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Abstract

There is controversy whether ultrasound point shear wave elastography (pSWE) can differentiate 

renal cell carcinoma (RCC) from angiomyolipoma (AML). This study prospectively enrolled 51 

patients with 52 renal tumors (42 RCCs, 10 AMLs). Ten measurements of SWV were obtained in 

the renal tumor, cortex, and medulla. Median SWV was first used to classify RCC versus AML. 

Next, the prediction accuracy of four machine learning algorithms—logistic regression, naive 

Bayes, quadratic discriminant analysis, and support vector machines (SVMs)—was evaluated 

using statistical inputs from the tumor, cortex, and combined statistical inputs from tumor, cortex, 

and medulla. After leave-one-out cross-validation, models were evaluated using the area under the 

receiver operating characteristic curve (ROC AUC). Tumor median SWV performed poorly 

(AUC=0.62; p=0.23). Except logistic regression, all machine learning algorithms reached 

statistical significance using combined statistical inputs (AUC=0.78-0.98; p<7.1x10−3). SVMs 

demonstrated 94% accuracy (AUC=0.98; p=3.13x10−6) and clearly outperformed median SWV in 

differentiating RCC from AML (p=2.8x10−4).
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INTRODUCTION:

Frequent imaging has increased the detection and need for characterizing solid renal lesions. 

Angiomyolipoma (AML) is the most common benign solid renal neoplasm (Jinzaki, et al. 

2014), and renal cell carcinoma (RCC) accounts for nearly 90% of all renal malignancies 

(Qayyum, et al. 2013). While RCC is usually managed with partial or radical nephrectomy, 

AML is typically observed or embolized. Hence, differentiating between AML and RCC is 

crucial (Siegel, et al. 1996). Otherwise, unnecessary surgery may be performed in patients 

later found to have benign AML. On B-mode ultrasound, AML is classically hyperechoic 

with a well-circumscribed margin and acoustic shadowing. However, minimal-fat AML may 

appear isoechoic (Park 2017). While RCC is most commonly hypoechoic, 32% of RCCs 

under 3 cm were previously found to be hyperechoic, mimicking angiomyolipoma (Forman, 

et al. 1993). One study showed that the diagnostic accuracy of grayscale ultrasound for small 

solid lesion characterization was 42%, increasing to 78% with power Doppler (Jinzaki, et al. 

1998). Hence, RCC and AML can be difficult to distinguish on B-mode ultrasound. These 

lesions are typically either followed clinically or further evaluated via CT or MRI. As part of 

the standard ultrasound examination, elastography could help characterize these common 

incidental hyperechoic lesions, minimizing unnecessary follow-up exams and reducing 

costs.

Ultrasound elastography non-invasively assesses tissues’ mechanical properties (Sigrist, et 

al. 2017). Strain elastography, an earlier technology, uses tissue displacement in response to 

compression from the ultrasound transducer to generate a strain elastogram, demonstrating 

relative tissue stiffness (Garra 2015). Point shear wave elastography (pSWE), a more recent 

technology, uses an acoustic radiation force impulse to transmit controllable longitudinal 

forces, deforming the tissue and generating transverse shear waves (Nowicki and Dobruch-

Sobczak 2016). The transducer detects shear wave velocity (SWV) to measure tissue 

stiffness. Advantages of pSWE over strain elastography include less operator dependence 

and quantitative SWV measurements.

There are conflicting results and limited experience using strain (Keskin, et al. 2015, Onur, 

et al. 2015, Tan, et al. 2013) and pSWE (Goya, et al. 2015, Lu, et al. 2015) to classify 

between AML and RCC. Using pSWE, one study showed decent performance with 88% 

sensitivity and 54% specificity (Goya, et al. 2015), while another demonstrated only 48% 

sensitivity and 33% specificity (Lu, et al. 2015). Recently, there has been increasing interest 

in using machine learning in radiology (Erickson, et al. 2017). Machine learning algorithms 

can make autonomous predictions (Kohli, et al. 2017) and detect complex patterns 

imperceptible to humans (Lakhani, et al. 2017).

In the field of ultrasound elastography, machine learning has previously been used for 

chronic liver disease diagnosis (Gatos, et al. 2017), fibrosis assessment in hepatitis B 

patients (Chen, et al. 2017), fibrosis assessment in hepatitis C patients (Fujimoto, et al. 2013, 

Stoean, et al. 2011), breast cancer diagnosis (Zhang, et al. 2016), and thyroid nodule 

diagnosis (Ma J. 2010). For renal lesions, machine learning using texture analysis on CT 

images has previously been used to differentiate fat-poor AML from RCC (Feng, et al. 2018, 

Hodgdon, et al. 2015), as well as different RCC subtypes (Kocak, et al. 2018). Deep learning 
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on CT images was used to differentiate RCC from oncocytoma (Coy, et al. 2019), as well as 

RCC from other benign entities such as AML and cysts (Zhou, et al. 2019).

There has been prior work applying machine learning to B-mode renal ultrasound. For 

instance, one study used a support vector machine to distinguish the following classes on B-

mode renal ultrasound with 86% accuracy: normal, medical renal disease, and cyst 

(Subramanya, et al. 2015). In fact, multiple studies have sought to differentiate these three 

classes using techniques such as the dominant Gabor wavelet features (Raja, et al. 2010) and 

a hybrid fuzzy-neural system (Raja, et al. 2008). However, machine learning has not been 

previously applied for solid renal lesion characterization using ultrasound elastography. This 

is of key clinical utility, as these lesions are often incidentally found on initial ultrasound, 

and their characterization could potentially minimize the time, expense, and patient anxiety 

associated with follow-up examinations.

The purpose of this study is to demonstrate that point shear wave elastography is accurate in 

differentiating between renal cell carcinoma and angiomyolipoma and that machine learning 

algorithms can better make this distinction than median shear wave velocity.

MATERIALS AND METHODS:

Patient Population

This prospective, single-center study was Institutional Review Board approved and Health 

Insurance Portability and Accountability Act compliant; all patients provided signed 

informed consent. From February 2014 to May 2016, patients scheduled for renal surgery 

who were diagnosed with a solid renal mass were enrolled, as well as additional patients 

with confirmed AML based on CT and MRI; 58 patients consented. The following patients 

were excluded (Figure 1): renal tumor other than RCC and AML (oncocytoma); RCC not 

confirmed by surgical pathology; AML not confirmed by pathology, CT, or MRI; failure to 

undergo elastography (one for tumor depth, one for tumor excision before elastography 

could be performed); incomplete pathology (RCC and AML in the same kidney so 

pathology could not be matched one-to-one); or incomplete measurements (medulla not 

measured). After applying exclusion criteria, 51 patients with 52 renal tumors remained. All 

RCCs were confirmed by surgical pathology. Three AMLs were confirmed by CT, five by 

MRI, and two by surgery. The study included 42 RCCs and 10 AMLs (Table 1). There were 

33 males (28 RCC, 5 AML) and 18 females (13 RCC, 5 AML). The average age was 57.0 

± 13.0 years (range: 16-79) for AML and 56.3 ± 7.6 years (range: 26-84) for RCC. Table 2 

summarizes RCC subtypes.

Image Acquisition

One of eleven certified sonographers or a radiologist (all with at least 18 months of 

experience in clinical ultrasound elastography) performed each exam using an Acuson 

S2000™ (Siemens Medical Solutions, Mountain View, CA) ultrasound system equipped 

with the Virtual Touch Tissue Quantification (VTTQ™) mode and a 6C1 convex array 

transducer (Sigrist, et al. 2017). Patients were placed in the neutral or decubitus position, 

performing breath-hold to reduce motion. Tumors were placed in the center of B-mode 
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images, minimizing the distance between the transducer and tumor. The region of interest 

(ROI) was placed in solid portions of lesions, avoiding cystic areas or calcifications. The 

average depth of renal lesions was 5.7 cm (range: 2.7-8), of cortical measurements was 5.2 

cm (range: 2.9-8), and of medullary measurements was 5.7 cm (range: 2.9-8). The average 

difference in depth between renal lesions and both cortical and medullary measurements was 

1.0 cm. Image quality was optimized by individually adjusting imaging parameters (depth, 

focus, gain). Point shear wave elastography (pSWE) was subsequently performed as 

described (Goya, et al. 2015, Lu, et al. 2015). Keeping the transducer still, a fixed box-

shaped ROI (10 mm axial by 6 mm lateral) was placed in the tumor, cortex, and medulla, 

and ten consecutive valid measurements of SWV were obtained at each location (Figure 2). 

Examples of AML and RCC are shown (Figure 3).

Tumor diameters and SWV measurements were retrieved from the picture archiving and 

communication system (Centricity, GE). Ten measurements of SWV were not always 

available from each location. 91.2% of cases involved exactly ten measurements, 5.4% of 

cases involved less, and 3.4% of cases involved more. The statistical features that ultimately 

served as inputs in machine learning models were the mean, median, interquartile, and 

standard deviation of either the ten measurements of shear wave velocity or the number of 

measurements available when less. Additional information (age, gender, pathology 

diagnosis) was obtained from patient records (Epic Systems Corporation, Verona, WI).

Statistical Analysis

All data analysis was performed in Matlab R2015b (MathWorks, Natick, MA). We first used 

median tumor SWV to classify between RCC and AML. Median tumor SWV and the true 

class labels were input into the Matlab perfcurve function, which recursively examined 

performance at different thresholds to generate a receiver operating characteristic (ROC) 

curve, used to calculate the area under the curve (AUC). Next, tumor-to-cortex shear wave 

ratio (SWR) and tumor-to-medulla SWR were evaluated in their ability to differentiate RCC 

and AML, again using perfcurve to generate ROC curves and AUC.

Machine Learning

The classification accuracy of four supervised machine learning algorithms for 

distinguishing between RCC versus AML was compared using four statistical measures of 

SWV (mean, median, interquartile range, and standard deviation) as inputs: quadratic 

discriminant analysis (Guo, et al. 2007), logistic regression (Dobson 1990), naïve Bayes 

(Hastie, et al. 2009), and a nonlinear support vector machine (Schölkopf and Smola 2002). 

We selected these algorithms because they are commonly used in the literature. Quadratic 

discriminant analysis used a pseudo-quadratic transformation. Support vector machines used 

the Gaussian radial basis function kernel. The Appendix contains additional detail about 

each algorithm.

The machine learning models were separately run using four different sets of inputs. The 

first set included the four statistical measurements (mean, median, interquartile range, and 

standard deviation) in the tumor alone, the second set included the four statistical measures 

in the cortex alone, the third set included the four statistical measures in the medulla alone, 
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and the fourth set included all four statistical measures within the tumor, cortex, and 

medulla, fora total of twelve features.

Validation was performed using leave-one-out cross-validation (Hastie, et al. 2009). During 

each run, the training data was used to train the model, and the Matlab predict function 

applied this model to the validation data point to output a score representing the likelihood 

(posterior probability) that the label came from each class, RCC or AML. Next, the Matlab 

perfcurve function used the scores and true class labels to generate ROC curves, 

subsequently used to calculate AUC, sensitivity, specificity, positive and negative predictive 

value, and accuracy. Hence, the reported ROC AUC values are from cross-validation. Next, 

the distribution of scores was compared between RCC and AML via a Wilcoxon rank-sum 

test, with p-values demonstrating the strength of class separation. Finally, the statistical 

significance of the difference in AUC between ROC curves generated by different models 

was calculated using the DeLong method (DeLong, et al. 1988). Supplementary Figure 1 

details the machine learning workflow.

RESULTS:

Using the median value of 10 SWV measurements did not show significant differentiation of 

RCC from AML with a ROC AUC of 0.62 (p = 0.23) (Table 3A). The tumor-to-cortex shear 

wave ratio also did not perform well, with ROC AUC of 0.64. The tumor-to-medulla ratio 

had moderate performance with ROC AUC of 0.72. Supplemental Figure 2 shows that the 

distribution of SWV measurements for AML and RCC was different, as shear wave velocity 

measurements are more clustered towards the median for angiomyolipoma than for renal cell 

carcinoma; this information would not be incorporated by using median shear wave velocity 

alone.

Support vector machines demonstrated the highest level of performance and represented the 

only machine learning algorithm that showed statistically significant separation of scores via 

the Wilcoxon rank-sum test using measurements in the lesion alone (AUC = 0.94; p = 4.6 x 

10−3), the cortex alone (AUC = 0.79; p = 2.3 x 10−5), or the medulla alone (AUC = 0.84; p = 

1.1 x 10−3) (Table 3B). Moreover, using the combination of features within the tumor, 

cortex, and medulla resulted in the highest level of performance for each machine-learning 

algorithm. In fact, using all 12 statistical features, all machine learning algorithms 

demonstrated statistically significant performance (AUC = 0.78-0.98; p < 7.1 x 10−3) in 

separating RCC from AML, except logistic regression (AUC = 0.71; p = 0.099) (Table 3B).

Analyzing score separation between RCC and AML in particular, the median value of shear 

wave velocity within the tumor, cortex, and lesion respectively did not demonstrate adequate 

score separation between the two classes (Figure 4A). With support vector machines, there 

was improved score separation between RCC and AML either using the four statistical 

measures in the tumor alone, the cortex alone, or the medulla alone (Figure 4B, first three 
columns). However, the best score separation for support vector machines occurred when 

statistical measures were used from the tumor, cortex, and medulla (AUC = 0.98; p = 3.1 x 

10−6) (Figure 4B, fourth column).
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Associated ROC curves are shown in Figure 5. Detailed values of model sensitivity, 

specificity, positive and negative predictive value, accuracy, and AUC are shown in 

Supplementary Table 1. The significance of the difference in ROC AUC between machine 

learning models is shown in Table 4. Support vector machines demonstrated a significantly 

different ROC AUC compared to median shear wave velocity when statistical features were 

analyzed in the tumor alone, cortex alone, medulla alone, or all regions.

DISCUSSION:

Support vector machines significantly outperformed median tumor shear wave velocity 

(SWV) in distinguishing between renal cell carcinoma (RCC) and angiomyolipoma (AML). 

Combining features from the tumor, cortex, and medulla lead to both support vector 

machines and quadratic discriminant analysis demonstrating significantly improved 

performance over median shear wave velocity, suggesting that SWV values outside the 

tumor may contain meaningful diagnostic information. Support vector machines (SVMs) 

performed best, and the literature confirms that nonlinear SVMs perform well with high 

dimensional data (Ben-Hur 2009). Our methodology differs from other studies using 

machine learning in elastography by analyzing composite statistical features from different 

regions, while other studies either directly analyze color maps quantifying stiffness or 

combine clinical data with single elastography measurements. Our study is the first that 

assessed machine learning for characterizing solid renal lesions using point shear wave 

elastography (pSWE). In addition, other studies investigating renal tumors using ultrasound 

did not leverage the heterogeneity of different tissue regions as we did by using 

measurements from these lesions as inputs to machine learning.

The literature shows conflicting results using strain elastography and pSWE. Strain 

elastography previously demonstrated high sensitivity (89%-94%) and high specificity 

(83%-100%) for differentiating RCC from AML (Keskin, et al. 2015, Onur, et al. 2015, Tan, 

et al. 2013). However, pSWE actually performed worse for this distinction than strain 

elastography. One study demonstrated 88% sensitivity and 54% specificity (Goya, et al. 

2015), while another demonstrated 48% sensitivity and 33% specificity (Lu, et al. 2015). 

Median tumor SVW also performed poorly in our study, with ROC AUC of 0.62. The shear 

wave velocity ratio (SWR) of the tumor to the peripheral parenchyma was previously 

proposed. Although SWR was useful in the diagnosis of liver fibrosis and breast cancer 

(Grgurevic, et al. 2015, Jia 2014), it performed poorly for solid renal lesions (Lu, et al. 

2015). It similarly did not perform well in our study. Prior research has shown that tissue 

stiffness is different in the renal cortex and medulla, both with pSWE and MR elastography 

(Bensamoun, et al. 2011, Zheng, et al. 2015). By incorporating statistical features from the 

renal lesion, cortex, and medulla using machine learning, we improved performance.

Machine learning has previously been used in ultrasound elastography. One paper 

investigated chronic liver disease diagnosis by inputting information from color maps 

quantifying stiffness values into an SVM (Gatos, et al. 2017), with ROC AUC of 0.87. 

Another study analyzed fibrosis in hepatitis B patients using color maps obtained during real 

time elastography, and a random forest classifier performed best (Chen, et al. 2017). Another 

manuscript analyzing the use of shear wave elastography in breast cancer diagnosis 
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employed deep learning on color maps quantifying stiffness, with ROC AUC of 0.95 

(Zhang, et al. 2016). Additional studies include diagnosing thyroid nodules via strain 

elastography using SVMs (Ma J. 2010), using Fibroscan data and clinical/laboratory values 

to evaluate fibrosis in hepatitis C using SVMs (Stoean, et al. 2011), and using color maps 

from real time elastography to evaluate fibrosis in hepatitis C via multivariate linear 

regression (Fujimoto, et al. 2013).

Notably, SWV outside the tumor demonstrated predictive ability in this study. A malignant 

tumor may alter its surrounding microarchitecture, changing SWV. For instance, areas of 

high stiffness can be seen outside the visualized tumor margin in breast elastography 

(Zhang, et al. 2015, Zhang, et al. 2016). Moreover, tumors may alter perfusion in 

surrounding tissues, changing their elasticity. A prior study analyzing animals both in vivo 
and ex vivo showed that experimental changes in renal perfusion induced by clamping the 

renal artery or vein altered SWV (Liu, et al. 2017). Another study showed that the reduction 

of elasticity after diminished blood flow was the major factor influencing SWV in patients 

with chronic kidney disease (Asano, et al. 2014). Thus, it is reasonable that incorporating 

SWV measurements outside the lesion can improve performance.

We acknowledge several study limitations, including the sample size of 51 patients; a future 

study could enroll more patients. However, we did incorporate thirty measurements of shear 

wave velocity for each patient from different tissue regions, which is substantially higher 

than previous studies. Moreover, while this study analyzed RCC and AML, the most 

common benign renal neoplasm and the most common renal malignancy respectively, a 

future study could analyze other benign tumors (oncocytoma), different RCC subtypes (clear 

cell, papillary, chromophobe), different tumors (transitional cell carcinoma), and pediatric 

renal tumors (Wilm’s tumor). Most patients in this study had clear cell RCC, and all were 16 

or older. Another limitation is that examinations were performed by one operator, which did 

not allow evaluation of inter-observer variability. However, a prior article did suggest that 

shear wave elastography measurements demonstrate decent reproducibility within the kidney 

(Bob, et al. 2014). Moreover, the limitations of this study are not markedly different from 

those of other published results. Another study using shear wave elastography to study renal 

allograft dysfunction used 6 measurements per kidney (versus 30 in our study), was 

retrospective (versus prospective in our study), demonstrated weaker results (AUC=0.70 vs. 

AUC = 0.98) and similarly did not assess inter-observer variability (Ghonge, et al. 2018). 

Additional limitations include the small sample size of AMLs (n=10) and a lack of a 

pathology gold standard for some AML cases. In the future, we could evaluate this 

technique in a multi-institutional study. We could also apply our technique to other organs, 

to further validate its generalizability. Finally, we could perform texture analysis on the 

original B-mode image to ascertain whether it provides additional diagnostic utility.

CONCLUSION:

Analyzing all the statistical features from the lesion, cortex, and medulla with machine 

learning, particularly with support vector machines, is significantly better able to distinguish 

between renal cell carcinoma and angiomyolipoma than median shear wave velocity using 

pSWE. Statistical measurements outside the lesion may reflect changes in the surrounding 
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renal parenchyma. The superior performance of support vector machines likely reflects the 

nonlinear nature of the Gaussian radial basis function kernel. Overall, point shear wave 

elastography can differentiate RCC from AML with high classification accuracy when the 

most robust machine learning algorithm takes the maximum available information from 

different regions into account.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX:: Summary of Machine Learning Techniques

In quadratic discriminant analysis, a transformation function is optimized to maximize the 

ratio of between-class variance to within-class variance and to minimize the overlap of the 

transformed distributions. A “pseudo-quadratic” transformation was used, in which an 

inverse covariance matrix was used as a cost function (how well the machine learning 

algorithm maps training data to outcomes) to measure the variability of covariance matrices 

among the classes.

Generalized linear models consist of linear models based on three components: a random 

component, a systematic component, and a link function. The random component identifies 

the dependent variable (Y) and its probability distribution, the systematic component 

identifies the set of explanatory variables (X1,…,Xk) and the link function identifies the 

function of the mean that is a linear function of the explanatory variables. If the outcome is 

binary (i.e. benign vs. malignant) and assuming that the random component has a binomial 

distribution, then the model is simply multivariate logistic regression, which is what was 

used here. Merging these three components leads to the following relationship between the 

prediction and input data (statistical features derived from 10 measurements of shear wave 

velocity): g(μ) = α + β1X1 + ⋯ + βkXk, where g(μ) is the prediction. The function could be 

linear or nonlinear.

The Naive Bayes Classifier is based on Bayes theorem, and it tends to perform well when 

the inputs have high dimensionality. It is based on the assumption that input data (statistical 

features from shear wave velocity in our case) have some multivariate distribution, but the 

outcomes are independent. Despite its simplicity, it is capable of performance comparable to 

more sophisticated classification methods. It is based on prior probabilities, derived from 

previous experience, which can be used to predict outcomes.

With the support vector machine, the original input (feature) space is mapped into a higher 

dimensional feature space in which an optimal separating hyperplane is constructed such 
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that the distance from the hyperplane to the nearest data point is maximized. In this case, 

features represent the statistical quantification of inter-measurement variability and 

differences in shear wave velocity across ten different measurements. This aids in the 

generalizability of the support vector machine classifier. We used the Gaussian radial basis 

function kernel in Matlab, a non-linear support vector machine.
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Figure 1: 
Tumors excluded from analysis. Out of the original 59 solid renal tumors, 52 were included 

and seven were excluded. Abbreviations: pSWE (point shear wave elastography), RCC 
(renal cell carcinoma), AML (angiomyolipoma).
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Figure 2: 
Parameters under study: for each patient, ten measurements of shear wave velocity were 

performed in the tumor, renal cortex, and renal medulla. For each region (tumor, cortex, and 

medulla), the mean, median, interquartile range (IQR), and standard deviation of the ten 

measurements of shear wave velocity was obtained.
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Figure 3: 
A) B-mode and corresponding ultrasound elastography image of an angiomyolipoma. B) B-

mode and elastography image of a hypoechoic renal cell carcinoma. C) B-mode and 

elastography image of a hyperechoic renal cell carcinoma.
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Figure 4: 
Scores for angiomyolipoma (AML) and renal cell carcinoma (RCC) separation using median 

shear wave velocity (SWV) and machine learning. Scores reflect the likelihood (posterior 

probability) that the label came from each class. The red line in the boxplot indicates the 

median. The box edges indicate the 25th and 75th percentile, the whiskers extend to the 

farthest points not representing outliers, and outliers are marked with a ‘+’ sign. A) Boxplots 

show poor separation between RCC and AML when median SWV is analyzed in the tumor 

(left plot), cortex (middle plot), or medulla (right plot). B) Improved score separation when 
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the four statistical features in the lesion (first plot), cortex (second plot), or medulla (third 

plot) are used with a support vector machine. The best separation occurs when all four 

statistical features are used from the tumor, cortex, and medulla (right plot). P-values are 

derived from the Wilcoxon-rank sum test comparing the distribution of scores between RCC 

and AML.
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Figure 5: 
Receiver operating characteristic (ROC) curves compare the performance of each machine 

learning algorithm and median tumor shear wave velocity (SWV) to predict renal cell 

carcinoma versus angiomyolipoma. Support vector machines had the highest performance of 

all machine-learning algorithms.
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Table 1.

Summary of the Patient Population: Comparing the AML and RCC Groups

Characteristics Angiomyolipoma Renal Cell Carcinoma

Patients (n = 51) 10 41

Age (years) 57.0 ± 13.0 (16-79) 56.3 ± 7.6 (26-84)

Gender: Male (n=33) 5 28

Gender: Female (n=18) 5 13

Diameter (mm) 22.3 ± 22.5 (10-85) 34.8 ± 14.4 (14-87)

Location: Right (n=32) 7 25

Location: Left (n=20) 3 17

Note: Values in brackets represent ranges.
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Table 2.

Types of Tumors Included in the Study Population

Group n Percent (%)

Total 52 100%

Renal Cell Carcinoma 42 80.8%

 Clear cell type 32 61.5%

 Papillary type 6 11.5%

 Chromophobe type 3 5.8%

 Unclassified 1 1.9%

Angiomyolipoma 10 19.2%
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Table 3.

Performance of Traditional Measures and Machine Learning in Classifying Between RCC and AML

Region Value ROC AUC

Tumor SWV Median Values 0.62

Cortex SWV 0.40

Medulla SWV 0.28

Tumor-to-Cortex Ratio 0.64

Tumor-to-Medulla 0.72

 (A) Traditional Measures (Individual Values and Ratios)

Machine Learning Algorithm ROC AUC with associated p-value from rank-sum

Region Value Logistic p Bayesian p QDA p SVM p

Tumor Only

Using all four statistical 
measures.

0.57 0.26 0.67 0.097 0.49 0.29 0.94 4.6E-03

Cortex Only 0.65 0.62 0.67 0.11 0.61 0.95 0.79 2.3E-05

Medulla Only 0.66 0.13 0.72 0.032 0.51 0.90 0.84 1.1E-03

Cortex, Tumor, & 
Medulla 0.71 0.099 0.78 7.1E-03 0.9 1.2E-05 0.98 3.1E-06

 (B) Machine Learning

For each variable, the receiver operating characteristic area-under-the-curve (ROC AUC) demonstrates its ability to separate RCC from AML: A) 
Performance of median shear wave velocity (SWV) and shear wave ratios in predicting RCC versus AML. ROC AUC was relatively low. B) 
Performance of different machine learning techniques, including logistic regression, Bayesian classification, quadratic discriminant analysis 
(QDA), and support vector machines (SVM). When all four statistical measures (mean, median, IQR, standard deviation) from all three regions 
(lesion, cortex, and medulla) were used to predict RCC versus AML (12 features total), performance was substantially improved, with SVMs 
performing best. P-values were calculated using the Wilcoxon rank-sum test comparing the distribution of scores between RCC and AML. Values 
of p < 0.01 are bolded.
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Table 4.

Comparison of Performance Between Different Models

A) All Features the Lesion, Cortex, and Medulla

Combination p-Value

Median SWV vs. Logistic 0.490

Median SWV vs. Bayesian 0.0870

Median SWV vs. QDA 8.70 e-3

Median SWV vs. SVM 2.80 e-4

Logistic vs. Bayesian 0.279

Logistic vs. QDA 0.0142

Logistic vs. SVM 1.68 e-4

Bayesian vs. QDA 0.105

Bayesian vs. SVM 8.74 e-3

QDA vs. SVM 0.0335

B) Features in the Lesion Only

Combination p-Value

Median SWV vs. Logistic 0.537

Median SWV vs. Bayesian 0.570

Median SWV vs. QDA 0.275

Median SWV vs. SVM 2.50 e-4

Logistic vs. Bayesian 0.120

Logistic vs. QDA 0.444

Logistic vs. SVM 4.71 e-7

Bayesian vs. QDA 0.0165

Bayesian vs. SVM 1.17 e-5

QDA vs. SVM 8.82 e-6

C) Features in the Cortex Only

Combination p-Value

Median SWV vs. Logistic 0.147

Median SWV vs. Bayesian 0.0919

Median SWV vs. QDA 0.125

Median SWV vs. SVM 6.37 e-3

Logistic vs. Bayesian 0.495

Logistic vs. QDA 0.592

Logistic vs. SVM 0.0511

Bayesian vs. QDA 0.276

Bayesian vs. SVM 0.133

QDA vs. SVM 0.0138

D) Features in the Medulla Only

Combination p-Value
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Median SWV vs. Logistic 0.0123

Median SWV vs. Bayesian 0.00168

Median SWV vs. QDA 0.108

Median SWV vs. SVM 2.66 e-5

Logistic vs. Bayesian 0.179

Logistic vs. QDA 0.0508

Logistic vs. SVM 0.0421

Bayesian vs. QDA 0.00233

Bayesian vs. SVM 0.177

QDA vs. SVM 0.00124

The difference in receiver operating characteristic area-under-the-curve between each pair of models was compared using the DeLong method. This 
comparison was performed using A) features from the lesion, cortex, and medulla, B) features from the lesion only, C) features from the cortex 
only, and D) features from the medulla only. Values of p < 0.01 are bolded.
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