O, et al. CHEMDNER: The drugs and

chemical names extraction challenge. J Cheminform. 2015;7(Suppl 1):S1.

16. Rockt€aschel T, Weidlich M, Leser U. ChemSpot: a hybrid system for

chemical named entity recognition. Bioinformatics. 2012;28(12):

1633–40.

17. Leaman R, Gonzalez G. BANNER: an executable survey of advances in

biomedical named entity recognition. Pac Symp Biocomput.

2008;13:652–63.

18. Settles B. ABNER: an open source tool for automatically tagging genes,

proteins and other entity names in text. Bioinformatics. 2005;21(14):

3191–92.

19. Munkhdalai T, Li M, Batsuren K, et al. Incorporating domain knowledge

in chemical and biomedical named entity recognition with word represen-

tations. J Cheminform. 2015;7(Suppl 1):S9.

20. Tang B, Cao H, Wang X, et al. Evaluating word representation features in

biomedical named entity recognition tasks. BioMed Res Int. 2014:Art. ID

240403.

21. Liu K, Hogan WR, Crowley RS. Natural language processing methods

and systems for biomedical ontology learning. J Biomed Inform.

2011;44(1):163–79.

22. Ruiz-Mart�ınez JM, Valencia-Garc�ıa R, Fern�andez-Breis JT, et al. Ontol-

ogy learning from biomedical natural language documents using UMLS.

Expert Syst Appl. 2011;38(10):12365–78.

23. Valencia-Garc�ıa R, Fern�andez-Breis JT, Ruiz-Mart�ınez JM, et al. A

knowledge acquisition methodology to ontology construction for infor-

mation retrieval from medical documents. Expert Syst. 2008;25(3):

314–34.

24. Krallinger M, Vazquez M, Leitner F, et al. The Protein-Protein Interaction

tasks of BioCreative III: classification/ranking of articles and linking bio-

ontology concepts to full text. BMC Bioinform. 2011;12(Suppl 8):S3.

25. Morgan AA, Lu Z, Wang X, et al. Overview of BioCreative II gene nor-

malization. Genome Biol. 2008;9(Suppl 2):S3.

26. Friedman C, Alderson PO, Austin JH, et al. A general natural language

text processor for clinical radiology. J Am Med Inform Assoc. 1994;1(2):

161–74.

27. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical text analysis and

knowledge evaluation system (cTAKES): architecture, component evalua-

tion and applications. J Am Med Inform Assoc. 2010;17(5):507–13.

28. Aronson AR, Lang FM. An overview of MetaMap: historical perspec-

tive and recent advances. J Am Med Inform Assoc. 2010;17(3):

229–36.

29. Wu Y, Denny JC, Rosenbloom ST, et al. A comparative study of current

clinical natural language processing systems on handling abbreviations in

discharge summaries. AMIA Annu Symp Proc. 2012;997–1003.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 6 685

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article-abstract/25/6/679/4797401 by Law
 Library user on 28 O

ctober 2018


	ocx152-TF1

