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SUMMARY

Advances in omics technologies now allow an
unprecedented level of phenotyping for human
diseases, including obesity, in which individual
responses to excess weight are heterogeneous
and unpredictable. To aid the development of better
understanding of these phenotypes, we performed
a controlled longitudinal weight perturbation study
combining multiple omics strategies (genomics,
transcriptomics, multiple proteomics assays,
metabolomics, and microbiomics) during periods
of weight gain and loss in humans. Results demon-
strated that: (1) weight gain is associated with the
activation of strong inflammatory and hypertrophic
cardiomyopathy signatures in blood; (2) although
weight loss reverses some changes, a number of
signatures persist, indicative of long-term physio-
logic changes; (3) we observed omics signatures
associated with insulin resistance that may serve
as novel diagnostics; (4) specific biomolecules
were highly individualized and stable in response
to perturbations, potentially representing stable
personalized markers. Most data are available
open access and serve as a valuable resource for
the community.
Ce
INTRODUCTION

With 34% of the US adult population classified as obese (Flegal

et al., 2010) and 3 million obesity-attributable deaths worldwide

(Finucane et al., 2011), it is imperative that we gain a better

understanding of the factors contributing to obesity-associated

morbidities, especially cardiovascular disease, cancer, and

type 2 diabetes mellitus (T2DM). These diseases are mediated

in part by insulin resistance (Kahn et al., 2006). While insulin

resistance is overall positively correlated with measures of

adiposity, there is great heterogeneity in metabolic phenotypes

between individuals who are similarly obese; as such, our ability

to predict these phenotypes is poor. One reason for this is that

the onset of metabolic disease and related complications in-

volves numerous pathways and complex interactions between

metabolically active tissues such as fat, liver, and muscle

(Kahn et al., 2006) (and most recently implicated, the micro-

biome; Janssen and Kersten, 2017). As such, a more compre-

hensive molecular profiling approach may offer novel insights

into the diversity of systemic responses to the increase in body

fat stores.

While most human studies have simply examined plasma

markers that occur in association with increasing adiposity,

another way to approach this problem is to compare equally

obese individuals who are either insulin resistant (IR) or

insulin sensitive (IS) to characterize differences between these

metabolically disparate groups. Many metabolic risk markers

differ markedly as a function of IR/IS independent of adiposity
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(McLaughlin et al., 2002, 2007, 2006). Induction of obesity in

mice via high-fat diets has revealed important insights into the

biological links between weight gain and metabolic disease.

While inflammation and oxidative stress are clear players in

mice, there are very few studies on determinants of insulin resis-

tance/metabolic disease in response to weight gain and loss in

humans, and causality is harder to determine given the relative

difficulty in manipulating genes or proteins in human subjects.

The integration of multiple large-scale omics profiling technol-

ogies across biological fluids and tissues has recently been

demonstrated to offer novel insights into disease development

and progression, including T2DM (Chen et al., 2012; Hood

et al., 2015; Lee et al., 2016; Price et al., 2017; Williams et al.,

2016). In this context, we performed a controlled short-term

weight gain and weight loss intervention in humans. Overweight

to moderately obese (BMI 25–35 kg/m2) healthy, nondiabetic

participants were selected to span a wide range of insulin resis-

tance. This group was targeted since they are most at risk for

T2DM, and, by subjecting individuals of different insulin resis-

tance profiles to identical weight perturbations, we sought to

identify pathways involved in obesity-mediated insulin resis-

tance. Furthermore, subjects already overweight require little

additional weight gain to trigger stress responses in adipose

tissue (McLaughlin et al., 2014), which contributes to systemic

responses mediating disease states such as type 2 diabetes

and cardiovascular disease (McLaughlin et al., 2016). Unlike

many prior studies, the current human study entailed a perturba-

tion in body weight such that changes with gain and loss

could be evaluated and, in particular, with insulin resistance,

which was quantified by a gold-standard physiologic measure

(modified insulin suppression test; Greenfield et al., 1981;

Pei et al., 1994; Shen et al., 1970). Multi-omics profiling including

genomics; transcriptomics; proteomics; metabolomics from

blood peripheral blood mononuclear cells (PBMCs), plasma,

and serum; and microbiomics from stool was performed over

the course of the study to generate a wealth of personal longitu-

dinal data, thereby enabling a detailed map of the individual

molecular changes that occur in response to weight gain and

weight loss in the context of insulin sensitivity and resistance.

Our study revealed a number of important findings, including

(1) modest weight gain in overweight humans was associated

with the activation of inflammatory signatures in the blood,

induction of markers and pathways for cardiovascular disease,

and significant changes to the microbiome; (2) many of these

changes affected IR participants differently from metabolically

healthy controls (e.g., microbiome andmetabolome differences);

(3) the longitudinal nature of the designed perturbation results

in statistical power increases that are equivalent to orders-of-

magnitude larger cross-sectional studies, an important consid-

eration for the design of future large-scale (and costly) multi-

omics studies.

RESULTS

Overview of the Multi-omics Study
The overall goal of the study was 2-fold: (1) assemble a compre-

hensive map of the molecular changes in humans (in circulating

blood as well as the microbiome) that occur over the course of a

carefully controlled weight gain and their reversibility with weight
158 Cell Systems 6, 157–170, February 28, 2018
loss; and (2) determine whether IS and IR individuals who are

matched for degree of obesity demonstrate unique biomolecular

signatures and/or pathway activation during similar weight gain.

Identifying specificmolecules and/or pathways that characterize

IR versus IS individuals may reveal the fundamental mechanisms

by which obesity potentiates insulin resistance and associated

diseases such as type 2 diabetes and cardiovascular disease.

Participants were recruited as part of the current iteration of

the Human Microbiome Project (iHMP) (Integrative HMP (iHMP)

Research Network Consortium, 2014), and omic data are open

access (http://hmp2.org/).

We sampled 23 carefully selected healthy participants with

BMI 25–35 kg/m2 at baseline before perturbation and during

periods of short-term weight gain followed by weight loss, with

samples drawn and metabolic measurements made at baseline

(T1), peak weight (T2), and post weight loss (T3) (Figure 1), and

after 3 months of weight stability following return to baseline

weight (T4). All subjects provided written informed consent and

all evaluations and blood/stool samples were obtained in

the Clinical and Translational Research Unit (CTRU) after an

overnight fast. Metabolic phenotyping included quantification of

insulin-mediated glucose uptake using the modified insulin sup-

pression test (Pei et al., 1994; Shen et al., 1970), which replaces

endogenous insulin secretion with a controlled intravenous infu-

sion of insulin and glucose such that, at steady state, all individ-

uals will have the same insulin concentration but different plasma

glucose concentrations, which reflect the relative ability of insulin

to dispose of a glucose load. In this test, which has been vali-

dated against the euglycemic clamp method (Greenfield et al.,

1981), a high steady-state plasma glucose (SSPG) level indicates

relative resistance to insulin action. Thirteen fasted overweight IR

participants (defined by SSPG R 150 mg/dL; Yeni-Komshian

et al., 2000, Table S1, and STARMethods) and ten BMI-matched

healthy overweight IS participants completed the study. Three

others dropped out after baseline tests and were not included

in the analyses. Comprehensive anthropometric, clinical, and

plasma measures of general health (waist circumference, blood

pressure, hematocrit, cholesterol, triglycerides, liver function

tests, creatinine, etc.) were also performed (Table S1).

Blood and stool were sampled from fasted subjects at baseline

(T1, Figure 1A); participants then underwent a controlled

hypercaloric diet for a period of 30 days, with each participant

supplementing their normal diets with high-caloric foods

provided by the Stanford CTRU Research Kitchen (see STAR

Methods) to achieve an average excess of 880 kcal per day as

determined for each individual by resting metabolic caloric

requirement and an activity factor (STAR Methods). At the end

of the 30-day weight gain period, participants maintained a eu-

caloric diet for 7 days, at which point a second fasted sample

of blood and stool was collected (T2, Figure 1A). Participants

gained an average of 2.8 kg over the course of the perturbation

(Figure S1). Each participant then underwent a caloric-restricted

diet under nutritionist supervision (see STARMethods) for a sub-

sequent 60-day period designed to return each participant back

to his/her initial baseline weight, at which point a third set of

fasted samples of blood and stool were collected (T3, Figure 1A).

A subset of participants returned for a follow-up sampling

approximately 3 months after the end of the perturbation (T4). A

total of 90 time points were sampled. The large-scalemulti-omics

http://hmp2.org/


Figure 1. Overview of the Multi-omic Weight Perturbation Experiment

(A) Schematic of the weight gain and loss perturbation. The sampling time points (T1–T3) are indicated at the specific time in the perturbation when they occur.

Inset: SSPG and BMI measurements for IS and IR subjects.

(B) The types of omics analyses performed are indicated along with the types of biological materials they are performed on. Listed below each data type are the

number of analytes measured per time point for each individual, as well as the total number of analytes measured across the study.

(C) Circos plot of multi-omic data points from selected assays. The transcriptome, both targeted and untargeted proteome, and serum cytokine levels are plotted

according to their genomic location as well as the average expression in IR and IS participants (see inset labels).

(D) The stool microbiome phylogenetic tree is visualized by GraPhlAn for taxonomies present across all participants along with the respective relative abundance

in IR and IS (outer layers).
assays performed at all time points were: genomics (germline

exome sequencing from whole blood, performed once for each

individual), transcriptomics (RNA sequencing [RNA-seq] from

blood PBMCs performed over the time course), proteomics

performed three different orthogonal ways (untargeted liquid

chromatography [LC] mass spectrometry [MS] from blood

PBMCs, 276 targeted protein assays from plasma [Proseek

multiplex], and a 63-protein cytokine/chemokine/adipokine panel

from serum), metabolomics (untargeted LC-MS from plasma

using a pipeline we recently developed; Contrepois et al., 2015)

and microbiomics done using two different methods (16S and

whole-metagenome sequencing from stool) (Figures 1B and

1C). In total, across all time points, over 2 million unique data

points were measured.

Differences in Omics Profiles and Biochemical
Pathways between IR and IS Participants
We first examined whether baseline differences were detectable

in omics profiles between insulin-sensitive and insulin-resistant

individuals; such differences may influence how individuals
respond to the dietary perturbation. In order to identify any indi-

viduals that may harbor germline mutations in known metabolic

disease susceptibility genes as well as enable accurate mapping

of the different omics data, exome sequencing was performed

on each subject followed by reconstruction of their personal

exome, which was used for improved transcriptome mapping.

A detailed analysis of the genomic risk of the subjects is reported

elsewhere (Rego et al., 2017); however, we did not find any

known high-risk variants for diabetes or insulin resistance

(e.g., MODY [maturity-onset diabetes of the young] mutations),

thus allowing us to study insulin resistance in a population

without elevated Mendelian genetic risk. As expected, the

overall density of variants was consistent from participant to

participant (Figure S1).

At baseline, modest differences were evident between IR and

IS groups. In blood PBMCs, significant transcripts differentially

expressed between IR and IS (Figure 2A and Table S2)

comprised a number of common significant functional groups,

including pathways associated with the cardiovascular

system (false discovery rate [FDR] < 0.0001), angiogenesis
Cell Systems 6, 157–170, February 28, 2018 159



Figure 2. Differences between IR and IS Participants at Baseline

(A) Heatmap showing differences between IR and IS in baseline molecular abundance for each omic type. Each analyte is normalized according to the average

expression in IS and significant differences in the IR group are plotted (red, upregulated in IR; blue, downregulated in IR).

(B) Pathways exhibiting significant transcriptomic and proteomics differences between IR and IS. The top Gene Ontology categories are presented and top

transcripts and proteins are plotted in a network diagram showing pathway connections.

(C) Differences in microbial abundance (%) between IR and IS by both 16S and shotgun metagenomic sequencing.

(D) Regression analysis detailing association of multiple metabolites with clinical steady-state-plasma glucose (SSPG). MS signal intensity is plotted versus

SSPG (mg/dL) for the selected metabolites indolelactic acid and tetrahydrocortisol glucuronide. Inset are the R2 and p values for the selected comparisons.

HMDB, Human Metabolome Database.
(FDR < 0.04), and actin/myosin cell motility (FDR < 0.00001), as

well as multiple pathways representing an immune/inflamma-

tory response (FDR < 0.05) (Figure S2 and Table S2). To explore

whether these expression differences translated to the prote-

ome level, we performed the same comparison in LC-MS prote-

omic profiles of the same PBMC population. Baseline analysis

revealed three proteins (TC2N, DMTN, and PKD1) that were

different between IR and IS participants; the smaller number

of differential proteins versus RNA is likely due to the size of

the cohort and potentially higher variability of protein levels.

Indeed, expanding our analysis to the pathway level, we

observed significantly enriched pathways that closely mirrored

those uncovered in the transcriptome as well as those that

were unique to the proteome (fat cell differentiation, etc.)

(Table S2). A combined ranked pathway analysis of transcrip-

tome and proteome from PBMCs further confirmed the

enrichment of these core pathways (Figure 2B), as well as

uncovering additional enriched pathways that spanned RNA
160 Cell Systems 6, 157–170, February 28, 2018
and proteins (platelet/blood coagulation, plasminogen activa-

tion). Despite the increased immune/inflammatory responses

observed here in IR participants, we note that all participants

self-identified as healthy (no common colds, etc.) at the time

of sampling, so it was particularly striking that participants

exhibited this phenotype at baseline.

Using both 16S and shotgunmetagenomics of the stoolmicro-

biome, we observed significant differences between IR and IS

participants in the abundance of the gram-negative proteobac-

terium Oxalobacter formigenes (p < 0.006; Figure 2C and Table

S2). Interestingly, although this bacterium was present at

relatively high levels in IS participants, it was not detected in

any of the IR participants’ samples. O. formigenes is particularly

unusual in that it processes oxalate, and absence of this bacte-

rium is associated with increased risk of kidney stones (Duncan

et al., 2002), which was linked to diabetes and insulin resistance

(Chung et al., 2011; Daudon et al., 2006) and can be sensitive to

high-oxalate-containing foods such as almonds (Haaskjold et al.,



2015). While we only observed significant IR associations with

one microbe at baseline, we hypothesized that this may be

due to the small sample size of the cohort. As such, we

expanded the analysis to include all time points, revealing a sub-

stantially different picture. Both 16S and shotgun metagenomics

identified that bacteria of theAlistipes genus in the Rikenellaceae

family were more abundant in IS than IR subjects (p < 0.04).

Alistipes spp. were shown previously to associate with glucose

regulation, diabetes, and obesity (Brown et al., 2011; Ridaura

et al., 2013; Serino et al., 2012). Our results demonstrate that

many important biological molecules, pathways, and microor-

ganisms differ in IR and IS patients. Although some of these dif-

ferenceswere known previously in diabetics or obese individuals

relative to healthy people, our results demonstrate that these

differences are already present in earlier stages/aspects of the

disease.

Expanding the analysis to include all time points also revealed

IR-associated signatures in other omic data types. In plasma, we

observed an IR-associated proteomic signature spanning multi-

ple targeted assays (Figure 2A and Table S2). Among these was

the folate receptor FOLR1 (FDR < 0.004), the hormone prolactin

(FDR < 0.007), and brain-derived neurotrophic factor (BDNF)

(FDR < 0.03). BDNF has been shown to be one of the main

signaling factors for appetite as well as heart function (Feng

et al., 2015; Fulgenzi et al., 2015; Rosas-Vargas et al., 2011).

The former is an interesting target as folate supplementation

has been explored as a method to combat metabolic-disease-

associated cardiovascular disease (van Etten et al., 2002) and

prolactin levels have been shown to be inversely associated

with diabetes (Wang et al., 2013). Along with targeted plasma

proteomic assays, clinical blood panels showed ten analytes

that were significantly different between IS and IR participants

(Table S2, FDR < 0.2). Most of these clinical variables were asso-

ciated with dysregulated lipid metabolism (i.e., triglycerides

(TGLs), low-density lipoprotein [LDL]/high-density lipoprotein

[HDL] ratio, etc.) and inflammation (high-sensitivity C-reactive

protein [hs-CRP]), consistent with results from PBMCs and

plasma (Figure 2A).

Untargeted metabolomic profiling of plasma also led to the

identification of 122 metabolites that were different between IR

and IS participants (FDR < 0.2) (Figure 2A and Table S2). While

the SSPG cutoff for defining IR and IS has precedent clinically,

we asked whether different thresholds for defining IR and IS

led to the identification of different numbers of metabolites. We

observed that changes to the SSPG cutoff (from 100 to 170)

did not significantly change the number of differential metabo-

lites in IR versus IS participants (Figure S2), suggesting that there

is some consistency in metabolic differences across a relatively

wide range of insulin resistance measurements.

Pathway analysis revealed that amino acid as well as lipid

metabolism were deregulated in IR individuals compared with

healthy controls (FDR < 0.05) (Figure 2). These observations

are consistent with the observation that compromised insulin ac-

tion is associated with altered intermediary metabolism of fats

and amino acids (Adams, 2011). In particular, we found that

the branched-chain amino acid (BCAA) biosynthetic pathway

was deregulated in insulin-resistant participants (FDR = 0.01),

which is consistent with previous findings (Pedersen et al.,

2016; Yoon, 2016). In addition to BCAAs, many more amino
acids, such as sulfur-containing amino acids (e.g., methionine),

were found in higher levels in the plasma of insulin-resistant

individuals (Figure S2). Lipid metabolism was also altered

with the increased level of many short- and medium-chain acyl-

carnitines, and the reduction of phospholipid and plasmalogen

levels (Figure S2). Accumulation of acylcarnitines is commonly

observed in cases of insulin resistance and T2DM (Schooneman

et al., 2013).

For highly significant metabolites, we also tested how well

correlated their plasma abundances were with clinical insulin

resistance measures (e.g., SSPG), thus indicating their potential

as a biomarker for insulin resistance. Indeed, tetrahydrocortisol

glucuronide was strongly positively associated with baseline

SSPG levels and indolelactic acid was negatively associated

with SSPG levels (Figure 2D). Interestingly, indolelactic acid

has recently been associated with insulin resistance (Pedersen

et al., 2016). Tetrahydrocortisol glucuronide is a modified,

more water-soluble version of tetrahydrocortisol, which allows

elimination from the body and/or ease of transportation around

the body. To the best of our knowledge, this is the first report

of an association between insulin resistance and tetrahydrocor-

tisol glucuronide, and, based on these data, both metabolites

show promise as IR biomarkers.

We next attempted to use the metabolome to predict SSPG

values. We performed binary classification using ensemble

learning as well as quantitative prediction using delta SSPG

values based on deltametabolomics features. Using random for-

est and AdaBoost classifications, we achieved an accuracy rate

of 87.5% on our hold-out test set (see STAR Methods). Predic-

tive performance measures in terms of precision, recall, and F1

score were 87% for the random forest method and 78% for Ada-

Boost (Figure S2). The high accuracy and precision show that the

model was able to correctly predict the future SSPG trend by

only looking at the difference between the current and future

metabolomics features. From both methods, only one wrong

prediction was made, which was a false-positive (see confusion

matrix, Figure S2). For the regressionmodel to computeDSSPG at

time (tn), we used LASSO (least absolute shrinkage and selection

operator) and elastic net regularized regression, with 10-fold

cross-validation. We achieved a low root-mean-square error

(RMSE) of 27.5110 for the elastic net model. Regression curves

(Figure S2) show that the predictedDSSPG(t
n) are very close to the

actual values for most samples. In conclusion, metabolomics

profiling has significant potential as a predictor for changes in

insulin resistance.

Omics Profiles and Pathways Associated with
Weight Gain
Following characterization of group differences, we next exam-

ined the biomolecules and pathways that were specifically

responsive to the 30-day weight gain perturbation (Figure 3).

Comparing omics profiles at peak weight with baseline profiles,

we observed a number of significant changes across multiple

omes. Specifically, at the transcriptome level, we observed

318 transcripts that were significantly differentially expressed

between baseline and peak weight (FDR < 0.01; Table S3). As

expected, this included an increase in expression for a number

of genes associated with lipid metabolism, such as lipoprotein

lipase (LPL; FDR < 5 3 10�5). Pathway enrichment analysis
Cell Systems 6, 157–170, February 28, 2018 161



Figure 3. Multi-omic Differences over the Course of a Weight Gain and Loss Perturbation Experiment

(A) Heatmap showing analytes that vary in abundance in response to the weight gain and loss perturbation.

(B) Pathways that are significantly different between baseline versus weight gain, and weight gain versus weight loss, respectively. GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes.

(C) IR- or IS-specific microbiome changes are shown for selected taxonomic units confirmed by both methods (16S and shotgun metagenomics).
showed that these genes comprised a number of common func-

tional categories (Figure 3B), including a large number of inflam-

matory response genes and pathways at peak weight; this may

indicate significant stress response despite the relatively modest

weight gain (average 2.4 kg). Importantly, we also observed an

increase in expression of genes associated with dilated cardio-

myopathy, potentially reflecting a molecular explanation for the

association between weight gain and heart failure (Dela Cruz

and Matthay, 2009).

At themicrobiome level, 16S sequencing revealed a significant

increase in microbes of the Verrucomicrobiaceae family in

response to weight gain; using shotgun metagenomics, we

were able to further specify this response to the species

Akkermansia muciniphila (p < 0.03; Figure 3C and Table S3).

Interestingly, this response was only observed in the insulin-sen-

sitive participants; this is of particular note in light of prior studies

showing that A. muciniphila confers a protective effect against

insulin resistance in response to weight gain in animal models

(Everard et al., 2013; Roopchand et al., 2015). Overall, these

results indicate that there are substantial biological pathways

that change during weight gain that affect immune response,

heart function, biochemistry, and microbiome.

Omics Profiles and Pathways Associated with
Weight Loss
As short-termweight gain induced a number of significant blood-

based and microbiome-based changes, we next determined
162 Cell Systems 6, 157–170, February 28, 2018
whether these responses would persist or revert upon each par-

ticipant’s return to baseline weight. We compared omics profiles

assayed after weight loss with those of the previous peak weight

sample and again observed a number of significant changes

across multiple omes (Figure 3). At the transcriptome level,

213 genes were significantly differentially expressed in weight

loss versus peak weight (Figure 3A and Table S3). Pathway

enrichment analyses strikingly revealed that the majority of the

significant pathways observed after weight gain reversed after

subsequent weight loss (Figure 3B); examples include the genes

associated with lipid metabolism and inflammation. This reversal

upon weight loss is of particular importance as it suggests that

the negative effects of short-term weight gain can potentially

be ameliorated by corrective action.

Mirroring the dynamic changes of RNA levels in PBMCs, most

of the 65 plasma metabolites that changed upon weight gain

reversed after weight loss (Figure 3A and Table S3; FDR < 0.2).

Interestingly, most of these molecules function in lipid meta-

bolism, including acylcarnitines and fatty acids, showing that a

subtle change in weight profoundly affects lipid metabolic path-

ways. We specifically examined associations with BMI, and

identified 133 metabolites that were significantly associated

with changes in BMI (Table S3). Similar to the time-points model,

most changingmolecules belong to lipidmetabolism and include

many acylcarnitines, fatty acids, and lysophospholipids (Fig-

ure S3), possibly reflecting decreased catabolism due to an

increased calorie intake. We also had the opportunity to validate



these results in a separate, unpublished weight gain cohort con-

ducted in Sweden with blood LC-MS metabolomics generated

using the Metabolon platform. We examined the subset of

metabolites that were positively identified by both platforms

and asked whether they behaved similarly across both cohorts.

Of these, we found that 77% of weight-responsive metabolites

were also enriched upon weight change in the second study

(Table S4). Thus, despite differences in study populations and

metabolomic analytical platforms, weight-responsive metabo-

lites were reproducible across studies.

Targeted proteomic assays (Luminex and Proseek) revealed

27 proteins (FDR < 0.2) associated with BMI change, with the

adipokine leptin (p < 8 3 10�5) positively associated with BMI

change (Figure S3 and Table S3) with a substantial 30% increase

in leptin levels per unit of BMI; this is consistent with previous

cross-sectional studies finding increased leptin levels in obese

subjects (Considine et al., 1996). Novel significant responses

to changes in BMI included the immuno-modulating covertase

furin (p < 83 10�5) (Pesu et al., 2008), as well as lipopolysaccha-

ride (LPS)-induced tumor necrosis factor (LITAF) (p < 4 3 10�5).

The latter is of particular note considering that LPS-responsive

immune/inflammatory pathways also exhibited a significant

response in the PBMC transcriptome. As LITAF- and LPS-

responsive pathways are known to respond to endotoxins of mi-

crobial origin, this response may indicate crosstalk between the

microbiome and the human host’s immune system in response

to weight gain/loss. Consistent with this interpretation was the

association of white blood cell counts with delta BMI. Also asso-

ciated with delta BMI were non-HDL-cholesterol (p < 0.03) and

LDL-cholesterol (p < 0.02) measured as part of the clinical panel

(Table S3). In summary, these results indicate that most changes

identified during weight gain reverse upon weight loss.

Uncovering Trends in Response to Dietary Change
While the prior analysis provides insight into biomolecules that

vary along with changing weight/BMI, it is possible that more

complex patterns may be evident across the perturbation.

Specifically, we were interested in (1) analytes that may have

changed in response to weight gain but did not revert upon

subsequent weight loss (and indicative of a long-term effect) or

(2) molecules that may not have changed upon weight gain but

were only responsive to weight loss. To better understand the

breadth of possible responses, we performed longitudinal pattern

recognition analysis across blood-based analytes (transcriptome,

proteome, and metabolome) using fuzzy c-means clustering.

From these data, we observed diverse response patterns to the

perturbation (Figure 4A).

From these analyses, a number of key patterns were evident.

For the pattern observed in cluster 12 (Figure 4A), which

comprised an initial increase in biomolecular abundance

followed by a decrease back to baseline that persisted through

the quarterly follow-up visit, and most closely resembled the

weight gain/loss trajectory each participant exhibited (Fig-

ure S1), we observed a highly significant enrichment for genes

and proteins associated with risk for dilated cardiomyopathy

(FDR < 5 3 10�6, Kyoto Encyclopedia of Genes and Genomes

[KEGG] enrichment via the Database for Annotation, Visualiza-

tion and Integrated Discovery [DAVID] algorithm; Huang da

et al., 2009a, 2009b). As shown by the KEGG pathway diagram
(Figure 4B), this enrichment included a large number of

members of this functional category spanning the cell surface

receptors to the internal machinery. The overfeeding-induced

changes in these analytes may indicate ill-effects of the short-

term weight gain, such as increased coronary artery disease;

however, it is important to note that this biomolecular signature

returned to baseline upon subsequent weight loss. Other

intriguing responses included sets of biomolecules that were

anticorrelated with weight gain. A cluster genes/proteins

and metabolites comprising catabolic pathways decreased

upon weight gain and returned to baseline upon subsequent

weight loss (Figure 4A, cluster 6). A downregulation of catabo-

lism is logical in an overfed state as the body may switch to a

largely anabolic state with an overabundance of energy intake

from food.

Of particular note was a cluster of biomolecules that increased

upon weight gain but failed to return to baseline at the end of the

weight loss period (Figure S4). Enrichment testing showed that

cluster 2 comprised biomolecules associated with a variety of

metabolic pathways, including folate metabolism (p < 0.001),

phenylalanine metabolism (p < 0.005), and BCAA degradation

(p < 0.03). Thus, these pathways have long-lasting effects after

weight gain.

In order to identify biomolecular trends across the dataset in a

more unbiased fashion, weperformedweighted gene-co-expres-

sion analysis (Zhang and Horvath, 2005) across all conditions and

time points (Figure S4). From this analysis, a series of core gene

expression patterns emerged, and the co-expressed genes

were functionally related based on pathway enrichment. We

next asked whether these common expression patterns were

significantly associated with any of the clinical variables tested

and thus may cause clinical phenotypes. A number of these

significant associations emerged (Figure 4C). For example, a

gene module significantly enriched for mitochondrial genes

involved in oxidative phosphorylation (FDR < 1 3 10�12) was

significantly associated with multiple clinical parameters,

including glycated hemoglobin A1C (HbA1C), hs-CRP, and

LDL-cholesterol (Figure 4D); this may suggest a link between

mitochondrial activity and diabetes-/cardiovascular-related

issues, thus showing that novel associations can be gleaned

from the unsupervised associations.

Associations between Omic Measures and the
Microbiome
In order to better understand how the microbiome may interact

with the changes we observed in human molecular physiology

over the course of the dietary perturbation, we explored (1) how

microbes co-vary with each other across the entire dataset and

(2) how microbes co-vary with metabolites in the host. Some

microbes showed a high degree of covariance in both IR and IS

subjects over the course of the perturbation experiment; for

example, the proportion of Bacteroides dorei was positively

correlated with Alistipes putredinis (Figure 5A, highlighted by

squares). B. dorei has been shown to modulate immune re-

sponses in humans (Vatanen et al., 2016) and A. putredinis has

been shown to be significantly responsive to dietary changes

(David et al., 2014), thus painting a complex portrait of how

diet-induced changes to the microbiome may relate to the

immune changes we observe in the host. In addition to these
Cell Systems 6, 157–170, February 28, 2018 163



Figure 4. Multiparametric and Trend Analyses Reveal Novel Responses to Weight Gain and Loss

(A) Longitudinal pattern recognition using fuzzy c-means clustering across all host omes. Data from the transcriptome, proteome, cytokines, and metabolites

were standardized to Z scores for each analyte and subjected to c-means clustering across all four time points. Each subplot shows a unique cluster and the

trend for all analytes comprising the cluster. The red outline indicates the cluster that is featured in the pathway analysis in (B).

(B) KEGG pathway diagram for analytes implicated in dilated cardiomyopathy, a pathway that was significantly enriched in cluster 12 (FDR < 0.000004). Elements

highlighted in yellow indicate the pathway analytes that comprise cluster 12.

(C) Table showing biological pathway enrichment and association with clinical blood panel analytes for key gene co-expression clusters. A1C, HbA1C; IGL,

immunoglobulin lambda; OXPHOS, oxidative phosphorylation; PLT, platelet count; TBIL, total bilirubin.

(D) Gene expression heatmap for transcripts comprising the yellowmodule from Figure S3. The expression for each gene is shown for all time points (T1, pink; T2,

blue; T3, orange; T4, green) along with the relative levels for each of the enriched clinical parameters (A1C, LDL, HDL, immunoglobulin M [IGM], and bilirubin

[TBIL]). Red indicates high expression while blue indicates low for genes; dark squares indicate high relative abundance for clinical parameters.
similarities, some microbiota show strikingly opposite correla-

tions depending on IR and IS context. For example, Eubacterium

hallii and Parabacteroides exhibit a strong positive correlation in

IR participants across time points and a negative correlation in

IS individuals. This is of particular interest, because E. hallii has

been shown to metabolize glucose and is a major contributor of

short-chain fatty acids in the gut (Engels et al., 2016), whereas

Parabacteroides has previously been shown to be directly asso-

ciated with weight gain (Lecomte et al., 2015). It is intriguing to

speculate that the unique gut microenvironment in IR versus IS

individuals contributes to these differing responses to host die-

tary intervention and weight changes. Additional examples are

Bacteroides vulgatus and Eubacterium eligens, which exhibit a

positive correlation in IR individuals and a negative correlation

in IS individuals (Figure 5A, highlighted by circles). This is of

particular note because B. vulgatus has been shown to be a

mediator between BCAA metabolism and insulin resistance

(Pedersen et al., 2016), whereas E. eligens has been shown to

respond significantly to dietary fiber (Chung et al., 2016). Further-

more, most pairwise correlations were significant only in IR or IS
164 Cell Systems 6, 157–170, February 28, 2018
individuals, again showing a potential differencewhere IR individ-

uals may possess a unique microbiome that possibly contributes

to the pathology or progression of their disease.

The contribution of microbial products to host metabolic

signaling is one of the fundamental mechanisms underlying the

host-microbiome interactions (Holmes et al., 2011). In order to

better understand how these microbiome alterations are

associated with host metabolism, we examined whether specific

microbes correlated with hostmetabolites. Associations between

microbial populations at the phylum level (with at least 1% abun-

dance) and metabolite quantities revealed 26 cross-omics asso-

ciations significantly different between IR and IS (p < 0.1 for the

interaction term in the ANOVAmodel), of which eight showed sig-

nificant associations only in IR or IS individuals (Table S3). As an

example of these, we found that the antioxidant 3-indolepropionic

acid was positively associated with Proteobacteria but specif-

ically in the IR subjects. As a second example, N6-trimethyllysine

was significantly positively associated with the phylum Proteo-

bacteria exclusively in the IS participants (Figure 5B). It is worth

noting that 3-indolepropionic acid is a microbial fermentation



Figure 5. Associations of Analytes across IR and IS and across Omes

(A) Co-varyingmicrobial species are plotted based on whether they are co- or inversely associated (blue or red, respectively), andwhether this occurs in IR (upper

quadrant) or IS (lower quadrant). Squares indicate A. putredinis. Circled values indicate relationships that are the opposite between IR and IS, while squared

circles indicate the same trend across IR and IS.

(B) Co-variation of microbes and metabolites for IR and IS is plotted for selected associations. Inset are the Spearman’s rho and adjusted p values after FDR

correction for the selected associations. Also, adjusted p values by FDR are shown between IS and IR individuals for the interaction term of the linear model

describing different trends in the two groups.
product from tryptophan, and it can be a potential drug target

for the management of insulin resistance (Khan et al., 2014). In

the case of N6-trimethyllysine, it is a precursor for L-carnitine

biosynthesis, which improves glucose tolerance, increases total

energy expenditure in obesity (Flanagan et al., 2010), and

decreases cardiovascular risks (Koeth et al., 2013; Ussher et al.,

2013). These results demonstrate that microbial differences exist

between IR and IS participants and these are associated with

differences in metabolism in the host.

Each Individual Has Unique Biomolecular Profiles, and
Molecular Variation Can Come from Distinct Sources
Although much of the prior analyses focused on the similarities

between the individuals across the dietary perturbation, with

such a diverse set of multi-omic measurements we also had

the unique opportunity to describe in greater detail the differ-

ences that exist among individuals both at steady state and

through a longitudinal perturbation. The extensive measure-

ments across different people and perturbations allowed us to

use ANOVA to decompose the observed variance for each ana-

lyte into components originating from inter-personal differences,

the experimental perturbation (weight gain, weight loss, IR

versus IS) and other parameters (technical noise and unknown

sources). This was examined for individual molecules as well

as the general type of molecule (RNA, cytokine, microbiome)

(Figures 6A and S5). Strikingly, we found that all molecular mea-

surements were dominated by inter-personal variation, which

accounted for more than 90% of the observed variance in

some cases (e.g., cytokines). On the opposite side of the spec-

trum, proteomics and metabolomics measurements had a sub-

stantial unexplained component (30% and 35%, respectively),

highlighting the presence of unaccounted factors (e.g., food,
exercise, and other changing environmental factors) or a sub-

ject-specific reaction to the perturbation. We then examined

how cytokine levels differed between individuals versus within

multiple time points for an individual (Figure 6B). To exclude

the effects of the dietary perturbation for this exercise, we per-

formed this analysis in the set of participants that provided

follow-up time points 3 months after the end of the perturbation

study (from our prior analyses we observed that the majority of

the effects of the weight perturbation have dissipated at this

follow-up time point; Figure 4B). Comparing the variation in

cytokine levels between multiple baselines in a single individual

versus across individuals, we observed a striking difference:

for almost all cytokines, the within-individual coefficient of varia-

tion was under 20%, whereas the variation across individuals

was 40%–60%. This shows that our baseline cytokine profiles

are unique to the individual, a point that has significant implica-

tions for one-size-fits-all clinical cytokine assays for the detec-

tion and/or monitoring of disease. We observed similar (but

less dramatic) effects for the other omes (Figure S5).

The Power of Longitudinal Analyses
As personal variation proved to be one of the main sources of

variation across these datasets, we next quantified to what

degree the longitudinal study design (i.e., comparing each indi-

vidual with himself/herself across time) increased our ability to

identify biomolecular responses to weight gain and loss. To do

this, we performed a power analysis using the metabolome

data as an example (Figure 6C). By comparing our analysis,

which accounts for the personal baseline, with a regular group

comparison using a t test, we can compute the population size

required to detect the same effect size with the same statistical

power as found in our study. For the 127 significant pairwise
Cell Systems 6, 157–170, February 28, 2018 165



Figure 6. Personal Variation of Omics Data

(A) Variance decomposition analysis of selected omes (see Figure S5 for others). The variance across all time points was deconvolved into experiment-dependent

variation (i.e., due to the perturbation), personal variation (within an individual), or other types of variation (technical or unknown sources). The heatmap color

(yellow to red) indicates the density of analytes at each coordinate.

(B) Variation in cytokine/chemokine/adipokine abundance within participants versus across participants. The coefficient of variation (CV) for all measured

Luminex immunoassays is plotted across steady-state time points (T1 and T4) within an individual (red) and across individuals (blue).

(C) Power comparison for longitudinal versus groupwise study designs using metabolomics data as an example.
differences (p < 0.05) across 73 metabolites, we find that a

cross-sectional setup would, on average, require 79 participants

to reach the same power, with some analytes requiring 300

participants or more in a cross-sectional setup. Therefore, by

correcting for the personal baseline of each analyte we were

able to improve power in every case, for some analytes quite

dramatically. This is consistent with the fact that for 85.6% of

all metabolites we found significant (q-value < 0.2) differences

evident in baseline samples that also persisted throughout the

perturbation. These findings highlight the fact that each individ-

ual is biochemically unique, and this stresses the need for

personalized analysis in medicine.

DISCUSSION

Obesity and T2DM are progressive disorders in which our key

to a deep understanding of the etiology likely will come not

from single observations of a limited number of analytes but

from deep analyses and longitudinal profiling. Here, we have

made millions of measurements of humans and their micro-

biomes across a longitudinal perturbation and identified some
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striking patterns within and between subjects. First, by taking

an integrated multi-omic approach (Figure 1), we find marked

differences between IR and IS individuals. In the fasted blood

of IR individuals, we observed differential regulation of inflam-

matory/immune response pathways (Figures 2A and 2B). This

is consistent with prior literature (Festa et al., 2000; Mardi

et al., 2005); however, earlier studies used only a few analytical

markers, limiting the breadth of information that can be

gleaned. Using deep multi-omic profiling, we show that

this response includes dysregulation of a large number of fac-

tors that specifically function in an antimicrobial response

(LTF, CAMP, as well as various defensins), and was reflected

in each of the different omics profiles (PBMC transcriptome,

proteome, and circulating cytokines).

In addition, many circulating metabolites were present at

different levels in IR and IS participants’ amino acid (BCAAs,

sulfur-containing amino acids) and lipid metabolism (acylcarni-

tines and ether-linked phosphatidylcholines) (Figure 2A). BCAAs

have been most consistently described in the literature as

associated with insulin resistance. In addition, indolelactic acid

presented a very strong negative correlation with SSPG levels



(Figure 2D). This molecule is of particular interest as it is pro-

duced specifically by the microbiome in humans (Patten et al.,

2013;Wikoff et al., 2009). Moreover, we show that metabolomics

profiles can be used as an accurate predictor for changes in

insulin resistance, and it will be of significant interest to apply

this approach across significantly larger cohorts. It is possible

that a metabolomic signature or a subset of metabolites could

be used as a clinical assessment of the insulin sensitivity level

in place of the expensive and time-consuming procedure that

measures SSPG levels.

Concomitant with these observations is the differential

relative abundance of several bacteria in the gut microbiome of

IR compared with IS individuals, including gram-negative pro-

teobacterium O. formigenes and several Firmicutes species

(e.g., the LachnospiraceaeBlautia andDorea at >1%abundance

level) (Figure 2C and Table S2). Increases in the relative propor-

tion of Firmicutes have been shown to be associated with

obesity in numerous contexts (Ley et al., 2006; Turnbaugh

et al., 2006, 2009), and in mice there is evidence that low-grade

inflammation associated with weight gain is at least partially due

to the microbiome (Cani et al., 2008). While this association has

been largely attributed to themetabolite LPS produced by gram-

negative bacteria, it is interesting to note that increases in gram-

positive Firmicutes correlate with increased inflammation in this

study, raising the possibility of other non-LPS triggers of a low-

level systemic immune response in overweight/obese humans.

Interestingly, a prior study showed that Firmicutes abundance

was reduced in patients with T2DM relative to healthy controls

(Larsen et al., 2010), so it is possible that, upon progression

from a prediabetic state to outright diabetes, a remodeling of

the microbiome occurs, again emphasizing the need for detailed

longitudinal omic monitoring of patients at risk for T2DM in order

to better understand the events that precede the development of

frank T2DM.

We also found extensive molecular changes after weight gain

and weight loss. Notably the inflammation response was one of

the major pathways induced upon weight gain; similar results

have been found previously for fat cells (Nishimura et al.,

2009). This dysregulation is evident at several different levels,

including transcriptome, proteome, and cytokines (Figures 3

and 4). These results suggest that a systemic inflammatory

pathway is activated in response to short-term weight gain,

which is surprising given the modest weight gain induced here

(�2–3 kg); however, it is important to note that this response

was largely reversed upon subsequent weight loss (Figure 3).

Of particular interest from the global pathway analysis was the

discovery that the dilated cardiomyopathy (DCM) pathway is

activated upon weight gain (Figure 4). Since heart conditions

are associated with increased weight, these results provide a

potential biochemical explanation for this response; indeed,

many of the associated biochemical pathways observed

herein, including inflammation and oxidative stress, have been

previously implicated as causative for DCM (Tiwari and Ndisang,

2014). Interestingly, we also observed activation of the

platelet plug formation pathway, which was also altered during

diabetes onset (Chen et al., 2012). This pathway may be an

indication of altered metabolism and possibly play a role in

signaling and/or preparation for blood clotting response during

loss of metabolic control.
It is important to note that not all of the responses we observed

were consistent across IR and IS participants. In particular, for

the microbiome, we observed that the microbe A. muciniphila

was weight gain responsive only in insulin-sensitive participants

(Figure 3C). The abundance of this particular microbe in IR indi-

viduals did not change across perturbations and was barely or

not detectable in most IR individuals. While prior studies have

also shown that gut colonization by A. muciniphila is associated

with protection from metabolic disease in mice and humans

(Dao et al., 2016; Everard et al., 2013; Roopchand et al., 2015),

here we show in humans that A. muciniphila is responsive to

even a modest weight gain and clearly differentiates between

IR and IS participants. In addition, we observed a subset of

microbes that are synchronized in response to the dietary pertur-

bation but that are different between IR and IS individuals (Fig-

ure 5A). Furthermore, we discovered longitudinal associations

between microbes and host metabolites that are significantly

different between the two groups (Figures 5B and 5C). Taken

together, microbial composition and their metabolic activities

may be one explanation as to why some individuals respond

metabolically very poorly to weight gain while others do not; as

such, we hypothesize that ensuring the presence of certain

classes of microbes in the gut could be a key target for diabetes

prevention.

Our study also allowed us to investigate the relation between

inter-individual variation and intra-individual variation over time

and during a perturbation. Our ANOVA components showed

that, for all omics measurements, the inter-individual variation

dominated the intra-individual variation and was the main explan-

atory factor for different analyte levels (inter-individual variation

ranged from 93% for cytokines to 54% for transcripts). Our data

highlight how personalized analysis can provide additional insight

and improve statistical power several fold. Even within different

types of analytes (metabolites, cytokines, etc.), we observed

that subsets exhibit highly personal variability while others

showed common trends in response to the perturbation. In addi-

tion, the study participants have agreed to participate in long-term

follow-up with regular sampling, thus it will eventually be possible

to track individual trajectories of specific biomolecules over

multi-year periods, further adding to our understanding of

personal versus universal changes in biomolecular abundance.

While patterns emerged that implicate common pathways

found in the PBMC transcriptome, plasma proteome andmetab-

olome, and gut microbiome, it is important to note that, despite

performing many high-throughput biochemical assays across

multiple biospecimen types from the same patient, we are likely

a long way from a complete omic representation of complex

human biochemical systems. For example, the PBMC cell types

profiled here represent only a fraction of the myriad cell types

and tissues that actively secrete free proteins and metabolites

into the plasma. Many of these tissues are inaccessible in a

non-invasive fashion, limiting the breadth of omic profiling in

humans versus similar model organism studies. To this end,

mechanistic models derived from mouse or other studies could

be leveraged as a template for mapping quantitative human

omic data, potentially leading to more accurate predictive signa-

tures for T2DM or other human diseases.

In addition to demonstrating the dynamics of extensive molec-

ular changes during weight gain and loss, this study provides a
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unique resource for the scientific community. Nearly all of the data

are publicly available, enabling exploration of inter-omic relation-

ships and alterations across a longitudinal perturbation. With the

many levels of linked biological information available here, from

genome, transcriptome, proteome, metabolome, and micro-

biome, all open access,we feel that this studymayprovide a valu-

able resource for the development and validation of bioinformatic

tools and pipelines integrating disparate data types.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact

Michael P. Snyder (mpsnyder@stanford.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Participant Recruitment and IRB Consent
Participants provided informed written consent for the study under a research study protocol approved by the Stanford University

Institutional Review Board. All participants were studied after an overnight fast at the Stanford Clinical and Translational Research

Unit (CTRU).

Participants were recruited via placement of advertisements in local newspapers and radio stations seeking ‘‘healthy volunteers’’

for a study on body weight changes and effect on metabolism. Screening in the CTRU entailed history and physical, anthropometric

measurements, and fasting blood tests for exclusions including presence of diabetes defined as fasting blood glucose > 126 mg/dL,

anemia defined as hematocrit < 30, renal disease defined as creatinine > 1.5, history of any cardiovascular, malignancy, chronic

inflammatory, psychiatric disease, and history of any bariatric surgery or liposuction.

Eligible consented subjects underwent quantification of insulin mediated glucose uptake via the modified insulin suppression test

as previously described and validated (Greenfield et al., 1981; Pei et al., 1994; Shen et al., 1970). Briefly, following an overnight fast,

subjects were infused for 180 minutes with octreotide (0.27 mg/m2 min), insulin (25 mU/m2 min), and glucose (240 mg/m2 min). Blood

was drawn at 10-minute intervals from 150 to 180 minutes of the infusion to measure plasma glucose (oximetric method) and insulin

(radioimmunoassay) concentrations: the mean of these four values comprised the steady-state plasma glucose (SSPG) and insulin

concentrations for each individual. At steady state, insulin concentrations (65 uU/mL) are similar in all subjects and the SSPG

provides a direct measure of the relative ability of insulin to dispose of a glucose load: the higher the SSPG concentration, the

more insulin-resistant the individual. While the SSPG is distributed continuously, for the purpose of this study, we defined IS as

SSPG<120 mg/dL and IR as SSPG>150 (Yeni-Komshian et al., 2000), largely to provide separation between the two groups. Individ-

uals with SSPG between 120 and 150 were excluded.

Subjects were then placed on a controlled weight gain diet for 30 days by adding an average of 880 calories/day in addition to their

usual daily intake as previously described (McLaughlin et al., 2016). Exact caloric excess, administered by research dietitian in the

form of snacks/beverages, with fixed macronutrient composition of 50% carbohydrate , 35% fat (<7% saturated), 15% protein, was
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calculated individually using the Harris Benedict Equation (Harris and Benedict, 1918) for each subject to attain weight gain of 0.8 kg

per week (goal of 3.2 kg total). Subjects were not allowed to change their physical activity or change medications during the study.

Weekly visits with study dietitian for weight checks, return of food diary, dispensation of snacks, and caloric adjustment if needed,

ensured compliance. After weight gain for 28 days, subjects underwent 7 days of weight maintenance with eucaloric diet after which

they were resampled (T2) to measure effect of increased body weight rather than caloric excess per se. subjects then underwent

supervised weight loss for 6-9 weeks (average 60 days) such that they returned to their baseline weight. A three-week range was

given to ensure all subjects could return to baseline weight. One subject was unable to return to baseline weight due to lack of interest

or concern about the higher weight, and several highly motivated individuals lost weight to below baseline.

For validation data obtained from a separate cohort conducted in Sweden, subjects were recruited by newspaper advertisements

or by having participated in other studies in the laboratory. Inclusion criteria were general good health and no chronic medication.

After initial careful phenotyping, including euglycemic clamps to measure degree of insulin sensitivity, 15 male individuals were

placed on a hypercaloric diet aimed to increase their body weights by around 8% over a period of 6-8 wks. Phenotyping was

then repeated after the weight gain and the volunteers were then helped by nutritionists and exercise plans to recover initial body

weights.

Inclusion criteria were male sex, healthy and in general good health. Participants underwent clinical, radiological andmetabolomic

evaluation before and after a controlled weight gain of about 8% through a hypercaloric diet based on diet recall of each individual by

a nutritionist. The 8% weight increase required about 6-8 weeks on the hypercaloric diet. Unbiased metabolomics was performed

before and after the weight gain (Metabolon Inc.).

Lifestyle factors were evaluated through a questionnaire filled out at the laboratory. Body weight, height, waist and hip circumfer-

ences were recorded and BMI was calculated. The proportions of body fat and lean body mass were determined using bioelectrical

impedance (single frequency, 50 kHz; Animeter, HTS, Odense, Denmark). Blood pressure was measured in a sitting position after a

five minutes rest with a mercury sphygmomanometer.

To evaluate glucose tolerance status, fasting blood samples were drawn after 12 hours of fasting and were followed by an oral

glucose tolerance test (OGTT) (75 g glucose orally). Samples for measurement of plasma glucose and serum insulin were drawn after

0, 30, 60 and 120 minutes.

At a separate examination and after 12 hours of fasting, an intravenous glucose tolerance test (IVGTT) was performed to determine

the first and second phases of insulin secretion. A bolus of glucose (300mg/kg in a 50%solution) was givenwithin 30 seconds into the

antecubital vein. Samples for the measurement of plasma glucose and insulin (arterialised venous blood) were drawn at -5, 0, 2, 4, 6,

8, 10, 20, 30, 40, 50 and 60 minutes. The acute and the late insulin responses, i.e. incremental area under the insulin curve,

(AIR, 0-10 minutes; LIR, 10-60 minutes) were calculated using the trapezoidal method.

Fasting plasma insulin and fasting plasma glucose from the OGTT were used to calculate a HOMA-IR index using the formula

HOMA-IR = (fasting plasma glucose x fasting plasma insulin) / 22.5 (Matthews et al., 1985). The HOMA-IR value was used to assess

insulin sensitivity in this study.

Plasma glucose was measured using standard laboratory methods (Department of Chemistry, Sahlgrenska University Hospital,

Gothenburg, Sweden). Plasma insulin was measured at the University of T€ubingen, Germany, by micro-particle enzyme immuno-

assay (Abbott Laboratories, Tokyo, Japan).

This latter study was approved by the local Ethical Committees at the Sahlgrenska Academy at the University of Gothenburg and

was performed in agreement with the Declaration of Helsinki.

METHOD DETAILS

Sample Preparation - Blood Samples
Blood was drawn from overnight-fasted participants at the indicated timepoints at the Stanford Clinical Translational Research Unit

(CTRU). An aliquot of blood was incubated at room temperature to coagulate; clots were subsequently pelleted and the serum

supernatant was pipetted off and immediately frozen at -80C. Blood from separate EDTA-tubes was immediately layered onto Ficoll

media and spun via gradient centrifugation. The top layer plasma was pipetted off, aliquoted and immediately frozen at -80C. The

PBMC layer was removed, counted via cell counter and aliquots of PBMCswere further pelleted and flash-frozen. For the subsequent

multi-omic analyses, PBMCs were thawed on ice, and subsequently lysed and processed to DNA, RNA and protein fractions via

Allprep Spin Columns (Qiagen) according to the manufacturer’s instructions and using the Qiashredder lysis option. Plasma analysis

was performed on individual aliquots to prevent freeze-thaw cycles.

Sample Preparation - Stool
Stool sampling was conducted according to the HumanMicrobiome Project – CoreMicrobiome Sampling Protocol A (hmpdacc.org).

Once samples were received in the lab, they were subsequently stored in -80C until further processing.

Exome Sequencing
Briefly, DNA was isolated from blood via Gentra Puregene Kits (Qiagen) according to the manufacturer’s instructions. Exome

sequencing was performed in a CLIA- and CAP-accredited facility utilizing the ACE Clinical Exome Test (Personalis) (Patwardhan

et al., 2015). Variant calling was performed using an in-house developed automated pipeline (HugeSeq) (Lam et al., 2012).
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RNA-Seq
The transcriptome was evaluated by RNA sequencing (RNA-seq) (Wang et al., 2009) from bulk PBMCs. Ribosomal RNA was first

removed and total RNA from each sample was converted into a cDNA sequencing library (using Illumina TruSeq Stranded Total

RNA Gold kits according to the manufacturer’s instructions). Each resultant library was quantified via Agilent Bioanalyzer as well

as Qubit Fluorometric quantification (ThermoFisher) using a dsDNA high sensitivity kit. Quantified, barcoded libraries were normal-

ized andmixed at equimolar concentrations into amultiplexed sequencing library. The pooled library was quantified and loaded onto

a single lane of an Illumina flowcell and sequenced on a HiSeq 2500.

Microbiome Sequencing -16S
DNA extractions were performed following Human Microbiome Project – Core Microbiome Sampling Protocol A (HMP Protocol

# 07-001, v12.0). Metagenomic DNA was isolated in a clean hood using the MOBIO PowerSoil DNA Extraction kit, with

added proteinase K, followed by lysozyme and staphylolysin treatment. These digestion steps greatly improved the extraction

of many difficult- to-lyse Gram-positive species.

For 16S (Bacterial) rRNA gene amplification, the V1 through V3 hyper-variable regions (V1-V3) of 16Swere amplified from themeta-

genomic DNA using primers 27F and 534R (27F:5’-AGAGTTTGATCCTGGCTCAG-3’ and 534R: 5’- ATTACCGCGGCTGCTGG-3’).

The oligonucleotides containing the 16S primer sequences also contain an adaptor sequence for the Illumina sequencing platform.

A barcode sequence unique to each sample is embedded within each of the forward and reverse oligonucleotides used to create the

amplicons (dual tags). The uniquely barcoded amplicons from multiple samples were pooled and sequenced on the Illumina MiSeq

sequencing platform using a V3 2x300 sequencing protocol.

Microbiome Sequencing – Metagenome Shotgun
DNA extracted from stools were also subject to whole genome metagenomic shotgun sequencing (mWGS). The libraries were pre-

pared following a standard protocol from Illumina, and at least 1Gb of 150 bp pair-end (PE) reads per sample were sequenced on an

Illumina HiSeq or MiSeq instrument.

Untargeted Metabolomics by LC-MS
Plasma samples were prepared and analyzed as previously described (Contrepois et al., 2015). Briefly, 400 ml of a solvent mixture

of 1:1:1 acetone:acetonitrile:methanol was added to 100 ml of plasma, mixed for 15 min at 4�C and incubated for 2h at -20�C to

allow protein precipitation. The solvent mixture contained seven internal standards to confirm extraction efficiency and evaluate

LC-MS instrument performance. The supernatant was collected after centrifugation at 10,000 rpm for 10 min at 4�C and evapo-

rated to dryness under nitrogen. The dry extracts were then reconstituted with 100 ml of a mixture of 1:1 methanol:water before

analysis.

The metabolite extracts were analyzed in HILIC ESI(+) MS, HILIC ESI(-) MS, RPLC ESI(+) MS, RPLC ESI(-) MS using a Thermo

Ultimate 3000 RSLC system coupled with a Thermo Q Exactive plus mass spectrometer. The Q Exactive plus was equipped with

a HESI-II probe and operated in full MS scanmode. MS/MS data were acquired on quality control samples (QCs = equimolar mixture

of all the samples comprised in the study). The source conditions were as follows: Spray Voltage = 3.4 kV (both ESI pos. and neg.),

Vaporizer = 310�C, Capillary temp. = 375�C, S-Lens RF level = 55.0, Sheath Gas = 45 for HILIC and 55 for RPLC, Auxiliary gas = 8 for

HILIC and 15 for RPLC, Sweep Gas = 0. The acquisition settings were as follow: AGC (MS) = 3e6, AGC (MS2) = 1e5, Injection Time

(MS) = 200 ms, Injection Time (MS2) = 50 ms, Mass Range = 70-1000 Da, Resolution MS = 70,000 (FWHM at m/z 200), Resolution

MS2 = 35,000 (FWHM at m/z 200), Top-10 experiments, Isolation Window = 1.0 Da, Dynamic Exclusion = 14 for HILIC and 8s for

RPLC, Normalized Collision Energy (NCE) = 25 and 35 for HILIC, 25 and 50 for RPLC. Between each batch, the source and the trans-

fer capillary were cleaned and the mass spectrometer calibrated using an infusion of Pierce LTQ Velos ESI Positive Ion Calibration

Solution or Pierce ESI Negative Ion Calibration Solution.

HILIC experiments were performed using a ZIC-HILIC column 2.1 x 100 mm, 3.5 mm, 200Å (Merck Millipore) and mobile phase

solvents consisting of 10 mM ammonium acetate in 50/50 acetonitrile/water (A) and 10 mM ammonium acetate in 95/5 aceto-

nitrile/water (B) (Contrepois et al., 2015). Metabolites were eluted from the columns at 0.5 mL/min using a 1–99% phase A

gradient over 15 min. Before each injection, the column was equilibrated for 5 min with 1% phase A. Twelve QCs were injected

at the beginning of the batch to equilibrate and condition the LC-MS system. The oven temperature was set at 40 �C, and the

injection volume was 5 mL. RPLC experiments were performed using a Zorbax SBaq column 2.1 x 50 mm, 1.7 mm, 100Å (Agilent

Technologies) and mobile phase solvents consisting of 0.06% acetic acid in water (A) and 0.06% acetic acid in methanol (B).

Metabolites were eluted from the columns at 0.6 mL/min using a 1–99% phase B gradient over 9 min. Before each injection,

the column was equilibrated for 5 min with 1% phase B. Five QCs were injected at the beginning of the batch to equilibrate

and condition the LC-MS system. The oven temperature was set at 60�C, and the injection volume was 5 mL. Metabolite iden-

tities for significant metabolites were confirmed by validation standards if available (standards for tetrahydrocortisol glucuronide

were not available).

Additional Metabolomics Assays
For the independent cohort conducted in Sweden. non-targeted metabolomic profiling analysis was performed by Metabolon Inc.

Samples were prepared using the automated MicroLab STAR� system from Hamilton Company. A recovery standard was added
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prior to the first step in the extraction process for quality control purposes. Sample preparation was conducted using aqueous

methanol extraction process to remove the protein fraction while allowing maximum recovery of small molecules. The resulting

extract was divided into four fractions: one for analysis by UPLC/MS/MS (positive mode), one for UPLC/MS/MS (negative mode),

one for GC/MS, and one for backup. Samples were dried under nitrogen using a TurboVap� (Zymark) and resolubilized for the appro-

priate instrument either UPLC/MS/MS or GC/MS.

Untargeted Proteomics by LC-MS
Ethanol-precipitated protein pellets from PBMC samples were resuspended in 110 uL of 100 mM ammonium bicarbonate (ABC) and

0.1% Octyl b-D-glucopyranoside (OG) and subjected to a sonicator probe for efficient resuspension. The Thermo Scientific Pierce

Micro BCA Protein Assay Kit was then used to quantify protein levels. 1 mg of each resuspended protein sample then underwent

denaturation in 900 uL of 8M Urea, 100mM ABC and 0.1% OG. The samples were once again sonicated with a sonicator probe.

Each sample then underwent chemical reduction with 10 uL of 1Mdithiolthreitol (DTT) and incubated at room temperature for 2 hours.

20 uL of 1M iodoacetamide (IAA) was then added in each sample for the alkylation step. The alkylation reactions were left to incubate

in the dark at room temperature for 1 hour.

After fractionation, the unbound fraction from each sample was concentrated and buffer exchanged into 100 uL of 100 mM

tetraethylammonium bromide (TEAB) using the Amicon Ultra-15 followed by the Amicon Ultra-4 centrifugal filter unit.

Each sample was digested with 40 ng of Promega Sequencing Grade Trypsin in 100 mM TEAB solution. Samples were then

labeled with 10-plex Thermo Scientific� Tandem Mass Tag� (TMT) Reagents, using instructions provided by the manufacturer.

All the samples were divided into groups of nine and pooled together with a master reference sample to create 10-plexed

samples.

Each TMT 10-plex sample underwent shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the LTQ

Orbitrap Elite� Hybrid Ion Trap-Orbitrap Mass Spectrometer coupled with a Dionex RSLC 3000 Nano-HPLC. 15 mL of each

sample was loaded onto a C18 trap column at 5 mL/min for 10 minutes. Peptides were then separated by a 25 cm C18 analytical

column (Picofrit 75 mm ID, New Objective, packed in-house with MagicC18 AQ resin). Tryptic peptides were separated using a

multi-step gradient at a flow rate of 0.6 mL/minute in which Buffer B (0.1% FA in acetonitrile) was increased from 0% (100% Buffer

A, 0.1% FA in water) to 85% over 120 minutes. The column was re-equilibrated for 20 minutes at 98% Buffer A. Blank runs were

performed between each sample. Samples were then ionized by electrospray ionization set to 2.25 kV with a capillary temperature

of 200 �C. An initial MS1 scan over an m/z range of 400-1800 was performed, followed by 10 data-dependent higher energy

collision-induced dissociation fragmentation (35 eV) events on the 10 most intense +2 or +3 ions from the MS1 spectrum over

an acquisition time of 140 minutes.

Plasma Protein Profiling Using Proseek Multiplex
Proteins were quantified from plasma at all time points using multiplex proximity extension assays (Proseek Multiplex, Olink Bio-

sciences) according to the manufacturer’s instructions. In this study three panels, cardiovascular disease (CVD I 96x96), inflamma-

tion (Inflammation I 96x96) and oncology (Oncology I 96x96) were applied, and a total of 276 proteins were measured in the plasma

samples. Briefly, in each well of 96-well plate 3 mL incubation solution containing with two incubation probes, protein target-specific

antibodies conjugated with distinctive single-strand oligonucleotides, was mixed with 1 mL plasma sample. The mixture was

incubated overnight at 4 �C , and then added with 96 mL extension solution containing extension enzyme and PCR reagents.

The plate was then placed in a thermal cycler for the extension (50 �C, 20 min ) and preamplification ( 95 �C 30 min, 17 cycles

of 95 �C 30 sec, 54 �C 1min and 60 �C 1min). A 96.96 dynamic array IFC (Fluidigm) was prepared and primed according to the man-

ufacturer’s instructions, 2.8 mL of the extension mix was mixed with 7.2 mL detection solution in a new 96-well plate. Next, 5 mL of the

mix was loaded to the primed 96.96 Dynamic Array IFC ( the right inlets), and 5 mL of each the 96 primer pairs was loaded to the other

side of the 96.96 Dynamic Array IFC. The program for protein expression was run on a Fluidigm Biomark using the provided Proseek

program (Olink BioSciences).

Luminex Assays
Levels of circulating cytokines in the blood were measured using a 63-plex Luminex antibody-conjugated bead capture assay

(Affymetrix) that has been extensively characterized and benchmarked by the Stanford Human Immune Monitoring Center

(HIMC). This assay was performed by the Human Immune Monitoring Center at Stanford University. Human 63-plex kits were

purchased from eBiosciences/Affymetrix and used according to the manufacturer’s recommendations with modifications as

described below. Briefly, beads were added to a 96 well plate and washed using a Biotek ELx405 washer. Samples were added

to the plate containing the mixed antibody-linked beads and incubated at room temperature for 1 hour followed by overnight incu-

bation at 4 �C with shaking. Cold and room temperature incubation steps were performed on an orbital shaker at 500-600 rpm.

Following the overnight incubation plates were washed using a Biotek ELx405 washer and then biotinylated detection antibody

added for 75 minutes at room temperature with shaking. The plate was washed as above and streptavidin-PE was added.

After incubation for 30 minutes at room temperature a wash was performed as above and reading buffer was added to the wells.

Each sample was measured in duplicate. Plates were read using a Luminex 200 instrument with a lower bound of 50 beads per

sample per cytokine. Custom assay control beads by Radix Biosolutions are added to all wells.
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STATISTICAL ANALYSES

Power and Variance Calculations
To estimate power and sample sizes, we assumed an experiment on a set of patients with two conditions, before and after. From this,

we wished to investigate the increase in power when we used paired tests vs unpaired tests. Our assumption is that there is inter-

subject variance (personalized variance) and an effect with a size and variance. Thus, the formalized tests are as follows:

1 Unpaired test

In the case of a t-test of unequal variance we have the following test statistic:

t =
X1 � X2

sD
(Equation 1)

where

s2D =
s21 + s22

N

as calculated in a standard Welch’s test and N being the number of samples in each group (assuming each group has equal number

of samples).

2 Paired test

For a paired t test, we compute the following test statistic:

t =
XD

sP

where

s2P =
s2D
n

with n being the number of paired samples necessary and sD the sample standard deviation of the difference due to the effect.

3 Power calculation

To compute the statistical power of the paired test, we compute the value of the cumulative distribution function under the alter-

native hypothesis HA for both sides:

power =Pðtn>Ta;njHAÞ+Pðtn<� Ta;njHAÞ
where tn is the computed test statistics with a population size of n and Ta,n is the critical value from the Student t-distribution

with n degrees of freedom for a given significance level a. For the power analysis, the power for the paired analysis is

computed using the sample size from our analysis. Then, for increasing values of n, the test statistic for the unpaired test is

computed until the power of the unpaired tests exceeds the power of the paired test. This value of n is then returned and reported

as minimally necessary population size to achieve the same statistical power. Note that n for the unpaired test represents the

number of subjects in one group, in the current study we had 3 groups (timepoints T1, T2 and T3) so the value is multiplied

by 3.

Random Forest and AdaBoost Classification
For these analyses, we proposed an automated prediction model based on delta metabolomics feature array which incorporates at

least 2-time subsequent timepoints of SSPGmeasurement. The delta features (D) were computed by taking the 1st order derivatives

of metabolomics predictor values of the consecutive time-points for every patient: Di(t
n) = metabolomicsi(t

n)� metabolomicsi(t
n�1),

where metabolomicsi(t
n) is the ith metabolomics predictor value at time n and metabolomicsi(t

n�1) is value at the earlier timepoint.

Using this technique, we created a ‘‘delta cohort’’ by computing the delta metabolomics feature array on the 23 patients, which gives

us a total of 38 sample timepoints with 2472 features for each timepoint. We applied Z-score normalization to standardize the feature

array to have a mean of zero and standard deviation of +/- 1.

On top of the delta cohort, we adopted two different classes of supervised machine learning method to predict the temporal

change in the SSPG value:

(i) Binary classification using ensemble learning – We labeled the samples in the delta cohort into two groups based on SSPG

increase or decrease compared to the earlier time point: (Group i) SSPG increase/SSPG(tn) R SSPG(tn�1); (Group ii)

SSPG decrease/SSPG(tx) < SSPG(tx�1). In order to propose generalizable model to discriminate the SSPG increase and

SSPGdecrease by analyzing the deltametabolomic feature array, we trained two popular ensemble learningmodels – Random
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Forest and AdaBoost. Finally, training and testing of the models were conducted using hold-out validation where 8 sample

points (20% of the total cohort) were randomly chosen for testing. We utilized python scikit learn framework to implement

the machine learning models. To handle high dimensionality of the metabolomics feature vector, the Random Forest was

trained with 50 base estimators, 100 maximum tree depths, and entropy split criterion. AdaBoost was trained using 100

base estimators and learning rate of 0.1.

(ii) DSSPG computation at time (tn) using regression – We computed Dn
SSPG as: Dn

SSPG = SSPGðtnÞ � SSPGðtn�1Þ. We created a

regression-based prediction model for computing the Dn
SSPG by analyzing delta metabolomics features. The model operates

based on ElasticNet regularized regression that combines L1 penalties of Lasso and L2 penalties of Ridge to overcome the

limitations of incorporating high dimensional features for relatively small number of samples.
RNA-Seq Data Processing and Analysis
For RNA-seq data analysis, raw transcripts were processed for adapter removal and low-quality base trimming using the Trimmo-

matic algorithm (Bolger et al., 2014). Depending on the analysis, reads were either mapped to personal genomes constructed from

exome vcfs or the hg19 human reference genome using the STAR aligner (Dobin et al., 2012). Read counts after trimming and quality

filtering and the fraction of features that were successfully mapped per sample are listed in Table S5. Counts were assessed from

STAR-aligned sam files for all ENSEMBL transcripts using the featureCounts function in the Subread package (Liao et al., 2014).

Raw feature counts were normalized via the edgeR package and differentially expressed genes were calculated via negative-

binomial exact test with false-discovery rate correction (Robinson et al., 2010).

Unsupervised co-expression module discovery was performed using weighted gene co-expression network analysis (WGCNA)

(Zhang and Horvath, 2005). The scale-free topology overlap matrix was computed using the ‘‘signed’’ parameter and using an

empirically-defined soft threshold power of 12, and co-expressing modules were defined from this network. For each identified

module of co-expression biomolecules, representative eigengenes were calculated (WGCNA function ‘moduleEigengenes’) and

correlations between module eigengenes and clinical parameters were calculated (corresponding p-values were adjusted for

MHT using R function p.adjust (using the Benjamini-Hochberg setting).

Microbiome
The 16S rRNA gene is about 1.5kb, and includes nine variable regions that provide much of the sequence distinction between

different taxa. Variable regions one through three are generally sufficient to identify taxa down to the genus level, and sometimes

to the species level. Illumina’s software handles initial processing of all the raw sequencing data. One mismatch in primer and

zero mismatch in barcodes were applied to assign read pairs to the appropriate sample within a pool of samples. Barcode and

primers were removed from the reads. Reads were further processed by removing the sequences with low quality (average qual

<35) and ambiguous bases (N’s). Chimeric amplicons were removed using UChime (Edgar et al., 2011), and amplicon sequences

were clustered and Operational Taxonomic Units (OTU) picking by Usearch (Edgar, 2010) against GreenGenes database

(May 2013 version ) and final taxonomic assignment were performed using RDP-classifier (Wang et al., 2007). All details were

executed using QIIME (Caporaso et al., 2010) with custom scripts. Alignment results and read counts for microbiome samples

are listed in Table S6.

For metagenomic data analysis, downstream processing of the mWGS reads included a) identification and masking human

reads (using NCBI’s BMTagger, ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger); b) removal of duplicated reads which are

artifacts of sequencing process, c) trimming low quality bases and d) low- complexity screening (b-d were done through PRINSEQ

(Schmieder and Edwards, 2011)). Reads trimmed to less than 60bp were removed and the remaining high quality reads were

analyzed using MetaPhlAn2 (Segata et al., 2012; Truong et al., 2015) for strain-level taxonomic classification and HUMAnN2

(Abubucker et al., 2012) (http://huttenhower.sph.harvard.edu/humann2, v6.0) for functional reconstruction on the gene and

pathway levels.

Abundance tables (taxonomy, genes and pathways) obtained above were further analyzed in R (version 3.0.1) by custom scripts.

Specifically, pairwise comparisons on the abundances between IR and IS individuals and between timepoints were performed using

Wilcoxon rank-sum test, and Spearman’s rank correlation coefficients were calculated for pairwise associations. Also, in the corre-

lation analysis, a linear rank based regression model was employed to determine if trends were different between IR and IS groups

(Rfit R package). As both 16S rRNA and whole genome shotgun sequencing (mWGS) methods have individual limitations (Poretsky

et al., 2014; Shah et al., 2011), results were shown only for pairwise comparisons that were detected and significant by bothmethods.

Among the intra- and inter-omic associations, mWGS data were used for species level analysis, and 16S for analysis on the phylum

and genus levels to obtain the most accurate presentations.

Metabolomics
Samples for metabolomics were prepared and analyzed randomly. Data were analyzed using an in-house data analysis pipeline

written in R (version 3.0.1). Metabolite features (characterized by a unique mass/charge ratio and retention time) were extracted,

aligned and quantified with the ‘‘XCMS’’ package (version 1.39.4) after conversion of .RAW files to .mzXML using the ProteoWizard

MS convert tool. Grouping and annotation were performed with the ‘‘CAMERA’’ package (version 1.16.0). Features from blanks were

discarded. The signal drift with time was corrected by applying LOESS (Local Regression) normalization were each feature was
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independently corrected by fitting a LOESS curve to the MS signal measured in QCs injected repetitively along the batch. After

normalization, samples from the same individual tend to cluster together (Figure S6). Metabolic features were putatively identified

by matching the accurate masses (± 5 ppm) against a local database containing +60,000 entries (compilation of various public

databases such as HMDB, FoodB, DrugBank). Discriminant metabolites were validated manually by comparing the retention time

and/or fragmentation spectrum to a local or public spectral libraries. Pathway analysis was performed using the metabolites with

a HMDB accession number in the web tool Metaboanalyst (Xia and Wishart, 2016).

Untargeted Proteomics
Acquired data was converted and searched from the .raw files into peptide spectral matches (PSMs) using the Proteome Discov-

erer� Software against the 2015 Human Reference Proteome and known contaminants from UniProt. The identifiers from Proteome

Discoverer were mapped to Official Gene Symbols. Non-unique and modified peptides were filtered out before selection of top

intensity unique PSMs in the reference channel for each 10-plex run. Ratios were then obtained by dividing the 9 sample channels

with the reference channel and median centered. The intensities were then log2 transformed and then rolled into protein groups by

taking the median log2 ratio of unique peptide groups in each run.

Multivariate Data Analysis
Datamatrices from all omics (transcriptomics, MS-based proteomics, metabolomics, microbiome 16S data andWGS, ProseekOlink

and Luminex cytokines) were merged into a common format. All data (excluding RNA-seq for reasons discussed below) was

log-transformed and then a linear model was fitted for each individual analyte where the significance of the factors in the model

were evaluated using ANOVA. For transcriptome, we used edgeR, a Bioconductor package specifically designed for modeling count

data such as RNA-seq, and for improved variance estimation for overdispersed count data. We fit generalized linear models (GLMs)

and performed ANOVA-like tests for main effects and interactions using the glmFit and glmLRT functions from the edgeR package

(Robinson et al., 2010). The most basic model was used to identify analytes that differ between the two groups (insulin resistant and

insulin sensitive):

log2Int � sample_group + sample_timepoint + sample_group:sample_timepoint

Note that this model compares average differences between groups. In order to represent the experimental conditions accurately,

a factor for the timepoint and an interaction termbetween the groups and timepoints was introducedwhich allows the IR and IS group

to be different at each timepoint, thus allowing us to capture when the two groups react differently to the treatment. Note that this

model was only used to estimate group differences, except for transcriptome, where we used it to estimate timepoint differences

as well.

In order to estimate timepoint differences accurately, we used amodel that allows each subject to have a different baseline level for

each analyte:

log2Int � patient_id + sample_timepoint + sample_group:sample_timepoint

By correcting for a personalized baseline, the model allows us to capture common differences between timepoints with higher

power as people may start out at different baseline levels but move all in the same direction during perturbation - which would be

hard to capture using averages only. It contains a term for the patient_id which estimates an average analyte level for each patient.

It contains a term for the sample_timepoint which means the model estimates a different offset for each timepoint and it contains an

interaction term which means that the model allows the IR and IS group have different relative analyte levels at each timepoint, thus

allowing us to capture when the two groups react differently to the treatment. Note that by estimating a different offset for each

patient, it is not possible any more to detect differences between the IR and IS groups which is why we used the first model for

this purpose.

Finally, we speculated that using BMI as a continuous predictor would potentially be more informative than taking sampling time-

points which do not capture the amount of weight gained or lost by individuals. We indeed see that (Figure S xxx delta_BMI.pdf)

weight gain was not consistent across all individuals, even though all individuals gained weight and subsequently lost weight.

By relating the analyte levels directly to the amount of weight gained, we wanted to obtain quantitative insights into changes asso-

ciated with weight gain and loss:

log2Int � patient_id + delta_BMI + sample_group:delta_BMI

For transcriptome data, we used the model:

log2Int � sample_group + delta_BMI + sample_group:delta_BMI

After model fitting and ANOVA analysis, the resulting p-values were corrected using the Benjamini-Hochberg method and a cutoff

of 0.2 was used for all data. The reduction in variance by each factor was used for the variance decomposition analysis.

For longitudinal pattern recognition analysis across the weight-gain/weight-loss perturbation we used the mfuzz soft-clustering

algorithm (Futschik and Carlisle, 2005; Kumar and Futschik, 2007). The mean expression/abundance was calculated for all

biomolecules comprising the transcriptome, metabolome and proteome at each timepoint, and these values were subsequently

standardized to z-scores (mfuzz::standardise). Soft clustering was run with fuzzifier parameter set to m=2.5. Cluster members at

a low-stringency acore filter of 0.2were used in subsequent enrichment analyses. Pathway enrichment analysis was conducted using

multiple tools: DAVID for transcripts and proteins (Huang da et al., 2009b), and Metaboanalyst 3.0 for metabolites and transcripts

(Xia and Wishart, 2016).
Cell Systems 6, 157–170.e1–e8, February 28, 2018 e7



DATA AND SOFTWARE AVAILABILITY

Raw data included in this study are hosted on the NIH Human Microbiome 2 project site (http://www.hmp2.org). Data pertaining to

this study are classified under the study ID ‘‘T2D’’ and datafiles can be retrieved by querying by subject ID and timepoint (Visit 1-4).

Subject IDs included in this study are: ZJTKAE3, ZK112BX, ZK4CK8Y, ZKFV71L, ZKVR426, ZL63I8R, ZL9BTWF, ZLGD9M0,

ZLPRB8E, ZLPZS0H, ZLTUJTN, ZM7JY3G, ZMBH10Z, ZMBVNFM, ZVGW5FI, ZVM4N7A, ZVTCAK9, ZW61YGW, ZWCZHHY,

ZWFDEY0, ZWHMV5E, ZY1ZKJY, ZY7IW45. As LC-MS raw data consist of multiple samples isobarically tagged, they have been

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD007859.
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