
Neural Networks 94 (2017) 34–45

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Piecewise convexity of artificial neural networks
Blaine Rister a,*, Daniel L. Rubin b

a Stanford University, Department of Electrical Engineering, 1201 Welch Rd, Stanford, CA, 94305, USA
b Stanford University, Department of Radiology (Biomedical Informatics Research), 1201 Welch Rd Stanford, CA, 94305, USA

a r t i c l e i n f o

Article history:
Received 28 December 2016
Received in revised form 21 June 2017
Accepted 22 June 2017
Available online 3 July 2017

Keywords:
Convex analysis
Gradient descent
Optimization
Machine learning
Neural networks
Convergence

a b s t r a c t

Although artificial neural networks have shown great promise in applications including computer vision
and speech recognition, there remains considerable practical and theoretical difficulty in optimizing
their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these
non-convex functions remains poorly understood. In this work we offer some theoretical guarantees
for networks with piecewise affine activation functions, which have in recent years become the norm.
We prove three main results. First, that the network is piecewise convex as a function of the input
data. Second, that the network, considered as a function of the parameters in a single layer, all others
held constant, is again piecewise convex. Third, that the network as a function of all its parameters is
piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and
stationary points of the training objective, showing that theyminimize the objective on certain subsets of
the parameter space. We then analyze the performance of two optimization algorithms on multi-convex
problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems.
We prove necessary convergence conditions for the first algorithm and both necessary and sufficient
conditions for the second, after introducing regularization to the objective. Finally, we remark on the
remaining difficulty of the global optimization problem. Under the squared error objective, we show that
by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in
objective value and parameter space.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks are currently considered the state of
the art in applications ranging from image classification, to speech
recognition and evenmachine translation. However, little is under-
stood about the process by which they are trained for supervised
learning tasks. It has been shown that neural networks and similar
models can approximate a wide variety of functions, and various
bounds have been derived for the approximation error in terms of
the number of computational units (Barron, 1993). Results have
been shown for a wide variety of network types, in many different
function spaces (Gnecco & Sanguineti, 2008; Kainen & Kůrkovà,
2009; Makovoz, 1998). However, given a target function and a
number of computational units, these theorems show only that
there exists a neural network approximating the function within
a certain error. Although they may reduce the dimensionality of
the search space, these results do not imply that we can efficiently
find the specific network.

* Corresponding author.
E-mail addresses: blaine@stanford.edu (B. Rister), dlrubin@stanford.edu

(D.L. Rubin).

In practice a network architecture is parameterized by a vec-
tor of real numbers, so that training amounts to optimizing the
parameters, an active area of both practical and theoretical re-
search. Despite considerable sensitivity to initialization and choice
of hyperparameters, neural networks often achieve compelling
results after optimization by gradient descent methods. Due to the
nonconvexity andmassive parameter space of these functions, it is
poorly understood how these sub-optimal methods have proven
so successful. Indeed, training a certain kind of neural network
is known to be NP-Complete, making it difficult to provide any
worst-case guarantees (Blum & Rivest, 1992). Much recent work
has attempted to reconcile these differences between theory and
practice (Kawaguchi, 2016; Soudry & Carmon, 2016).

This article attempts a modest step towards understanding
the dynamics of the training procedure. We establish three main
convexity results for a certain class of neural networks, which is
currently the state of the art. First, that the objective is piecewise
convex as a function of the input data, with parameters fixed,
which corresponds to the behavior at test time. Second, that the
objective is again piecewise convex as a function of the parameters
of a single layer, with the input data and all other parameters held
constant. Third, that the training objective function, for which all
parameters are variable but the input data is fixed, is piecewise

http://dx.doi.org/10.1016/j.neunet.2017.06.009
0893-6080/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2017.06.009
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2017.06.009&domain=pdf
mailto:blaine@stanford.edu
mailto:dlrubin@stanford.edu
http://dx.doi.org/10.1016/j.neunet.2017.06.009

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 35

multi-convex. That is, it is a continuous function which can be
represented by a finite number of multi-convex functions, each
active on amulti-convex parameter set. This generalizes the notion
of biconvexity found in the optimization literature to piecewise
functions and arbitrary index sets (Gorski, Pfeuffer, & Klamroth,
2007). To prove these results, we require two main restrictions on
the definition of a neural network: that its layers are piecewise
affine functions, and that its objective function is convex and
continuously differentiable. Our definition includesmany contem-
porary use cases, such as least squares or logistic regression on
a convolutional neural network with rectified linear unit (ReLU)
activation functions and either max- or mean-pooling. In recent
years these networks have mostly supplanted the classic sigmoid
type, except in the case of recurrent networks (Glorot, Bordes, &
Bengio, 2011). We make no assumptions about the training data,
so our results apply to the current state of the art in many practical
scenarios.

Piecewise multi-convexity allows us to characterize the ex-
trema of the training objective. As in the case of biconvex functions,
stationary points and local minima are guaranteed optimality on
larger sets than we would have for general smooth functions.
Specifically, these points are partial minima when restricted to
the relevant piece. That is, they are points for which the training
objective cannot be decreased without simultaneously varying
the parameters across multiple layers, or crossing the boundary
into a different piece of the function. Unlike global minima, we
show that partial minima are reliably found by the optimization
algorithms used in current practice.

Finally, we provide some guarantees for solving general multi-
convex optimization problems by various algorithms.We first ana-
lyze gradient descent, showing that every limit point is a piecewise
partial minimum, excepting some boundary conditions. To prove
stronger results, we define a different optimization procedure
separating each parameter update into a number of convex sub-
problems. For this procedure, we show both necessary and suffi-
cient conditions for convergence to a piecewise partial minimum.
Interestingly, adding regularization to the training objective is all
that is needed to prove sufficient conditions. Similar results have
been independently established for many kinds of optimization
problems, including bilinear and biconvex optimization, and in
machine learning the special case of linear autoencoders (Baldi
and Lu, 2012; Gorski et al., 2007; Wendell and Hurter, 1976). Our
analysis extends existing results on alternating convex optimiza-
tion to the case of arbitrary index sets, and general multi-convex
point sets, which is needed to analyze neural networks. We admit
biconvex problems, and therefore linear autoencoders, as a special
case.

Despite these results, we find that it is difficult to pass from
partial to global optimality. Unlike the encouraging case of linear
autoencoders, we show that a single rectifier neuron, under the
squared error objective, admits arbitrarily poor local minima. This
suggests that much work remains to be done in understanding
how sub-optimalmethods can succeedwith neural networks. Still,
piecewise multi-convex functions are in some senses easier to
minimize than the general class of smooth functions, for which
none of our previous guarantees can be made. We hope that our
characterization of neural networks could contribute to a better
understanding of these important machine learning systems.

This article is divided into two main parts: Sections 2–4 define
piecewise convexity and multi-convexity, and show that neural
networks belong to this more general class of functions, while Sec-
tions 5–7 discuss minimization of piecewise multi-convex func-
tions. More specifically, Section 2 defines the basic model of a
neural network, showing that the testing function is piecewise
convex. Section 3 extends these results to the training function,
restricted to the parameters of a single layer. Section 4 considers

the training function in full generality, showing that it is piece-
wise multi-convex as a function of all its parameters. Section 5
establishes necessary convergence conditions for gradient descent.
Section 6 establishes stronger necessary and sufficient conditions
for iterated convex optimization. Finally, Section 7 illustrates the
difficulty of the global optimization problem for neural networks.

2. Neural networks

The field of artificial neural networks contains such a wide
variety of models that it seems impossible for any one theory to
apply to all of them. However, closer inspection reveals that most
of these models are composed of just a few basic units, stacked in
layers of arbitrary width and depth. More specifically, the state of
the art consists of a handful of basic units such as rectified linear
unit (ReLU), pooling and embedding layers. ReLU layers have the
form g(x) = max(0, Ax + b) where x ∈ Rn is the input data, A ∈

Rm×n and b ∈ Rm are the parameters, and the maximum is taken
pointwise. In this notation,m is the number of neurons in the layer.
Pooling layers partition the input variables into subsets, taking
either the maximum or mean of each subset. Embedding layers
have the form g(x) = Ax, with x and A the same as before.We show
that these layers are all examples of piecewise affine functions,
allowing us to establish results applying to any of the wide variety
of networks composed of them. We ultimately conclude that any
such network, regardless of the number of layers, is a piecewise
multiconvex function, a term which will be defined later.

This work models neural networks using continuous piecewise
convex functions. These are functions for which the domain can be
divided into a finite number of closed convex sets, called pieces,
such that the function is convex when restricted to each piece.
Continuous piecewise affine functions are defined analogously,
where the restriction to each piece is an affine function. The reader
is encouraged to review Appendix A, which provides technical
definitions for these terms, and proves some basic algebraic results
for piecewise convex and piecewise affine functions, which will
be used in the remainder of the text. Sections 2–4 define a neural
network in terms of training and testing functions, establishing
convexity properties of these functions. The remainder of thework
discusses the consequences of these properties for parameter opti-
mization. Optimization results are proven for piecewise multicon-
vex functions, of which neural networks are a special case.

In supervised learning, a neural network is represented by a pair
of closely-related functions, one for training and one for inference.
For example, consider the familiar equation f = (ax + b − y)2
with parameters (a, b) and data (x, y) inR2. During testing, we hold
(a, b) constant, and consider f as a function of the data (x, y). During
training, we hold (x, y) constant and consider f as a function of the
parameters (a, b). This section concerns the testing function of a
neural network, which is a map from a pair (x, y) ∈ Rn+m to an
objective value in R, where x is the input data, and y is its label.
Since we are ultimately interested in training, where the labels
are fixed, we will assume y is constant and describe the testing
function only in terms of x, in which case the function is piecewise
convex. Sections 3 and 4 establish similar results for the training
function, which holds x constant and instead varies the network
parameters. When the function can be inferred from the context,
wewill simply refer to the testing or training function as the neural
network. First we define the testing function explicitly.

In this work, we define a neural network as a function f :

Rn
→ R having the form f = h ◦ gN ◦ gN−1 ◦ · · · ◦ g1, where

h : Rm
→ R is a convex continuously differentiable objective (or

loss) function, and g1, g2, . . . , gN are continuous piecewise affine
functions constituting the N layers. This definition is not as restric-
tive as it may seem upon first glance. For example, it is easily ver-
ified that ReLU layers are continuous piecewise affine, as we have

36 B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45

Fig. 1. The two-layer neural network of Eq. (1), plotted as a function of the input
data, with each piece shaded in a different color. Although f is not convex on R2 , it
is convex on each piece, and each piece is a convex set. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

g(x) = max(0, Ax + b) where the maximum is taken pointwise,
andmaxima of affine functions are piecewise affine (Ovchinnikov,
2002). This includes the convolutional variant, in which A is com-
posed of Toeplitz matrices. Similarly, max pooling is continuous
piecewise linear, while mean pooling is simply linear. Linear em-
bedding layers are of course linear functions. Furthermore, many
of the objective functions commonly seen in machine learning are
convex and continuously differentiable, as in least squares and
logistic regression. Thus this seemingly restrictive class of neural
networks actually encompasses the current state of the art.

By Theorem A.5, the composition of all layers g = gN ◦

gN−1 ◦ · · · ◦g1 is continuous piecewise affine. Therefore, the testing
function of a neural network is ultimately the composition of a
convex functionwith a single continuous piecewise affine function.
Thus by Theorem A.6 the network is continuous piecewise convex.
Fig. 1 visualizes this result for the example network

f (x, y) =

(
2 −

[
[x − y]+ − [x + y]+ + 1

]
+

)2
, (1)

where [x]+ = max(x, 0). We can easily see that each piece is a
convex polygon, and f is a convex quadratic when restricted to
each polygon. For clarity, this is just the two-layer ReLU network

f (x, y, z) =

(
z −

[
a5[a1x + a2y]+ + a6[a3x + a4y]+ + b1

]
+

)2
(2)

with the squared error objective and a single data point ((x, y), z),
setting z = 2 and a2 = a6 = −1, with all other parameters set
to 1. In later sections we shall illustrate similar properties for the
training function of this simple example network.

3. Network parameters of a single layer

In the previous section we defined the testing function of a
neural network, and showed it is continuous piecewise convex.
Now we extend this result to the training function, for which the
data is constant and the parameters are variable. This is what we
mean when we say that a network is being ‘‘considered as a func-
tion of its parameters’’. This leads us to an additional stipulation
on our definition of a neural network. That is, each layer must
be piecewise affine as a function of its parameters as well. This is
easily verified for all of the layer types previously mentioned. For
example, with the ReLU neuron has f (A, b) = [Ax + b]+, so for

(Ax + b)k ≥ 0 the kth component of f is linear in (A, b), while for
(Ax + b)k ≤ 0 it is constant. To see this, we can directly compute
α(A1x + b1) + β(A2x + b2) = (αA1 + βA2)x + αb1 + βb2 for
any α, β ∈ R. The same is true of the convolutional variant, as
α(a ∗ x) + β(a ∗ x) = (αa + βb) ∗ x, i.e. convolution is a linear
operator.

In Section 2 we have said that a neural network, considered
as a function of its input data, is piecewise convex. Now, a neural
network need not be piecewise convex as a function of the entirety
of its parameters.1 However, we can regain piecewise convexity
by restricting it to the parameters in a single layer, all others held
constant.2

Theorem 3.1. Let f = h ◦ gN ◦ gN−1 ◦ · · · ◦ g1 be a neural network,
where h is convex, and each of the layers g1, g2, . . . , gN is continuous
piecewise affine as a function of either its parameters or its input. Then
f is continuous piecewise convex as a function of the parameters in a
single layer.

Proof. For the time being, assume the input data consists of a
single point x. Let fm(x) denote the network training objective f ,
for data point x, viewed as a function of the parameters of layer
gm, all others held constant. Now, the layers gm−1 ◦ gm−2 ◦ · · · ◦ g1
are constant with respect to the parameters of gm, so we can write
y = gm−1 ◦ gm−2 ◦ · · · ◦ g1(x). Thus on each piece of gm we
can write g̃m = gm ◦ gm−1 ◦ · · · ◦ g1 = Ay + b. Since y is
constant, g̃m is a continuous piecewise affine function of (A, b).
Since gm+1, gm+2, . . . , gN are continuous piecewise affine functions
of their input, g = gN ◦gN−1◦· · ·◦ g̃m is continuous piecewise affine
by Theorem A.5. Thus by Theorem A.6, fm is continuous piecewise
convex.

Having established the theorem for the case of a single
data point, consider the case where we have multiple data
points x1, x2, . . . , xM . By Theorem A.7, the arithmetic mean
(1/M)

∑M
k=1fm(xk) is continuous piecewise convex. □

To illustrate this result, let us return to the simple two-layer
neural network from Eq. (2), and plot the objective as a function
of parameters a2 and a3 from the first layer. Setting z = 2 with all
other variables set to 1 as before, we can simplify the expression to

f (a2, a3) =
(
1 − [a2 + 1]+ − [a3 + 1]+

)2 (3)

which is plotted in Fig. 2. This function is divided into four pieces
by the lines a2 = −1 and a3 = −1, and on each piece it is a convex
quadratic. This example shows that a neural network, taken as a
function of the parameters of a single layer, has the sameproperties
as the testing function from the previous section.

We conclude this section with a simple remark which will be
useful in later sections. Let fm be a neural network, considered as a
function of the parameters of the mth layer, and let S be a piece of
fm. Then the optimization problem

minimize fm(x)
subject to x ∈ S (4)

is convex.

4. Network parameters of multiple layers

In the previous section we analyzed the convexity properties
of the training function when restricted to the parameters of a
single layer, all others held constant. We now extend these results

1 To see this, consider the following two-layer network: h(x) = x, g2(x) = ax,
and g1(x) = bx. For f = h ◦ g2 ◦ g1 we have f (x) = abx. Now fix the input at x = 1.
Considered as a function of its parameters, this is f (a, b) = ab, which is not convex.
2 This is made rigorous by taking cross-sections of point sets in Section 4.

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 37

Fig. 2. The two-layer neural network of Eq. (3), plotted as a function of two
parameters from the first layer. As in Fig. 1, the function is piecewise convex, with
each piece shaded in a different color. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

to the ultimate goal of simultaneously optimizing all network
parameters. Althoughnot convex, the problemhas a special convex
substructure which we can exploit in proving future results. We
begin by defining this substructure for point sets and functions.

Definition 4.1. Let S ⊆ Rn, let I ⊂ {1, 2, . . . , n}, and let x ∈ S. The
set

SI (x) = {y ∈ S : (yk = xk)k̸∈I} (5)

is the cross-section of S intersecting x with respect to I .

In other words, SI (x) is the subset of S for which every point is
equal to x in the components not indexed by I . Note that this differs
from the typical definition, which is the intersection of a set with
a hyperplane. For example, R3

{1}(0) is the x-axis, whereas R3
{1,2}(0)

is the xy-plane. Note also that cross-sections are not unique, for
example R3

{1,2}(0, 0, 0) = R3
{1,2}(1, 2, 0). In this case the first two

components of the cross section are irrelevant, but we maintain
them for notational convenience. We can now apply this concept
to functions on Rn.

Definition 4.2. Let S ⊆ Rn, let f : S → R and let I be a collection
of sets covering {1, 2, . . . , n}. We say that f is multi-convex with
respect to I if f is convex when restricted to the cross section SI (x),
for all x ∈ S and I ∈ I. We say that f is multi-affine if f is affine
when restricted to SI (x).

Multi-convexity formalizes the notion of restricting a non-
convex function to a variable subset on which it is convex, as in
Section 3 when a neural network was restricted to the parameters
of a single layer. For example, let f (x, y, z) = xy + z, and let
I1 = {1, 3}, and I2 = {2, 3}. Clearly f is a convex function of
(x, z) with y fixed at y0, and of (y, z) with x fixed at x0. Thus f is
multi-convex with respect to I = {I1, I2}. To fully define a multi-
convex optimization problem, we introduce a similar concept for
point sets.

Definition 4.3. Let S ⊆ Rn and let I be a collection of sets covering
{1, 2, . . . , n}. We say that S ismulti-convexwith respect to I if the
cross-section SI (x) is convex for all x ∈ S and I ∈ I.

This generalizes the notion of biconvexity found in the opti-
mization literature (Gorski et al., 2007). From here, we can extend
Definition A.1 to multi-convex functions.

Definition 4.4. Let f : Rn
→ R be a continuous function. We

say that f is continuous piecewise multi-convex if there exists
a collection of multi-convex functions g1, g2, . . . , gN defined onRn

andmulti-convex sets S1, S2, . . . , SN coveringRn such that for each
k ∈ {1, . . . ,N} we have f (x) = gk(x) for all x ∈ Sk. We say that f
is continuous piecewise multi-affine if g1, g2, . . . , gN are multi-
affine. Next, let h : Rm

→ Rn. Then, h is continuous piecewise
multi-affine so long as each component is, as in Definition A.3.

We have assumed continuity in the previous definition so as to
avoid issues concerning the topology of the pieces S1, S2, . . . , SN .
Note that unlike Definition A.1, the multi-convex pieces need not
be closed, nor even connected.

Before we can extend the results of Section 3 to multiple layers,
we must add one final constraint on the definition of a neural
network. That is, each of the layers must be continuous piecewise
multi-affine, considered as functions of both the parameters and
the input, with the index sets separating the parameters from the
input. Again, this is easily verified for the all of the layer types
previously mentioned. The only layer which merits consideration
is the ReLU, which consists of two pieces for each component: the
‘‘dead’’ or constant region, with (Ax)j + bj ≤ 0, and the ‘‘alive’’
region (Ax)j + bj ≥ 0. Similarly, for the convolutional variant the
pieces of each component are (a∗x)j +bj ≥ 0 and (a∗x)j +bj ≤ 0.
With n components the layer has at most 2n pieces, corresponding
to binary assignments of ‘‘dead’’ or ‘‘alive’’. These pieces cover the
parameter and input spaces, and we know they are multi-convex
since their cross-sections are convex polytopes, as in the proof of
Theorem A.4.

Having said that each layer is continuous piecewise multi-
convex, we can extend these results to thewhole network. But first
we define a notion of differentiability which will be important for
the later sections on multi-convex optimization.

Definition 4.5. Let f be piecewise continuous. We say that f is
piecewise continuously differentiable if each active function g is
continuously differentiable.

Finally we state our representation theorem for neural net-
works.

Theorem 4.6. Let f = h ◦ gN ◦ gN−1 ◦ · · · ◦ g1 be a neural network,
where h is convex and continuously differentiable, and g1, g2, . . . , gN
are piecewise multi-affine functions each with respect to {Ik, Jk},
where Ik indexes the parameters of gk and Jk indexes the input vari-
ables. Then f is continuous piecewise multi-convex with respect to
I = {I1, I2, . . . , In}, and piecewise continuously differentiable.

Proof. The proof is similar to that of Theorem 3.1, substituting
affine formulti-affine functions. Due to its length,wehave deferred
the proof to Appendix B. □

To visualize Theorem 4.6, we return to the simple two-layer
ReLU network from Eq. (2), plotting the network as a function of
parameters a6 and a3. Setting z = 2 and a2 = −1, with all other
variables set to 1 as before, we have

f (a6, a3) =

(
2 −

[
a6[a3 + 1]+ + 1

]
+

)2
. (6)

From Fig. 3, we can see that the function is divided into three pieces
by the line a3 = −1 and the parabola a6(a3 + 1) + 1 = 0. The red
piece is not convex, but biconvex. For a3 ≤ −1 or a6(a3+1)+1 < 0
the function is constant at f = 1 or f = 4, respectively. On the non-
constant piece, the active function is f (a6, a3) = (1 − a6(a3 + 1))2.
This function is not convex, but biconvex, since holding either a6 or
a3 constant yields a convex parabola, as shown in Fig. 4. This simple
example illustrates that when optimizing over multiple layers, the

38 B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45

Fig. 3. The two-layer neural network of Eq. (6), plotted as a function of parameters
from different layers. The function is piecewise biconvex, with each piece shaded in
a different color. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

objective need not be piecewise convex, butwe are still guaranteed
piecewise multiconvexity.

More generally, Theorem 4.6 implies that the network from
Eq. (2) is piecewise multi-convex as a function of all its param-
eters, with respect to the partition {(a1, a2, a3, a4), (a5, a6, b1)}
which separates the parameters from each of the two layers. In
other words, if we fix (a5, a6, b1) = (α1, α2, β), then f (a1, a2,
a3, a4, α1, α2, β) is piecewise convex on the cross-section T =

{(a1, a2, a3, a4, α1, α2, β) : (a1, a2, a3, a4) ∈ R4
}. If S is a piece of f ,

then f is convex on the cross-section S ∩ T , and this is a convex set.
(In fact, by the proof of Theorem 3.1 it is a closed convex polytope.)
Although we cannot plot these higher-dimensional functions di-
rectly, their algebraic properties reveal their convexity.

In the coming sections, we shall see that multi-convexity al-
lows us to establish convergence guarantees for various opti-
mization algorithms. But first, we shall prove some basic results
independent of the optimization procedure. These results were
summarized by Gorski et al. for the case of biconvex differentiable
functions (Gorski et al., 2007). Here we extend them to piecewise
functions and arbitrary index sets. First we define a special type of
minimum relevant for multi-convex functions.

Definition 4.7. Let f : S → R and let I be a collection of sets
covering {1, 2, . . . , n}. We say that x0 is a partial minimum of f
with respect to I if f (x0) ≤ f (x) for all x ∈ ∪I∈ISI (x0).

In other words, x0 is a partial minimum of f with respect to
I if it minimizes f on all of its cross-sections, as shown in Fig. 5.

Fig. 5. Cross-sections of a biconvex set.

By convexity, these points are intimately related to the stationary
points of f .

Theorem 4.8. Let I = {I1, I2, . . . , Im} be a collection of sets covering
{1, 2, . . . , n}, let f : Rn

→ R be continuous piecewise multi-convex
with respect to I, and let ∇f (x0) = 0. Then x0 is a partial minimum
of f on every piece containing x0.

Proof. Let S be a piece of f containing x0, let I ∈ I, and let SI (x0)
denote the relevant cross-section of S. We know f is convex on
SI (x0), and since ∇f (x0) = 0, we know x0 minimizes f on this
convex set. Since this holds for all I ∈ I, x0 is a partial minimum of
f on S. □

It is clear that multi-convexity provides a wealth of results
concerning partial minima, while piecewise multi-convexity re-
stricts those results to a subset of the domain. Less obvious is that
partialminima of smoothmulti-convex functions need not be local
minima. An example was pointed out by a reviewer of this work,
that the biconvex function f (x, y) = xy has a partial minimum at
the origin which is not a local minimum. However, the converse is
easily verified, even in the absence of differentiability.

Theorem 4.9. Let I be a collection of sets covering {1, 2, . . . , n}, let
f : Rn

→ R be continuous piecewise multi-convex with respect to I,
and let x0 be a local minimum of f when restricted to some piece S.
Then x0 is a partial minimum on S.

Fig. 4. Cross-sections from Fig. 3. The function is piecewise convex when restricted to either a3 or a6 .

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 39

Proof. The proof is essentially the same as that of Theorem 4.8. □

We have seen that for multi-convex functions there is a close
relationship between stationary points, local minima and par-
tial minima. For these functions, infinitesimal results concerning
derivatives and local minima can be extended to larger sets. How-
ever, we make no guarantees about global minima. The good news
is that, unlike global minima, we shall see that we can easily solve
for partial minima.

5. Gradient descent

In the realm of non-convex optimization, also called global op-
timization, methods can be divided into two groups: those which
can certifiably find a global minimum, and those which cannot.
In the former group we sacrifice speed, in the latter correctness.
This work focuses on algorithms of the latter kind, called local
or sub-optimal methods, as only this type is used in practice for
deep neural networks. In particular, the most common methods
are variants of gradient descent, where the gradient of the network
with respect to its parameters is computed by a procedure called
backpropagation. Since its explanation is often obscured by jargon,
we provide a simple summary.

Backpropagation is nothing but the chain rule applied to the
layers of a network. For themoment, assumewe have only a single
data point x ∈ Rm. Splitting the network into two functions f =

u ◦ v, where u : Rn
→ R, and v : Rm

→ Rn, we have

∇f = ∇uDv (7)

where the row vector ∇u is multiplied by the Jacobian matrix Dv.
The special observation is that we can apply this formula to each
layer of the neural network, starting with the top layer gN and
ending with the bottom g1. To compute the gradient of f with
respect to the parameters of gm, we take um = gN ◦gN−1◦· · ·◦gm+1,
and vm = gm ◦ gm−1 ◦ · · · ◦ g1. Then ∇um is the gradient of gN ◦

gN−1 ◦ · · · ◦ gm+1 with respect to the output of gm, whileDvm is the
matrix of partial derivatives of gm◦gm−1◦· · ·◦g1 with respect to the
parameters of gm. Note that these partial derivatives do not depend
on the formof gm−1◦· · ·◦g1, but only on the value of gm−1◦· · ·◦g1(x).
Then, for gm−1 we can compute ∇um−1 = ∇umDgm, where Dgm is
the matrix of partial derivatives of gm with respect to the output
of gm−1. This is known as the ‘‘backward pass’’, which efficiently
computes the gradient of a neural network with respect to its
parameters. A similar algorithm computes gm−1 ◦gm−2 ◦ · · · ◦g1(x),
which is often needed to evaluateDvm. First we compute and store
g1(x), then g2◦g1(x), and so on. This is known as the ‘‘forward pass’’.
After one forward and one backward pass, we have computed
∇f with respect to all the network parameters, for a fixed x.
To generalize this procedure to multiple data points {xk}Kk=1, we
compute ∇fk for each xk as before, and take the arithmetic mean
∇f = (1/K)

∑K
k=1∇fk.

Having computed ∇f , we can update the parameters by gradi-
ent descent, defined as follows.

Definition 5.1. Let S ⊂ Rn, and f : S → R be partially
differentiable, with x0 ∈ S. Then gradient descent on f is the
sequence {xk}∞k=0 defined by

xk+1 = xk − αk∇f (xk) (8)

where αk > 0 is called the step size or ‘‘learning rate’’. In this work
we shall make the additional assumption that

∑
∞

k=0αk = ∞.

Variants of this basic procedure are preferred in practice be-
cause their computational cost scales well with the number of
network parameters. There are many different ways to choose the
step size, but our assumption that

∑
∞

k=0αk = ∞ covers what is

usually done with deep neural networks. Note that we have not
defined what happens if xk ̸∈ S. Since we are ultimately interested
in neural networks on Rn, we can ignore this case and say that the
sequence diverges. Gradient descent is not guaranteed to converge
to a global minimum for all differentiable functions. However, it is
natural to ask to which points it can converge. This brings us to a
basic but important result.

Theorem 5.2. Let f : Rn
→ R, and let {xk}∞k=0 result from gradient

descent on f with limk→∞xk = x∗, and f continuously differentiable
at x∗. Then ∇f (x∗) = 0.

Proof. First, we have

x∗
= x0 −

∞∑
k=0

αk∇f (xk). (9)

Assume for the sake of contradiction that for the jth partial deriva-
tive we have |∂ f (x∗)/∂(x)j| > 0. Now, pick some ε such that
0 < ε < |∂ f (x∗)/∂(x)j|, and by continuous differentiability, there
is some δ > 0 such that for all x, ∥x∗

− x∥2 < δ implies ∥∇f (x∗) −

∇f (x)∥2 < ε. Theremust be some K such that for all k ≥ K wehave
∥x∗

− xk∥2 < δ, so that ∂ f (xk)/∂(x)j does not change sign. Then we
can write⏐⏐⏐⏐⏐

∞∑
k=K

αk
∂ f (xk)
∂(x)j

⏐⏐⏐⏐⏐ =

∞∑
k=K

αk

⏐⏐⏐⏐∂ f (xk)∂(x)j

⏐⏐⏐⏐
≥

∞∑
k=K

αk

(⏐⏐⏐⏐∂ f (x∗)
∂(x)j

⏐⏐⏐⏐ − ε

)
= ∞.

But this contradicts the fact that xk converges. Thus∇f (x∗) = 0. □

In the convex optimization literature, this simple result is some-
times stated in connection with Zangwill’s much more general
convergence theorem (Iusem, 2003; Zangwill, 1969). Note, how-
ever, that unlike Zangwill we state necessary, rather than sufficient
conditions for convergence.Whilemany similar results are known,
it is difficult to strictly weaken the conditions of Theorem 5.2. For
example, if we relax the condition that αk is not summable, and
take f (x) = x, then xk will always converge to a non-stationary
point. Similarly, if we relax the constraint that f is continuously
differentiable, taking f (x) = |x| and αk decreasing monotonically
to zero, we will always converge to the origin, which is not differ-
entiable. Furthermore, if we have f (x) = |x| with αk constant, then
xk will not converge for almost all x0. It is possible to prove much
stronger necessary and sufficient conditions for gradient descent,
but these results require additional assumptions about the step
size policy as well as the function to be minimized, and possibly
even the initialization x0 (Nesterov, 2004 pp. 32).

It is worth discussing f (x) = |x| in greater detail, since this is a
piecewise affine function and thus of interest in our investigation
of neural networks. While we have said its only convergence point
is not differentiable, it remains subdifferentiable, and convergence
results are known for subgradient descent (Iusem, 2003). In this
work we shall not make use of subgradients, instead considering
descent on a piecewise continuously differentiable function,where
the pieces are x ≤ 0 and x ≥ 0. Although Theorem 5.2 does
not apply to a sequence converging to x = 0, since the function
is not differentiable at this point, it still tells us that x = 0 is
the only possible convergence point. Too see this, note that if
gradient descent converged to any other point, the derivative at
that pointwould be zero. Thus, the conclusion of Theorem5.2 could
be restated as follows: either ∇f (x∗) = 0, or f is not continuously
differentiable at x∗.

40 B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45

Here we should note one way in which this analysis fails in
practice. So far we have assumed the gradient ∇f is precisely
known. In practice, it is often prohibitively expensive to compute
the average gradient over large datasets. Instead we take random
subsamples, in a procedure known as stochastic gradient descent.
We will not analyze its properties here, as current results on the
topic impose additional restrictions on the objective function and
step size, or require different definitions of convergence (Bach &
Moulines, 2011; Bertsekas, 2010; Ge, Huang, Jin, & Yuan, 2015).
Restricting ourselves to the true gradient ∇f allows for simple
proofs applying to an extensive class of neural networks.

We are now ready to generalize these results to neural
networks. There is a slight ambiguity in that the boundary
points between pieces need not be differentiable, nor even sub-
differentiable. Since we are only proving necessary conditions, we
say that gradient descent divergeswhen∇f (xk) does not exist. This
releases us from the burden of inventing an arbitrary policy when
the usual one is undefined. In practice this is a veryweak limitation,
as it is highly unlikely that a training sequence would contain
infinitely many boundary points. If a sequence {xk}∞k=0 has only a
finite number of non-differentiable points, xK being the last one,
thenwe can apply these theorems to the sequence starting at xK+1.
Furthermore, our next theoremcan handle non-differentiable limit
points as well.

Theorem 5.3. Let I = {I1, I2, . . . , Im} be a collection of sets covering
{1, 2, . . . , n}, let f : Rn

→ R be continuous piecewise multi-convex
with respect to I, and piecewise continuously differentiable. Then, let
{xk}∞k=0 result from gradient descent on f , with limk→∞xk = x∗. Then,

1. If f is continuously differentiable at x∗, then x∗ is a partial
minimum of f on every piece containing x∗.

2. If there is some piece S of f and some K > 0 such that xk ∈ So
for all k ≥ K, then x∗ is a partial minimum on S.

Proof. If the first condition holds, then Theorem5.2 gives∇f (x∗) =

0, so x∗ is a partial minimum by Theorem 4.8. If the second
condition holds, then {xk}∞k=K is a convergent gradient descent
sequence on g , the active function of f on S. Since g is continuously
differentiable onRn, the first condition holds for g . Since f |S = g|S ,
x∗ is a partial minimum of f |S as well. □

The first condition of Theorem 5.3 holds for every point in the
interior of a piece, and someboundary points. The second condition
extends these results to non-differentiable boundary points so long
as gradient descent is eventually confined to a single piece of the
function. For example, consider the continuous piecewise convex
function f (x) = min(x, x4) as shown in Fig. 6. When we converge
to x = 0 from the piece [0, 1], it is as if we were converging on
the smooth function g(x) = x4. This example also illustrates an
important caveat regarding boundary points: although x = 0 is an
extremum of f on [0, 1], it is not an extremum on R.

6. Iterated convex optimization

Although the previous section contained somepowerful results,
Theorem 5.3 suffers from two main weaknesses, that it is a neces-
sary condition and that it requires extra care at non-differentiable
points. It is difficult to overcome these limitations with gradient
descent. Instead, we shall define a different optimization tech-
nique, from which necessary and sufficient convergence results
follow, regardless of differentiability.

Iterated convex optimization splits a non-convex optimization
problem into a number of convex sub-problems, solving the sub-
problems in each iteration. For a neural network, we have shown
that the problem of optimizing the parameters of a single layer,
all others held constant, is piecewise convex. Thus, restricting

Fig. 6. Example of a piecewise convex function. The point x = 0 minimizes the
function on the piece [0, 1].

ourselves to a given piece yields a convex optimization problem.
In this section, we show that these convex sub-problems can be
solved repeatedly, converging to a piecewise partial optimum.

Definition 6.1. Let I = {I1, I2, . . . , Im} be a collection of sets
covering {1, 2, . . . , n}, and let S ⊆ Rn and f : S → R be multi-
convex with respect to I. Then iterated convex optimization is
any sequence where xk is a solution to the optimization problem

minimize f (y) (10)
subject to y ∈ ∪I∈ISI (xk−1)

with x0 ∈ S.

We call this iterated convex optimization because problem (10)
can be divided into convex sub-problems

minimize f (y) (11)
subject to y ∈ SI (xk−1)

for each I ∈ I. In this work, we assume the convex sub-
problems are solvable, without delving into specific solution tech-
niques. Methods for alternating between solvable sub-problems
have been studied by many authors, for many different types of
sub-problems (Wendell & Hurter, 1976). In the context ofmachine
learning, the same results have been developed for the special case
of linear autoencoders (Baldi & Lu, 2012). Still, extra care must be
taken in extending these results to arbitrary index sets. The key
is that xk is not updated until all sub-problems have been solved,
so that each iteration consists of solving m convex sub-problems.
This is equivalent to the usual alternating convex optimization
for biconvex functions, where I consists of two sets, but not for
general multi-convex functions.

Some basic convergence results follow immediately from the
solvability of problem (10). First, note that xk−1 is a feasible point,
so we have f (xk) ≤ f (xk−1). This implies that limk→∞f (xk) exists,
so long as f is bounded below. However, this does not imply
the existence of limk→∞xk. See Gorski et al. for an example of a
biconvex function on which xk diverges (Gorski et al., 2007). To
prove stronger convergence results, we introduce regularization to
the objective.

Theorem 6.2. Let I be a collection of sets covering {1, 2, . . . , n}, and
let S ⊆ Rn and f : S → R be multi-convex with respect to I, such
that inf f > −∞. Next, let g(x) = f (x) + λh(∥x∥), where λ > 0,
h : R → R is convex and strictly increasing, and ∥x∥ is any norm.

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 41

Fig. 7. Illustration of the proof of Theorem 6.3. Note the cross-sections of the
biconvex set S.

Finally, let {xk}∞k=0 result from iterated convex optimization of g. Then
xk has at least one convergent subsequence, in the norm topology.

Proof. First, h(∥x∥) is convex since both h and ∥x∥ are convex, and
h is increasing (Rockafellar, 1970 pp. 32). Then from Lemma A.8,
g is multi-convex, so we are allowed to use iterated convex opti-
mization. Furthermore, h is injective so it has a left inverse h−1.
Now, if inf f + λh(∥x∥) > g(x0) we have that g(x) > g(x0).
Let M = h−1 ((g(x0) − inf f) /λ), so that g(x) > g(x0) whenever
∥x∥ > M . Since g(xk) is a non-increasing sequence, we have that
∥xk∥ ≤ M . Then, by the Bolzano–Weierstrauss theorem, xk has at
least one convergent subsequence (Johnsonbaugh& Pfaffenberger,
1981 pp. 151). □

In Theorem 6.2, the function g is called the regularized version
of f . Of course the identity function suffices for h, but a nontrivial
h is often composed with a norm for computational convenience,
for example raising an ℓp norm to the pth power, with p ∈ [1, ∞).
In practice, regularization often makes a non-convex optimization
problem easier to solve, and can reduce over-fitting. The theorem
shows that iterated convex optimization on a regularized function
always has at least one convergent subsequence. Next, we shall
establish some rather strong properties of the limits of these sub-
sequences.

Theorem 6.3. Let I be a collection of sets covering {1, 2, . . . , n},
and let S ⊆ Rn and f : S → R be multi-convex with respect
to I. Next, let {xk}∞k=0 result from iterated convex optimization of f .
Then the limit of every convergent subsequence is a partial minimum
on So with respect to I, in the topology induced by some norm ∥x∥.
Furthermore, if {xmk}

∞

k=1 and {xnk}
∞

k=1 are convergent subsequences,
then limk→∞f (xmk) = limk→∞f (xnk).

Proof. Let xnk denote a subsequence of xk with x∗
= limn→∞xnk .

Now, assume for the sake of contradiction that x∗ is not a partial
minimum on So with respect to I. Then there is some I ∈ I and
some x′

∈ SI (x∗) ∩ So such that f (x′) < f (x∗). As in the convex
case, it can be shown that f is continuous on So (Aumann & Hart,
1986). Then there must be some δ > 0 such that for all x ∈ S,
∥x − x′

∥ < δ implies |f (x) − f (x′)| < f (x∗) − f (x′). Since x′ is
an interior point, there must be some open ball B ⊂ S of radius r
centered at x′, as shown in Fig. 7. Now, there must be some K such
that ∥xnK − x∗

∥ < min(δ, r). Then, let x̃ = xnK + x′
− x∗, and since

∥x̃ − x′
∥ < r , we know that x̃ ∈ B, and thus x̃ ∈ SI (xnK). Finally,

∥x̃ − x′
∥ < δ, so we have f (x̃) < f (x∗) ≤ f (xnK+1), contradicting

the fact that xnK+1 minimizes g over a set containing x̃. Thus x∗ is a
partial minimum on So with respect to I.

Finally, let {xmk}
∞

k=1 and {xnk}
∞

k=1 be two convergent subse-
quences of xk, with limk→∞xmk = x∗

m and limk→∞xnk = x∗
n, and

assume for the sake of contradiction that f (x∗
m) > f (x∗

n). Then by
continuity, there is some K such that f (xnK) < f (x∗

m). But this
contradicts the fact that f (xk) is non-increasing. Thus f (x∗

m) =

f (x∗
n). □

The previous theorem is an extension of results reviewed in
Gorski et al. to arbitrary index sets (Gorski et al., 2007). While
Gorski et al. explicitly constrain the domain to a compact biconvex
set, we show that regularization guarantees xk cannot escape a
compact set, establishing the necessary condition for convergence.
In the context of neural networks, f can be interpreted as a reg-
ularized version of the training objective, so that a convergent
subsequence is guaranteed to exist. Furthermore, our results hold
for general multi-convex sets, while the earlier result is restricted
to Cartesian products of compact sets. Optimality is restricted to
the interior of S so that we can guarantee x̃ ∈ S, as seen in Fig. 7.
In case S is not n-dimensional, the result could be improved to
the interior relative to the multi-affine hull of S (Aumann & Hart,
1986).

These results for iterated convex optimization are considerably
stronger thanwhatwe have shown for gradient descent.While any
bounded sequence inRn has a convergent subsequence, andwe can
guarantee boundedness for some variants of gradient descent, we
cannot normally say much about the limits of subsequences. For
iterated convex optimization, we have shown that the limit of any
subsequence is a partial minimum, and all limits of subsequences
are equal in objective value. For all practical purposes, this is just
as good as saying that the original sequence converges to a partial
minimum.

7. Global optimization

Although we have provided necessary and sufficient condi-
tions for convergence of various optimization algorithms on neural
networks, the limit points need only minimize the objective on
cross-sections of pieces of the domain. Of course we would prefer
results relating the limit points to global minima of the training
objective. In this section we illustrate the difficulty of establishing
such results, even for the simplest of neural networks.

In recent years much work has been devoted to providing
theoretical explanations for the empirical success of deep neural
networks, a full accounting of which is beyond the scope of this ar-
ticle. In order to simplify the problem, many authors have studied
linear neural networks, in which the layers have the form g(x) =

Ax, where A is the parameter matrix. With multiple layers this is
clearly a linear function of the input, but not of the parameters.
As a trivial case of piecewise affine functions, our previous results
suffice to show that these networks are multi-convex as functions
of their parameters. This was proven for the special case of linear
autoencoders by Baldi and Lu (2012).

Many authors have claimed that linear neural networks con-
tain no ‘‘bad’’ local minima, i.e. every local minimum is a global
minimum (Kawaguchi, 2016; Soudry & Carmon, 2016). This is
especially evident in the study of linear autoencoders, which were
shown to admit many points of inflection, but only a single strict
minimum (Baldi & Lu, 2012). While powerful, this claim does not
apply to the networks seen in practice. To see this, consider the
dataset D = {(0, 1/2), (−1, α), (1, 2α)} consisting of three (x, y)
pairs, parameterized by α > 1. Note that the dataset has zero
mean and unit variance in the x variable, which is commonpractice
in machine learning. However, we do not take zero mean in the y
variable, as the model we shall adopt is non-negative.

42 B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45

Next, consider the simple neural network

f (a, b) =

∑
(x,y)∈D

(
y − [ax + b]+

)2 (12)

=

(
1
2

− [b]+

)2

+
(
α − [b − a]+

)2
+

(
2α − [b + a]+

)2
.

This is the squared error of a single ReLU neuron, parameterized by
(a, b) ∈ R2. We have chosen this simplest of all networks because
we can solve for the local minima in closed form, and show they
are indeed very bad. First, note that f is a continuous piecewise
convex function of six pieces, realized by dividing the plane along
the line ax + b = 0 for each x ∈ D, as shown in Fig. 8. Now, for
all but one of the pieces, the ReLU is ‘‘dead’’ for at least one of the
three data points, i.e. ax + b < 0. On these pieces, at least one of
the three terms of Eq. (12) is constant. The remaining terms are
minimized when y = ax + b, represented by the three dashed
lines in Fig. 8. There are exactly three points where two of these
lines intersect, and we can easily show that two of them are strict
local minima. Specifically, the point (a1, b1) = (1/2 − α, 1/2)
minimizes the first two terms of Eq. (12), while (a2, b2) = (2α −

1/2, 1/2) minimizes the first and the last term. In each case, the
remaining term is constant on the piece containing the point of
intersection. Thus these points are strict global minima on their
respective pieces, and strict local minima on R2. Furthermore, we
can compute f (a1, b1) = 4α2 and f (a2, b2) = α2. This gives

lim
α→∞

a1 = −∞, lim
α→∞

a2 = ∞, (13)

and

lim
α→∞

(f (a1, b1) − f (a2, b2)) = ∞. (14)

Now, it might be objected that we are not permitted to take α →

∞ if we require that the y variable has unit variance. However,
these same limits can be achievedwith variance tending to zero by
adding ⌊α⌋ instances of the point (1, 2α) to our dataset. Thus even
under fairly stringent requirements we can construct a dataset
yielding arbitrarily bad local minima, both in the parameter space
and the objective value. This provides some weak justification for
the empirical observation that success in deep learning depends
greatly on the data at hand.

We have shown that the results concerning local minima in
linear networks do not extend to the nonlinear case. This is not
surprising, as with linear networks the problem can be relaxed to
linear regression on a convex objective. That is, the composition of
all linear layers g(x) = A1A2 . . . Anx is equivalent to the function
f (x) = Ax for some matrix A. Consider the relaxed problem of
finding the optimal matrix A. Under our previous assumptions
this is a convex optimization problem. Furthermore, it is easily
shown that the number of parameters in the relaxed problem is
polynomial in the number of original parameters. Since the relaxed
problem fits the data at least as well as the original, it is not
surprising that the original problem is computationally tractable.

This simple example was merely meant to illustrate the diffi-
culty of establishing results for every localminimumof everyneural
network. Since training a certain kind of network is known to be
NP-Complete, it is difficult to give any guarantees aboutworst-case
global behavior (Blum & Rivest, 1992). We have made no claims,
however, about probabilistic behavior on the average practical
dataset, nor have we ruled out the effects of more specialized
networks, such as very deep ones.

8. Conclusion

We showed that a common class of neural networks is piece-
wise convex in each layer, with all other parameters fixed. We

Fig. 8. Parameter space of the single neuron from Eq. (12), with pieces divided by
the bold black lines. The dashed lines each minimize a term of Eq. (12). The points
(a1, b1) and (a2, b2) are local minima, which can be made arbitrarily far apart by
varying the dataset.

extended this to a theory of a piecewise multi-convex functions,
showing that the training objective function can be represented
by a finite number of multi-convex functions, each active on a
multi-convex parameter set. From here we derived various results
concerning the extrema and stationary points of piecewise multi-
convex functions. We established convergence conditions for both
gradient descent and iterated convex optimization on this class
of functions, showing they converge to piecewise partial minima.
Similar results are likely to hold for a variety of other optimization
algorithms, especially those guaranteed to converge at stationary
points or local minima.

We have witnessed the utility of multi-convexity in proving
convergence results for various optimization algorithms. However,
this property may be of practical use as well. Better understanding
of the training objective could lead to the development of faster or
more reliable optimization methods, heuristic or otherwise. These
results may provide some insight into the practical success of sub-
optimal algorithms on neural networks. However, we have also
seen that local optimality results do not extend to global optimality
as they do for linear autoencoders. Clearly there is much left to
discover about how, or even if we can optimize deep, nonlinear
neural networks.

Acknowledgment

The authors would like to thank Mihir Mongia for his helpful
comments in preparing this article.
Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Piecewise continuous functions

This appendix establishes some basic results concerning piece-
wise affine and piecewise convex functions, which are referred to
in the main body of the text.

Definition A.1. Let g1, g2, . . . , gN be continuous functions from
Rn

→ R. A continuous piecewise function f has a finite number of
closed, connected sets S1, S2, . . . , SN coveringRn such that for each
k we have f (x) = gk(x) for all x ∈ Sk. The set Sk is called a piece of
f , and the function gk is called active on Sk.

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 43

More specific definitions follow from restricting the functions g .
A continuous piecewise affine function has gk(x) = aTx+bwhere
a ∈ Rn and b ∈ R. A continuous piecewise convex function has
gk convex, with Sk convex as well.

Note that this definition of piecewise convexity differs from
that found in the convex optimization literature, which focuses
on convex piecewise convex functions, i.e. maxima of convex func-
tions (Tsevendorj, 2001). Note also that we do not claim a unique
representation in terms of active functions gk and pieces Sk, only
that there exists at least one such representation. In practice we
can often choose S1, S2, . . . , Sn as the closures of the connected
components on which f is differentiable, in which case the pieces
are almost disjoint. However, for simplicity and generality we do
not require this choice. An elementary observation is that every
continuous piecewise function is continuous, for which we offer a
short proof.

Theorem A.2. Every continuous piecewise function is continuous.

Proof. Let f be continuous piecewisewith pieces S1, S2, . . . , SN and
active functions f1, f2, . . . , fN . Since each fk is continuous and f = fk
on Sk, we know that f is continuous on the interior of Sk. Let x be
a point on the boundary between pieces S1, . . . , Sn, and fix ε > 0.
Since the pieces are closed, we know x is amember of each of them.
Then for each k there is some δk such that d(x, y) < δk implies
|fk(x) − fk(y)| < ε, where d is the metric for which x is continuous.
Then let δ = minkδk, so that d(x, y) < δ implies |f (x) − f (y)| < ε.
Thus f is continuous at x. □

Note that this proof actually works for the more general case
where the active functions are only defined on their respective
pieces, rather than all of Rn.

Before proceeding, we shall extend Definition A.1 to functions
of multidimensional codomain for the affine case.

Definition A.3. A function f : Rm
→ Rn, and let fk : Rm

→ R
denote the kth component of f . Then f is continuous piecewise
affine if each fk is. Take a collection of pieces S1, S2, . . . , Sn with
non-empty intersection, one from each component f1, f2, . . . , fn.
Then S = ∩

n
k=1Sk is a piece of f , on which we have f (x) = Ax + b

for some A ∈ Rn×m and b ∈ Rn.

First, we prove an intuitive statement about the geometry of the
pieces of continuous piecewise affine functions.

TheoremA.4. Let f : Rm
→ Rn be continuous piecewise affine. Then

f admits a representation in which every piece is a convex polytope.

Proof. Let fk : Rm
→ R denote the kth component of f . Now, fk can

be written in closed form as amax–min polynomial (Ovchinnikov,
2002). That is, there is some partitioning of the active functions
g1, g2, . . . , gN by index sets I1, I2, . . . , Im such that we can write

f (x) = max
j∈{1,...,m}

min
k∈Ij

gk(x). (A.1)

Now, for the minimum of two affine functions we have

min(gi, gj) = min(aT
i x + bi, aT

j x + bj). (A.2)

This function has twopieces divided by the hyperplane (ai−aj)Tx+
bi − bj = 0. The same can be said of max(gi, gj). Thus the pieces of
fk are intersections of half-spaces, which are just convex polytopes.
Since the pieces of f are intersections of the pieces of f1, f2, . . . , fn,
they are convex polytopes as well. □

See Fig. 8 in Section 7 for an example of this result on a spe-
cific neural network. Our next result concerns the composition of
piecewise functions, which is essential for the later sections.

Theorem A.5. Let g : Rm
→ Rn and f : Rn

→ R be continuous
piecewise affine. Then so is f ◦ g.

Proof. To establish continuity, note that the composition of con-
tinuous functions is continuous.

By Theorem A.4, we can represent g and f by collections of
convex polytopes S1, S2, . . . , Sp and T1, T2, . . . , Tq, respectively. Let
S be a piece of g and T a piece of f such that S ∩ g−1(T) ̸= ∅, where
g−1(T) denotes the inverse image of T . Since g is affine, g−1(T) is
closed and convex (Rockafellar, 1970 pp. 19). Thus S ∩ g−1(T) is a
closed, convex set on which we can write

f (x) = aTx + b (A.3)
g(x) = Cx + d.

Thus

f ◦ g(x) = aTCx + aTd + b (A.4)

which is an affine function.
Now, consider the finite set of all such pieces S ∩ g−1(T). The

union of g−1(T) over all pieces T1, T2, . . . , Tq is just Rn, as is the
union of all pieces S1, S2, . . . , Sp. Thus we have

∪
p
i=1∪

q
j=1

(
Si ∩ g−1(Tj)

)
= ∪

p
i=1

(
Si ∩ ∪

q
j=1g

−1(Tj)
)

= ∪
p
i=1

(
Si ∩ Rn)

= Rn.

Thus f ◦ g is piecewise affine on Rn. □

We now turn to continuous piecewise convex functions, of
which continuous piecewise affine functions are a subset.

Theorem A.6. Let g : Rm
→ Rn be a continuous piecewise affine

function, and h : Rn
→ R a convex function. Then f = h ◦ g is

continuous piecewise convex.

Proof. By TheoremA.4, we can choose the pieces of g to be convex.
On each piece there is some pair (A, b) such that f (x) = h(Ax + b).
This function is convex, as it is the composition of a convex and
an affine function (Rockafellar, 1970 pp. 38). Thus f is continuous
piecewise convex with the same pieces as g . □

Our final theorem concerns the arithmetic mean of continuous
piecewise convex functions, which is essential for the analysis of
neural networks.

Theorem A.7. Let f1, f2, . . . , fN be continuous piecewise convex
functions. Then so is their arithmetic mean (1/N)

∑N
i=1fi(x).

The proof takes the form of two lemmas.

Lemma A.8. Let f1 and f2 be a pair of continuous piecewise convex
functions on Rn. Then so is f1 + f2.

Proof. Let S1 be a piece of f1, and S2 a piece of f2, with S1 ∩ S2 ̸= ∅.
Note that the sum of convex functions is convex (Rockafellar, 1970
pp. 33). Thus f1 + f2 is convex on S1 ∩ S2. Furthermore, S1 ∩ S2 is
convex because it is an intersection of convex sets (Rockafellar,
1970 pp. 18). Since this holds for all pieces of f1 and f2, we have
that f1 + f2 is continuous piecewise convex on Rn. □

Lemma A.9. Let α > 0, and let f be a continuous piecewise convex
function. Then so is αf .

Proof. The continuous function αf is convex on every piece of
f . □

44 B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45

Having established that continuous piecewise convexity is
closed under addition and positive scalar multiplication, we can
see that it is closed under the arithmetic mean, which is just the
composition of these two operations. Note that this result holds
only for finite sums of piecewise convex functions. For example,
the sawtooth function on R can be written as a countably infinite
sum of piecewise affine functions, but it is not piecewise convex,
since it would require infinitely many pieces. This prevents us
from directly extending these results to infinite neural networks,
which have been represented in the literature by integral op-
erators (Kainen & Kůrkovà, 2009). Integral operators could be
used directly if the functions were convex, rather than piecewise
convex (Gnecco & Sanguineti, 2008). However, we do not require
infinite sums to analyze networks with finitely many neurons,
which are always seen in practice.

Unfortunately this theorem does not extend to some of the
other functions commonly referred to as ‘‘means’’. For example,
the geometric mean of convex functions need not be convex. To
see this, let f (x, y) = x and g(x, y) = y, both defined on the
positive orthant, so that

√
fg(x, y) =

√
xy is concave. However, the

arithmetic mean suffices for our analysis.

Appendix B. Proof of Theorem 4.6

We begin the proof with a lemma for multi-affine functions
serving a similar purpose as Theorem A.5.

Lemma B.1. Let X = Rn, Y = Rm and Z = Rp, and let g : X → Z
and f : Z × Y → Rq be continuous piecewise multi-affine, g with
respect to a collection of index sets G, and f with respect to F =

{IZ , IY }, where IZ indexes the variables in Z, and IY the variables in Y .
Then h(x, y) = f (g(x), y) is continuous piecewise multi-affine with
respect to H = G ∪ {IY }.

Proof. Let G be a piece of g , let F be a piece of f and let H =

{(x, y) : x ∈ G, (g(x), y) ∈ F}, with F chosen so that H ̸= ∅.
Next, let πX : X × Y → X , πY : Z × Y → Y and πZ :

Z × Y → Z denote the usual projections, e.g. πX (x, y) = x. Finally,
let (x, y) ∈ H andwe shall show that the cross-sections are convex.
First, HIY (x, y) = {x} × πY FIY (g(x), y). Note that πY FIY (g(x), y) is
convex since FIY (g(x), y) is. Then HIY (x, y) is a Cartesian product of
convex sets, and thus convex.

Next, for any IX ∈ G and z ∈ Z , we have

HIX (x, y) = {x̃ : x̃ ∈ GIX (x), g(x̃) ∈ πZFIZ (z, y)} × {y}. (B.1)

Note that the choice of z does not matter for FIZ (z, y). Next, we can
write

S = g
(
GIX (x)

)
∩ πZFIZ (z, y)

HIX (x, y) =
(
GIX (x) ∩ g−1(S)

)
× {y}.

Now, convexity is preserved under Cartesian products and inter-
sections with the convex sets {y}, GIX (x) and πZFIZ (z, y). Since g
is affine on GIX (x) and S ⊆ g(GIX (x)), we know g(GIX (x)) and
g−1(S) are convex, as they are an image and a preimage of an affine
function on a convex set (Rockafellar, 1970 pp. 19). We need to
take the intersection with GIX (x) since g might not be injective,
for example if g = 0 then g−1(S) = X . Since all these operations
preserve convexity, HIX (x, y) is convex.

Finally, h is affine on HIY (x, y) since f is affine on FIY (g(x), y),
with g constant on πXHIY (x, y) = {x}. Similarly, h is affine on
HIX (x, y) since g is affine on GIX (x) and f is affine on FIZ (z, y). Thus
h is multi-affine on H with respect to H. Finally, as in the proof of
Theorem A.5, we can cover X × Y with the finite collection of all
such pieces H , taken over all such G and F . □

Our next lemma extends Theorem A.7 to multi-convex func-
tions.

Lemma B.2. Let I be a collection of sets covering {1, 2, . . . , n}, and
let f : Rn

→ R and g : Rn
→ R be continuous piecewise multi-

convex with respect to I. Then so is f + g. If f and g are piecewise
continuously differentiable, then so is f + g.

Proof. Let F be a piece of f and G be a piece of g with x ∈ F ∩ G.
Then for all I ∈ I, (F ∩ G)I (x) = FI (x)∩GI (x), a convex set onwhich
f + g is convex. Thus f + g is continuous piecewise multi-convex,
where the pieces of f +g are the non-empty intersections of pieces
of f and g .

Let f̃ and g̃ be the active functions of f and g on F and G,
respectively. Then f̃ + g̃ is active on F ∩ G, and f̃ , g̃ ∈ C1 so
f̃ + g̃ ∈ C1. □

We can now prove the theorem.

Proof. For the moment, assume we have only a single fixed data
point, as in the proof of Theorem 3.1. Let g1 and g2 denote the first
two layers of f , with parameters θ1 ∈ Rm and θ2 ∈ Rn, respectively.
Consider the two-layer sub-network g2 ◦ g1 = g2(g1(θ1), θ2). By
Lemma B.1, the sub-network is continuous piecewise multi-affine
with respect to {I1, I2}. Repeating this argument, the composition
of all layers g = gN ◦ gN−1 ◦ · · · ◦ g1 is continuous piecewise multi-
affine with respect to I.

Let T be a piece of g , θ ∈ T and I ∈ I. Then g is affine on TI (θ), so
f = h◦g is convex when restricted to this set. Thus f is continuous
piecewise multi-convex with the same pieces as g .

To see that f is piecewise continuously differentiable, note that
multi-affine functions are continuously differentiable, since their
partial derivatives are the derivatives of affine functions. Thus
g1, g2, . . . , gN are piecewise continuously differentiable, so their
composition with h is piecewise continuously differentiable as
well.

Now we extend the theorem to the whole dataset, where
each data point defines a continuous piecewise multi-convex
function fk. By Lemma B.2, the arithmetic mean (1/N)

∑N
k=1fk is

continuous piecewise multi-convex and piecewise continuously
differentiable. □

References

Aumann, R. J., & Hart, S. (1986). Bi-convexity and bi-martingales. Israel Journal of
Mathematics, 54(2), 159–180. http://dx.doi.org/10.1007/BF02764940.

Bach, F. R. & Moulines, E. (2011). Non-asymptotic analysis of stochastic approx-
imation algorithms for machine learning. In Proceedings of the 25th annual
conference on neural information processing systems, (pp. 451–459).

Baldi, P., & Lu, Z. (2012). Complex-valued autoencoders. Neural Networks, 33,
136–147. http://dx.doi.org/10.1016/j.neunet.2012.04.011.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information Theory, 39(3), 930–945. http:
//dx.doi.org/10.1109/18.256500.

Bertsekas, D. P. (2010). Incremental gradient, subgradient, and proximal methods
for convex optimization: A Survey, Tech. rep., Massachusetts Institute of Tech-
nology Labratory for Information and Decision Systems. URL http://arxiv.org/
abs/1507.01030.

Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is np-
complete. Neural Networks, 5(1), 117–127. http://dx.doi.org/10.1016/S0893-
6080(05)80010-3.

Ge, R., Huang, F., Jin, C., & Yuan, Y. (2015). Escaping from saddle points - online
stochastic gradient for tensor decomposition In Journal of machine learning
research - workshop and conference proceedings, Vol. 1 (pp. 1–46).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks,
In G.J. Gordon, D.B. Dunson (Eds.), Proceedings of the fourteenth international
conference on artificial intelligence and statistics, AISTATS-11, journal of machine
learning research - workshop and conference proceedings, Vol. 15 (pp. 315–323).

Gnecco, G., & Sanguineti, M. (2008). Estimates of the approximation error using
rademacher complexity: learning vector-valued functions. Journal of Inequali-
ties and Applications, 2008(1), 640758. http://dx.doi.org/10.1155/2008/640758.

http://dx.doi.org/10.1007/BF02764940
http://dx.doi.org/10.1016/j.neunet.2012.04.011
http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1109/18.256500
http://dx.doi.org/10.1109/18.256500
http://arxiv.org/abs/1507.01030
http://arxiv.org/abs/1507.01030
http://arxiv.org/abs/1507.01030
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1155/2008/640758

B. Rister, D.L. Rubin / Neural Networks 94 (2017) 34–45 45

Gorski, J., Pfeuffer, F., & Klamroth, K. (2007). Biconvex sets and optimizationwith bi-
convex functions: a survey and extensions.Mathematical Methods of Operations
Research, 66(3), 373–407. http://dx.doi.org/10.1007/s00186-007-0161-1.

Iusem,A.N. (2003). On the convergence properties of the projected gradientmethod
for convex optimization. Computational and Applied Mathematics, 22, 37–52.

Johnsonbaugh, R., & Pfaffenberger, W. E. (1981). Foundations of mathematical anal-
ysis. New York, New York, USA: Marcel Dekker, Dover 2002 Edition.

Kainen, P. C., & Kůrkovà, V. (2009). An integral upper bound for neural network
approximation. Neural Computation, 21(10), 2970–2989. http://dx.doi.org/10.
1162/neco.2009.04-08-745.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in
Neural Information Processing Systems Vol. 29 (pp. 586–594). Curran Associates,
Inc.

Makovoz, Y. (1998). Uniform approximation by neural networks. Journal of Approx-
imation Theory, 95(2), 215–228. http://dx.doi.org/10.1006/jath.1997.3217.

Nesterov, Y. (2004). Applied optimization. Introductory lectures on convex optimiza-
tion: a basic course. Boston, Dordrecht, London: Kluwer Academic Publishers.

Ovchinnikov, S. (2002). Max-Min representation of piecewise linear functions.
Contributions To Algebra and Geometry, 43(1), 297–302.

Rockafellar, R. T. (1970). Convex analysis. Princeton, NJ, USA: Princeton University
Press, 41 William Street.

Soudry, D. & Carmon, Y. (2016). No bad local minima: data independent training
error guarantees for multilayer neural networks, arXiv:1605.08361.

Tsevendorj, I. (2001). Piecewise-Convex maximization problems. Journal of Global
Optimization, 21(1), 1–14. http://dx.doi.org/10.1023/A:1017979506314.

Wendell, R. E., & Hurter, A. P. (1976). Minimization of a non-separable objective
function subject to disjoint constraints. Operations Research, 24(4), 643–657.
http://dx.doi.org/10.1287/opre.24.4.643.

Zangwill, W. I. (1969). Prentice-Hall international series in management . Nonlinear
programming : a unified approach. Englewood Cliffs, N.J.: Prentice-Hall.

http://dx.doi.org/10.1007/s00186-007-0161-1
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb11
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb12
http://dx.doi.org/10.1162/neco.2009.04-08-745
http://dx.doi.org/10.1162/neco.2009.04-08-745
http://dx.doi.org/10.1162/neco.2009.04-08-745
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb14
http://dx.doi.org/10.1006/jath.1997.3217
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb16
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb17
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb18
http://arxiv.org/1605.08361
http://dx.doi.org/10.1023/A:1017979506314
http://dx.doi.org/10.1287/opre.24.4.643
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22
http://refhub.elsevier.com/S0893-6080(17)30145-4/sb22

	Piecewise convexity of artificial neural networks
	Introduction
	Neural networks
	Network parameters of a single layer
	Network parameters of multiple layers
	Gradient descent
	Iterated convex optimization
	Global optimization
	Conclusion
	Acknowledgment
	Piecewise continuous functions
	Proof of Theorem 4.6
	References

