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Abstract

Rapid technological advancements in artificial intelligence (AI) methods have fueled explosive 

growth in decision tools being marketed by a rapidly growing number of companies. AI 

developments are being driven largely by computer scientists, informaticians, engineers, and 

business people, with much less direct participation by radiologists. Participation by radiologists in 

AI is largely restricted to educational efforts to familiarize them with the tools and promising 

results, but techniques to help them decide which AI tools should be used in their practices and to 

how to quantify their value is not being addressed. This paper discusses the role of radiologists in 

imaging AI and suggests specific ways they can be engaged by (1) considering the clinical need 

for AI tools in specific clinical use cases, (2) by undertaking formal evaluation of AI tools they are 

considering adopting in their practices, and (3) by maintaining their expertise and guarding against 

the pitfalls of over-reliance on technology.

Sentence summary

This paper describes the role of radiologists in the AI era, suggesting specific ways for them to be 

engaged as educated consumers and critical evaluators these technologies to ensure the benefits of 

these tools outweigh a number of potential risks.
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INTRODUCTION: CLINICAL MOTIVATION AND AI TO THE RESCUE

There is tremendous excitement about the potential of applying AI methods—particularly 

deep learning— to radiology images. Near-human level of performance has been quickly 

achieved in the ImageNet database, beginning with AlexNet [1] and soon followed by others 
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[2–6],. Many papers are appearing about the use of AI for assisting image interpretation [7–

10], automating other imaging tasks, such as image enhancement [11, 12], object 

segmentation [13–18], automated exam protocolling [19], detection of critical findings and 

worklist prioritization [20, 21], and even clinical prediction [22–29].

The exuberance over the potential of AI in radiology is well founded in terms of clinical 

need. The rapid rise in the number of images, coupled with increased utilization of cutting 

edge imaging technologies is putting increasing pressure in radiologists, challenging their 

ability to deliver optimal care, and physician burnout is an important problem in radiology 

[30]. In addition, radiologists vary in their ability to recognize and interpret image features 

[31]. AI tools could potentially reduce variation in practice [32–35] and automate detection 

of imaging abnormalities by focusing attention on studies and images that are most critical 

[35–37].

A TIDAL WAVE OF AI APPLICATIONS

Many AI algorithms to tackle the aforementioned challenges are appearing at an explosive 

pace. Table 1 shows a list of several major current types of AI applications being developed. 

At RSNA 2019 there were over 200 companies that highlighted AI products in development, 

and several AI products from a few AI companies have already achieved Food and Drug 

Administration (FDA) clearance [38]. To deal with the accelerating pace of AI tools seeking 

clearance, FDA recently released its first-ever guidance on developing a streamlined and 

timely approval of AI products [39, 40].

The zeal to develop and market AI algorithms is reminiscent to some authors of the 

California Gold Rush [41]—a suitable analogy given that many of the AI companies are in 

the Silicon Valley. In the Gold Rush, the value of the gold depended on the market for banks 

buying gold from the miners. In the AI era, the value of these algorithms will depend on the 

market for radiologists that decide to purchase them. So as radiologists are confronted with 

an onslaught of AI algorithms, how are they to decide whether to use any of them and which 

to use?

Becoming educated consumers of AI algorithms is the role of the radiologist in the AI era. 

While the current focus and hype is on new AI applications and the data used to train them 

(the “new oil” of the current era [42]), there is little focus on the consumer’s perspective of 

these products—the radiologist and patients in whom these methods are used. Our interest in 

this paper is thus on the radiologist and their patients. We focus however on radiologists, and 

we presume that the benefits to their practice translate into patient benefits through better 

image workflow, interpretation, and decision making.

THE ROLE OF THE RADIOLOGIST IN IMAGING AI

As imaging AI products are developed and marketed, the role of the radiologist is to be an 

educated consumer about these tools. Being such an educated consumer requires the 

radiologist to (1) consider the clinical need for AI tools in specific clinical use cases, (2) 

undertake formal evaluation of AI tools before adopting them in practice, and (3) maintain 
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his or her clinical Radiology expertise and guard against the pitfalls of over-reliance on 

technology.

(1) Clinical needs:

There are many AI products becoming available, and how is the radiologist to choose? 

Radiologists should first consider whether an AI application is likely to materially benefit 

their practice. For example, a chest radiologist may find no value in an AI algorithm that 

detects pneumothorax, however, an algorithm that detects and reports volumetric changes in 

the size of the pneumothorax or detects subtle features indicating tension could be useful. 

Clinical scenarios for which AI algorithms are considered to be potentially valuable are 

referred to as “AI use cases.”

The American College of Radiology (ACR) Data Science Institute (DSI) has been 

developing a comprehensive catalog of AI use case documents [43]. Each document 

provides a narrative description of a clinical need being addressed by the AI algorithm, 

technical details about the expected inputs needed by the AI algorithm and the outputs it 

produces for the radiologist (Figure 1). The development of AI use cases by the ACR DSI is 

a community-based effort, and this is a good starting point for radiologists to consider which 

clinical needs benefit from AI.

(2) Evaluation of AI tools:

The ability to quickly produce AI tools is outpacing the thoroughness with which they are 

being evaluated or validated on independent data in new settings. In a recent review of 516 

published papers on AI tools, only 6% (31 studies) performed external validation, and none 

had design features that are recommended for robust validation of clinical performance [44]. 

Although vendor products undergoing FDA review for regulatory clearance undergo more 

thorough validation, the generalizability of these products in clinical practice is not generally 

performed (it could be considered part of post-marketing surveillance). Most vendors offer 

the possibility of allowing radiology practices to try out their AI products before purchasing 

them. This “try before you buy” paradigm is not a robust approach to assessing whether an 

AI algorithm will be beneficial to a practice, since it is based on anecdotal experience and 

the cases used to train the algorithm may not reflect the actual mix of patients seen by that 

practice. Some radiologists may be tempted to assume that such data collection and 

evaluation of metrics is not needed, presuming the AI will work well in their patients if the 

algorithm has been FDA cleared. This is not necessarily a good assumption because the 

datasets used for FDA clearance may not be sufficiently representative of every radiology 

practice. This inability of AI algorithms to “generalize” (work well on new, unseen data) is a 

known potential weakness of all AI methods. For example, a recent study that evaluated 

different combinations of large collections of data for training and testing an AI algorithm 

(both single institution and multi-institution) to detect pneumonia for testing found that the 

performance of the AI algorithm varied substantially [45], and decrease in performance of 

AI algorithms on independently collected data has been observed by other workers as well 

[46].
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Failure of AI algorithms to generalize well to new data arises because everything that AI 

algorithms that are trained solely on data (deep learning) “know” is based on the data that 

were used to train them. If the training data do not include certain types of cases that a 

radiology practice may encounter (e.g., different diseases, different image types, artifacts, 

etc), then the algorithm may provide unexpected results. Bias in training data is a common 

cause of AI algorithms to fail to generalize, e.g., due to differences in patient populations, 

types of equipment, imaging parameters used, lack of representation of rare diseases. For 

example, facial recognition algorithms trained on Caucasians were not deployed by police 

departments due to their failure to accurately characterize the faces of persons of color [47]. 

Consequently, it is imperative for radiologists to evaluate the performance of AI algorithms 

on data in their local practice. If the results of such evaluations are provided to regulatory 

agencies, it can provide the basis for post-marketing surveillance of AI.

Table 2 shows a list of the steps needed for the radiologist to evaluate an AI algorithm on 

their local institutional data. The first step is to determine which output(s) from the AI 

algorithm are important to the clinical use case. For example, if the radiologist is interested 

in an AI tool to help with pneumothorax detection, she should first decide which information 

from the AI will be important to her practice (e.g., is a simple yes/no answer for 

pneumothorax sufficient? Is it important to provide the size of the pneumothorax?) For this 

step, reviewing the outputs specified in the ACR DSI use cases can be helpful (Figure 1). 

The radiologist should also consider other outputs that may be important to her besides those 

listed; for example, it may be that the radiologist desires to have help determining 

quantitative change in the size of the pneumothorax, and that is currently not listed in the 

ACR DSI use case, and the radiologist may wish to request that feature from the AI vendor.

The second step in AI evaluation is to collect representative patient cases that will be used to 

test the AI algorithm (“test cases”). It is critical that these test cases reflect the actual patient 

population seen by a radiology practice in order to adequately address ability of the AI to 

generalize, as described earlier. This could be done by taking a random sample of cases from 

the medical record and then looking at the cases to make sure that the case mix appears 

reasonable. As a diagnostic check, it would be helpful to compute the frequency of each 

diagnosis in the test case to determine how well that lines up with the expected disease 

prevalence in the radiologist’s patient population. If there are rare cases that are not 

represented, then a small number of those should be added to the test set to enrich it. The 

size of the test set needed will depend on how many different conditions (output classes) the 

AI provides and the frequency of various conditions in the population. For current AI 

applications coming to market that focus on lesion detection, 50–100 cases should be 

sufficient, and for AI focusing on diagnosis, approximately 200 is likely to be sufficient. 

Once the cases are identified, the images need to be extracted from the PACS. The radiology 

reports (and potentially medical record data such as pathology) should also be collected as 

described below to establish the ground truth.

The third step in AI evaluation is to establish the ground truth for each test case. If the AI 

algorithm provides a diagnosis, then data from the medical record or radiology report will be 

needed (see above). If the AI detects or segments lesions or organs, then the radiologist will 

need to review each image and provide ROIs to establish the ground truth. When the ground 
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truth depends on the radiologist only (e.g., for diagnosis or for ROI), this is not a true ground 

truth, since there is inter-reader variability and such cases are better referred to as a 

“reference standard.” If one wanted a better ground truth, more than one radiologist could be 

engaged to review the images, but this is usually not practical and is generally not important 

when trying to show the AI is performing comparably to the radiologist.

The fourth step is to choose the appropriate evaluation metric for the AI algorithm. There are 

many potential metrics for evaluation [48–51], and we briefly discuss the most common 

metrics applicable to most current AI algorithms. For any AI task, the AI makes a 

determination (e.g., detects a lesion, makes a diagnosis, or includes certain pixels in a 

segmentation). That determination is compared with the ground truth for each case. If the AI 

makes a positive call that is correct, it is a true positive (TP). If that call is incorrect, it is a 

false positive (FP). If the AI makes a negative call (e.g.. no abnormality) that is correct, it is 

a true negative (TN) and if it is incorrect, it is a false negative (FN). Performance metrics are 

computed based on different combinations of TP, FP, TN, and FN (Figure 2). For detection, 

one often measures the precision and recall of the AI algorithm. Precision is the percentage 

of all positives that are true positives, or TP/(TP+FP), and recall is the percentage of all 

actual positives that are retrieved, or TP/(TP+FN). For diagnosis, one often measures 

sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). 

Sensitivity (also referred to as the true positive rate or recall) is the percentage of TP cases 

that are correctly identified (e.g., the percentage of disease cases that are correctly 

identified). Specificity (also referred to as the true negative rate) is the percentage of TN that 

are correctly identified (e.g., the percentage of normal cases that are correctly identified). A 

final metric that is often measured is the area under the ROC curve, which captures in single 

number how well an AI algorithm trades off sensitivity and specificity (Figure 3) The ROC 

curve is a compact summary of how well an AI algorithm performs overall, and it is 

commonly superimposed on those from other algorithms to compare AI methods. However, 

the ROC curve doesn’t give the entire story about how well an AI algorithm performs in 

clinical practice, it represents all possible operating points (tradeoffs between TP, FP, TN, 

and FN) of an AI algorithm. An AI algorithm that is deployed in practice operates at a 

particular point on the ROC curve, defining the values of the AI performance metrics (Figure 

4). In general, an AI algorithm designed to detect abnormalities will have high sensitivity but 

poorer specificity (false positives). An algorithm designed to detect normal conditions (rule 

out disease) generally is tuned for specificity. Depending on the AI use case, sensitivity or 

specificity may be much more important, and the impact on the rate of FP and FN can be 

seen only by looking at the tails of the ROC curve (Figure 4). A high rate of FP, for example, 

is a major reason why the value of computer assisted diagnosis (CAD) algorithms to assist in 

evaluation of mammography imaging has been questioned [52–57]. However, more recent 

studies using newer AI models suggest potential value of CAD in breast imaging [35, 58]. 

Ultimately the value of a method needs to be assessed in a local practice, highlighting the 

importance of evaluation on local practice data.

The fifth step is to define a performance threshold for the metric that a radiologist wishes to 

achieve in order to decide that an AI algorithm will be useful in practice. Because of 

tradeoffs in performance metrics mentioned above, one generally does not aim for perfection 

in any one metric (e.g., 99% sensitivity in detecting cancer) since this may make other 
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metrics poor clinically (e.g., unacceptably high false positive rate). A better approach may 

be for the radiologist to first assess her performance and then evaluate if the AI performs 

similarly well.

The sixth step is to evaluate the test cases against the metric. This is done by submitting the 

test cases to the AI algorithm and comparing its output to the ground truth (established third 

step) and to create a “confusion matrix.” The confusion matrix is a table summarizing the 

number of TP, FP, TN, and FN, from which a number of AI performance metrics can be 

computed, such as precision, recall, accuracy, and others (Figure 2). As noted above, it could 

be useful to compute similar metrics for the radiologist (though this would require 

establishing a more robust ground truth, e.g., consensus read by several radiologists or 

pathology confirmation).

The seventh step is optional, entailing implementing a strategy to monitor AI performance, 

usually undertaken by intermittently repeating the preceding steps with a new (more recently 

acquired) test set. The rational for considering doing this is because radiology practices 

evolve over time, the patient populations change, imaging equipment and imaging protocols 

change, and all these as well as other factors may change how well an AI algorithm 

performs on the images (unless the AI algorithm is continually evolving as well). In 

addition, data registries that capture both AI performance metrics and metadata can help to 

determine specific situations where algorithm performance may be less than expected, as 

well as provide a way identify ways to improve AI algorithms.

(3) Maintaining radiologist expertise:

In the best case scenario, AI algorithms will be a supplemental resource to the radiologist, 

akin to a “second pair of eyes” rendering an opinion on cases, improving efficiency and 

diagnostic accuracy. This is similar to the radiologist showing a case to a colleague she trusts 

for a second opinion.

There are some dangers however, of unexpected negative consequences of AI on radiology 

practice, even if these algorithms perform well according to metrics on local practice data as 

described earlier. The first negative consequence is blind acceptance of the AI output. The 

AI algorithms are generally expected to be used to supplement, and not replace, the 

radiologist, who is presumed to have formulated an independent judgement before 

considering the output from the AI algorithm. In some cases, especially high volume and 

time-pressured practices, there may be a temptation to simply accept the AI reading and not 

formulate an independent judgement. In that case, radiologist performance will be no better 

than that of the AI algorithm (of course the same applies to showing a case to a colleague). 

The danger in the case of the AI algorithm, however, is that if it does not generalize well to 

unusual cases, it may lead the radiologist astray.

The second danger is adverse effects on over-reliance on technology. Reliance on technology 

in general reduces human resilience and can result in diminished human abilities [59]. A 

trivial example is the fact that few grocery clerks can make change without the assistance of 

the cash register. Fortunately, calculator technology is robust with failures being exceedingly 

rare. The potential dangers of diminished human ability in autonomous vehicles is 
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substantially larger, where over-reliance in technology likely resulted in reduced human 

attention to monitoring of the technology with catastrophic results [60]. As humans rely 

more and more on technology that assists them in their tasks, they become less vigilant, 

which can compromise safety [61, 62]. Similar major issues have been encountered in 

medicine with reliance on auto-complete features of electronic pharmacy ordering systems 

[63]. There is likewise danger to radiologists relying too heavily on new AI technologies, 

which may reduce their attention and perceptive skills. In fact, at least one study has 

documented possible automation bias effects in CAD that degrade radiologist decision-

making [64]. On the other hand, a recent study suggests that patients are less sure about the 

skills of computers, and they value the experience of the radiologist [65]. Patients have 

concerns that AI tools could produce restricted views with wrong diagnoses, and they 

believe such automated systems should remain secondary to the opinion of the radiologist. It 

will thus be beneficial for radiologists to keep these patient perspectives in mind as well as 

the pitfalls of assistive technologies as AI algorithms enter the market. Finally, over-reliance 

on technology and temptation to blindly accept AI outputs could adversely affect the 

training of future radiologists, who may not learn the critical observation and interpretative 

skills that make radiology a unique discipline.

CONCLUSION

The continual expansion of radiology in the healthcare process, the advances in imaging 

methods, and the volume of images they are producing, combined with the pressures of 

efficient workflow all create great demand for technologies that improve radiologist 

efficiency and reduce variation in practice without reducing accuracy. The AI tools coming 

to market offer potentially exciting opportunities to meet the needs of radiologist, but 

exuberance about their commercial prospects and the competitive business imperatives may 

push a flood of tools into the hands of radiologists with little understanding of whether and 

how to adopt them into their practices. The fact that many AI algorithms may not generalize 

to new data, combined with the regulatory pressures for rapid review and clearance, could 

cause unanticipated deleterious outcomes in clinical practice, particularly if the tradeoff of 

sensitivity and specificity of the AI tools is not optimal. Radiologists currently have little 

formal role in the development of AI tools other than being the targeted consumer. It is 

advisable for radiologists to become educated consumers, by (1) considering what clinical 

needs matter their practices, and whether the AI tools meet those needs, (2) evaluating AI 

tools they are considering adopting using case data from their own practices, (3) being 

cognizant of the potential hazards of over-reliance on technology and maintaining their 

clinical skills. The radiologist is ultimately responsible for the care of the patient, not the 

technology, and they will be well served by monitoring the benefit of these tools in their 

practice on an ongoing basis.
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Take Home Points

1. The pace of AI development is exploding, and the number of AI tools being 

marketed to radiologists is accelerating, posing challenges for radiologists to 

decide which tools to adopt.

2. The role of radiologists in imaging AI is to identify important clinical use 

cases where these tools are needed and to evaluate their effectiveness in 

clinical practice.

3. AI tools are expected to improve radiologist practice, but they must guard 

against over-reliance on these technologies and the accompanying loss of 

clinical expertise.
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Figure 1. 
Example ACR DSI use case for AI algorithms (only the sub-section of the use case 

specifying inputs/outputs of the AI algorithm for this use case is shown, cited from https://

www.acrdsi.org/DSI-Services/TOUCH-AI/Use-Cases/Pneumothorax). In evaluating an AI 

use case, the radiologist should read the text description to understand the clinical goal of 

the use case and then examine the outputs from the AI algorithm to determine if those will 

be helpful to the radiologist’s practice, e.g., detection of pneumothorax, pleural separation, 

laterality, size, and presence of chest tube.
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Figure 2. 
Confusion matrix and definition of the common metrics for evaluating AI algorithms. Note 

that a reliable gold standard (ground truth) is critical to establish the “True class”)
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Figure 3. 
ROC curves for different AI algorithms. Well-performing AI algorithms separate positive 

and negative cases well (lower left) and thus the ROC curve has an area near 1 (upper left), 

while poor AI algorithms do not separate the cases well (lower right) and have an ROC 

curve area of 0.5 (upper right).
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Figure 4. 
The importance of the operating point on the ROC curve. A given AI algorithm has a 

particular ROC curve (see Figure 3), and given that curve, a particular point is selected by 

the AI algorithm developer to determine the output of the AI algorithm (e.g., when to call an 

image “normal” or “abnormal.”) Depending on that point chosen, the AI performance 

metrics may vary greatly. Point “A” provides maximum specificity (right panel), since it 

calls nearly all the negative cases correctly and produces very few false positives (left panel). 

Point C, on the other hand, has maximum sensitivity (right panel), since it picks up all of the 

true positive cases, but produces many false positives (left panel). Point B balances 

sensitivity and specificity, picking up nearly all of the true positive, but having a reasonably 

large number of false positives. Whether high sensitivity (cancer detection) or specificity 

(ruling out an abnormality) is most important depends on the use case, and the tolerance for 

the number of false positives and false negatives also depends on the use case.
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Table 1.

List of primary areas of clinical application for AI methods and current status of development and availability

APPLICATION AREA CURRENT STATUS

Image enhancement

In market or soon to market
Disease detection

Lesion segmentation

Diagnosis

Treatment selection

In development
Response assessment

Clinical prediction (of treatment response or future disease)

Image enhancement
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Table 2.

Steps for the radiologist to undertake an evaluation of an AI algorithm in their practice.

1. Understand the key outputs of the AI algorithm (e.g., what is it predicting or producing?) and decide which is/are clinically relevant to the 
radiologist clinical needs

2. Collect representative patient samples (test cases)

3. Establish ground truth for each test case

4. Choose appropriate evaluation metric (e.g., sensitivity, specificity, PPV)

5. Define performance threshold for the metric (e.g., 99% sensitivity in detecting cancer; this sets a threshold on false positives)

6. Evaluate the test cases against the metric

7. Implement monitoring strategy
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