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Abstract

Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The 

potential applications are vast and include the entirety of the medical imaging life cycle from 

image creation to diagnosis to outcome prediction. The chief obstacles to development and clinical 

implementation of AI algorithms include availability of sufficiently large, curated, and 

representative training data that includes expert labeling (eg, annotations). Current supervised AI 

methods require a curation process for data to optimally train, validate, and test algorithms. 

Currently, most research groups and industry have limited data access based on small sample sizes 

from small geographic areas. In addition, the preparation of data is a costly and time-intensive 

process, the results of which are algorithms with limited utility and poor generalization. In this 

article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm 

development, explain current limitations to data curation, and explore new approaches to address 

the problem of data availability.

Summary

Supervised artificial intelligence (AI) methods for evaluation of medical images require a curation 

process for data to optimally train, validate, and test algorithms. The chief obstacles to 

development and clinical implementation of AI algorithms include availability of sufficiently 

large, curated, and representative training data that includes expert labeling (eg, annotations).
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Artificial intelligence (AI), as a field defined broadly by the engineering of computerized 

systems able to perform tasks that normally require human intelligence, has substantial 

potential in the medical imaging field (1). Machine learning and deep learning algorithms 

have been developed to improve workflows in radiology or to assist the radiologist by 

automating tasks such as lesion detection or medical imaging quantification. Workflow 

improvements include prioritizing worklists for radiologists (2,3), triaging screening 

mammograms (4), reducing or eliminating gadolinium-based contrast media for MRI (5,6), 

and reducing the radiation dose of CT imaging by advancing image noise reduction (7–9). 

Automatic lesion detection by using machine learning has been applied to many imaging 

modalities and includes detection of pneumothorax (10,11), intracranial hemorrhage (12), 

Alzheimer disease (13), and urinary stones (14). Automatic quantification of medical images 

includes assessing skeletal maturity on pediatric hand radiographs (15), coronary calcium 

scoring on CT images (16), prostate classification at MRI (17), breast density at 

mammography (18), and ventricle segmentation at cardiac MRI (19,20). Yet substantial 

implementation and regulatory challenges have made application of AI models in clinical 

practice difficult and limited the potential of these advancements. Nearly all limitations can 

be attributed to one substantial problem: lack of available image data for training and testing 

of AI algorithms.

Currently, most research groups and companies have limited access to medical images, 

while the small sample sizes and lack of diverse geographic areas hinder the generalizability 

and accuracy of developed solutions (21). Although small data sets may be sufficient for 

training of AI algorithms in the research setting, large data sets with high-quality images and 

annotations are still essential for supervised training, validation, and testing of commercial 

AI algorithms. This is especially true in the clinical setting and is well outlined by Park and 

Han (22).

Most health care systems are not adequately equipped to share large amounts of medical 

images. Even when development is possible, medical data are often stored in disparate silos, 

which is not optimal for medical AI development that can be broadly used in clinical 

practice(s). Furthermore, simply achieving access to large quantities of image data is 

insufficient to allay these shortcomings. Adequate curation, analysis, labeling, and clinical 

application are critical to achieving high-impact clinically meaningful AI algorithms. We 

describe a process of labeling, curating, and sharing medical image data for AI algorithm 

development, followed by an in-depth discussion of alternative strategies to achieve 

responsible data sharing and applications in AI algorithm development for optimal clinical 

impact. To date, to our knowledge, this is the first work that gives an overview of the process 

of medical imaging data preparation for machine learning.
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Data Preparation Overview

Before medical images can be used for the development of an AI algorithm, certain steps 

need to be taken. Typically, approval from the local ethical committee is required before 

medical data may be used for development of a research or a commercial AI algorithm. An 

institutional review board needs to evaluate the risks and benefits of the study to the patients. 

In many cases existing data are used, which requires a retrospective study. Because the 

patients in this type of study do not need to undergo any additional procedures, explicit 

informed consent is generally waived. With clinical trials, each primary investigator may 

need to provide approval to share data on their participants. In case of a prospective study, 

where study data are gathered prospectively, informed consent is necessary. After ethical 

approval, relevant data needs to be accessed, queried, properly de-identified, and securely 

stored. Any protected health information needs to be removed both from the Digital Imaging 

and Communications in Medicine (DICOM) metadata, as well as from the images (23). If 

the data are intended for open-source research efforts, then additional human inspection of 

each image is standard because some images contain free-form annotations that have been 

scanned and cannot be removed reliably with automated methods. The quality and amount 

of the images vary with the target task and domain. The next step is to structure the data in 

homogenized and machine-readable formats (24). The last step is to link the images to 

ground-truth information, which can be one or more labels, segmentations, or electronic 

phenotype (eg, biopsy or laboratory results). The entire process to prepare medical images 

for AI development is summarized in Figure 1.

Accessing and Querying Data

Developers of AI algorithms are typically not located within a hospital and therefore often 

do not have direct access to medical imaging data through the picture archiving and 

communication system (PACS), especially when AI researchers are developing commercial 

algorithms. Access to PACS environments is limited to accredited professionals such as 

physicians, technologists, PACS managers, and clinical scientists. Making data accessible to 

AI developers is challenging and requires multiple steps, including de-identification of data 

(described later). The ideal approach is collaboration between clinicians and AI developers, 

either in-house or through collaborative research agreements.

Once data are accessible to AI developers, different strategies are available to search for 

medical images and clinical data. Custom search queries may, for example, consist of 

strings, international classification of disease codes, and current procedural terminology 

codes. Data can be systematically searched and extracted from hospital PACS and electronic 

medical records by using PACS or radiology information system search engines. For 

example, many PACS vendors allow user access to metadata such as annotations, creator, 

series and image number, and unique target lesion names and relations. These data can be 

exported in some PACS and further managed by other systems such as electronic medical 
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records, cancer databases, and oncologist or other provider databases (25). Alternatively, 

software packages are available to simplify the process of data querying (26–28).

De-Identification

Although written informed consent from patients is not always necessary, according to the 

U.S. Health Insurance Portability and Accountability Act, or HIPAA, and the European 

General Data Protection Regulation, both retrospectively and prospectively gathered data 

require proper de-identification. Sensitive information includes but is not limited to name, 

medical record number, and date of birth. A complete list of the 18 HIPAA identifiers is 

shown in Table 1. Identifiable information is commonly present in the DICOM metadata 

(header) and multiple tools are available to automatically remove this information (29). 

DICOM de-identification profiles are defined for a range of applications and used as the 

basis for de-identification workflows implemented in the Radiological Society of North 

America Clinical Trial Processor and the Cancer Imaging Archive (30). Besides the DICOM 

metadata, protected health information may also be embedded in images, which is often the 

case with US examinations or radiographs that are scanned into a health care system. 

Removal of embedded information requires more advanced de-identification methods such 

as optical character recognition (31) and human review for handwriting on scanned images 

not always recognized by automated methods. Care must also be taken not to inadvertently 

mix data sets, because doing so increases the individual risk of reidentification through 

cross-linking of nonrelated data points (32). Finally, medical data can be anonymized with 

k-anonymity, which transforms an original data set containing protected health information 

to prevent potential intruders from determining the patient’s identity (33). For posting 

radiology data in open-source research efforts, the DICOM metadata is often removed 

completely or converted to another format such as Neuroimaging Informatics Technology 

Initiative, or NIFTI, which retains only voxel size and patient position. Totally removing the 

DICOM metadata for open-source research efforts prevents privacy issues but reduces the 

value of data, because metadata is important for AI algorithm development.

Important protected health information that can be potentially overlooked, yet can act as 

“identity signatures,” include the HIPAA items full-face photos and comparable images, as 

well as biometric identifiers (ie, retinal scan and fingerprints). For example, head and neck 

CT data can qualify as comparable images. With widespread volumetric acquisition and ease 

of three-dimensional reformatting, the soft-tissue kernels or filters allow facial 

reconstruction that can identify the patient. Until there is a secure digital encryption method 

to alter identification without compromising clinical information, those making data publicly 

available need to take potential biometric signatures into consideration.

Data Storage

Data are commonly transferred to either a local data storage (single-center study) or an 

external data storage (multicenter study or commercial AI development). Data are usually 

stored at an on-premise server; however, with current cloud-based developments, data are 

increasingly stored in the cloud. Advantages of on-premise data storage include data safety 

and availability, but the potential of sharing data with other institutions is limited. Cloud-
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based data storage, on the other hand, is becoming more secure, improves the possibilities of 

sharing data, and provides data backup. Disadvantages of cloud-based storage include costs 

and the need for a fast internet connection.

Resampling Medical Images

Image perception of medical image data are relatively complex compared with nonmedical 

image perception tasks. Most convolutional neural networks for classification of images are 

trained and tested on two-dimensional images with fewer than 300 × 300 pixels (34). 

Medical images, however, exceed these dimensions; the in-plane spatial resolution is 

generally higher than 300 × 300 pixels, and many medical image studies are three-

dimensional instead of two-dimensional. Training convolutional neural networks with 

images larger than 300 × 300 pixels is possible; however, computers with strong 

computational power are necessary. This problem is most relevant in high-resolution 

applications; examples include CT of the inner ear or full-field digital mammography. 

Solutions include downsampling of the image resolution or patch-based evaluation of only 

image parts with relevant information (eg, focus on the aortic region in an algorithm 

developed for aortic dissection segmentation). However, patch-based methods frequently 

have high computational demands and are time consuming to train. Model training can also 

be simplified by classifying labels to healthy (scale 0) and diseased at different levels; for 

example, from less severely diseased (scale 2) to more severely diseased (scale 4) (35).

Besides DICOM files, which contain metadata and image slices, other file types are also 

available. AI development with raw MRI or CT data (before images are reconstructed) is 

gaining interest and has a potentially valuable role. Advantages include an increased amount 

of information captured in raw data, and disadvantages include the large storage space 

needed and difficult interpretation of raw data without reconstructed images.

Choosing Appropriate Label and Ground Truth Definition

Current AI algorithms for medical image classification tasks are generally based on a 

supervised learning approach. This means that before an AI algorithm can be trained and 

tested, the ground truth needs to be defined and linked to the image. The term ground truth 
typically refers to information acquired from direct observation (such as biopsy or laboratory 

results). Image labels are annotations performed by medical experts such as radiologists. 

These annotations can be considered ground truth if imaging is the reference standard (eg, 

pneumothorax). Choosing the appropriate label for a given imaging AI application requires a 

balance between finding the best discriminating categories (ie, normal vs emergent) and 

clinically relevant granularity (ie, subtype of liver lesion) depending on the desired task. 

With the exception of AI methods that enhance image quality, medical images in isolation 

are generally not suitable for developing diagnostic AI models unless associated with a 

diagnosis through the free-text radiology report (which require additional labeling strategies 

discussed below), expert consensus, segmentation, or an applied ground truth label such as 

electronic phenotyping (1).
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Although extracting structured labels from the radiology report text by using natural 

language processing may be ultimately the most scalable approach, researchers need to be 

cautious of the error rates both in the natural language processing techniques and the 

original text reports. In large quantities, it is known that AI algorithms can be trained on 

relatively low-quality data, but knowing the true ground truth for a given task to correlate 

with the imaging findings is the ideal (Fig 2). Medical imaging alone is considered ground 

truth for certain diagnoses, including intracranial hemorrhage, fractures, renal stone, and 

aortic dissection. However, the majority of findings is not definitive on the basis of imaging 

examinations alone and requires further follow-up, pathologic diagnosis, or clinical 

outcomes to achieve ground truth (ie, lung cancer, liver mass, pneumonia, etc). For example, 

an opacity on a chest radiograph has an extensive differential. It is difficult to know the 

ground truth without obtaining surgical, pathologic, genomic, or clinical outcome data (Fig 

3). There are also situations in which one modality may support a diagnosis but require 

definitive confirmation by using another modality. For example, a head CT might have 

findings supporting a diagnosis of stroke, but an MRI could definitively confirm. Depending 

on the ultimate task or purpose of the AI algorithm, ground truth definition may require 

confirmatory clinical labeling beyond the radiology opinion or report such as a pathologic or 

surgical report, clinical outcome, or both. Accumulation of this clinical information for a 

large number of patients can be resource intensive and is often referred to as electronic 

phenotyping (36). Querying of nonimaging data such as clinical outcomes and patient 

demographics can often not be performed through PACS, but requires extraction of 

information from electronic medical records.

In general, imaging data can be labeled in a variety of ways including structured label(s), 

image annotations, image segmentations, and/or electronic phenotypes (1,37). More often, 

application of the imaging diagnosis based on expert interpretation or a consensus of experts 

based on a reinterpretation of the images, or free-text report is used (10). Another approach 

to labeling is through the use of segmentations including, for example, outlining lung 

nodules at CT of the chest (Fig 4).

Ground Truth or Label Quality

Accurate ground truth definition or image labels for a large number of radiology 

examinations are required to build accurate medical imaging AI models (38,39). There are 

guidelines for reporting diagnostic imaging aiming toward structured reporting, which 

would immensely reduce the effort needed to extract useful imaging labels. At present, 

however, the over-whelming majority of reports remain composed of free text (40). Novel 

semantic reporting systems that aim to index and codify free-text reports in real time are 

being developed, but are currently not widely available for large populations. As a result, 

most centers attempting to use retrospective data are faced with large volumes of imaging 

studies and narrative reports that require substantial effort to label. Currently, there are many 

approaches to perform retrospective labeling, ranging from simple manual labeling by 

radiologists to automated approaches that can extract structured information from the 

radiology report and/or electronic medical record (41).
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Outside of medical applications, manual labeling is a commonly used approach in acquiring 

labeled imaging data for AI applications. Large corporations often hire nonexperts to hand 

review and label large amounts of data needed to support automated services such as ranking 

web search results, providing recommendations, or displaying relevant ads (42,43). This 

approach can be effective in medical imaging as well, but is impractical in most cases when 

used on large populations because it is extremely time consuming (and costly) to use 

medical experts, particularly for advanced modalities such as CT, PET, or MRI. When a 

relatively small number of images are needed for AI development, medical expert labeling 

and segmentation may be feasible. Segmentation performance can be evaluated by using 

either the Dice coefficient or the more advanced simultaneous truth and performance level 

estimation, or STAPLE, algorithm (44). The STAPLE algorithm compares segmentations 

and computes a probabilistic estimate of the true segmentation. For narrowly focused 

applications such as colonic polyp classification and kidney segmentation, crowdsourcing of 

labels by nonexperts may be feasible (45,46). Heim et al (47) compared segmentations of the 

liver performed by nonexperts, engineers with domain knowledge, medical students, and 

radiologists. Despite the finding that the crowd needed more time, accuracy was similar 

between these groups. Crowdsourcing challenges include inaccuracy with anatomic 

variations and pathologies, quality control, and ethical issues such as sharing medical images 

with the crowd. Crowd-sourced labeling is mostly performed with web-based tools, which 

are freely available (48,49).

One solution is to extract information from the report of imaging findings through rule-

based natural language processing (50,51) or recurrent neural networks (52,53). One of the 

most useful natural language processing methods is called topic modeling, which 

summarizes a data set with a large amount of text to obtain gross insight over the data set. 

This approach characterizes document content based on key terms and estimates topics 

contained within documents. For example, documents associated with “brain MRI” would 

comprise key terms such as axial, contrast, MRI, sagittal, brain, enhancement, et cetera. 

Another class of architectures, recurrent neural networks, are neural network-based models 

that can be trained on a small sample of reports and rapidly achieve performance levels of 

the state-of-the-art more traditional natural language processing tools (54,55). Recurrent 

neural networks represent an important improvement to language modeling because a 

dependency of a word in narrative language can occur long distances apart, such as “No 

evidence for acute or subacute infarction.” In this example, the “No” is far from the target 

“infarction.” It can be confusing for traditional natural language processing tools but picked 

up with recurrent neural networks (54). As a result, strategies for extracting structured labels 

from unstructured text have emerged that have shown a great deal of promise for limited 

applications to apply structured labels in large populations and generate large labeled data 

sets of imaging studies (2,56).

Because radiology reports are most often unstructured and not created specifically for the 

development of AI algorithms, the extracted information contains noise (ie, has a relatively 

low quality). Neural networks can still be relatively robust when trained with noisy labels 

(57). However, one should be careful when using noisy labels for the development of 

clinically applicable algorithms because every labeling error could be translated to a 
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decrease in algorithm accuracy. It is estimated that 2%–20% of radiology reports contain 

demonstrable errors (58).

Lastly, there is a trend toward interactive reporting where the radiologist report contains 

hypertext directly connected to image annotations (59). Such annotations have been used 

effectively for labeling of open-source data sets (60). Measurements can be performed in 

advance of radiologists by radiology preprocessors that improve annotation quality while 

saving radiologists time (61). Preliminary work on prospective labeling is showing that two-

diameter measurements and ovals are better than one-diameter measurements and much 

better than arrows (62). In addition to structured reporting, to the level of synoptic reporting, 

this should contribute significantly to increased prospective expert-labeled data. Interactive 

reporting is becoming more common where radiologists routinely label images in three 

dimensions and connect directly to hypertext descriptions in their report. This may be a 

potential solution to the local labeling issue with research just beginning. Nevertheless, 

substantial collaborative efforts may ultimately be needed to arrive at widely adopted 

reporting and standardization of labeling of imaging studies such that interoperability of data 

sets and subsequent models is possible.

Data Sets

Development of AI algorithms by using supervised learning requires large and 

heterogeneous training, validation, and testing data sets.

Data Set Types

Similar to conventional regression modeling, AI models are trained by inputting medical 

images linked to ground truth outcome variables (eg, pneumothorax). Generally, the training 

imaging data set is larger than the validation and testing data sets in ratios of 80:10:10 or 

70:15:15. To ensure generalizability of the AI algorithm, bias of the training data set should 

be limited. If an AI algorithm is trained with images from a European institution and the 

algorithm is used in an Asian population, then performance may be affected by population 

or disease prevalence bias. Similarly, if all the imaging training data were acquired by using 

one kind of imaging machine, it may not work as well on machines from other 

manufacturers, known as vendor or single-source bias. It is thus advised to use images from 

multiple diverse sources, or at least images representing the target population or health 

system in which the algorithm is to be deployed. After the algorithm is trained, a validation 

data set is needed to fine-tune the algorithm hyper-parameters and to check for overfitting. 

Note that validation in AI algorithm development has a different meaning than in 

conventional statistical modeling. Here, validation means tuning of the algorithm until the 

final performance of the model is evaluated with a testing data set. Multiple internal 

validation methods are available; however, independent validation in an external data set is 

preferred over internal validation to properly evaluate generalizability (63). Even if an 

electronic phenotype is available (eg, biopsy results of a lung nodule), annotations are 

needed for training and validation data sets to inform the algorithm of the location of the 

specific lung nodule to allow the algorithm to better understand the images. The testing data 

set functions as the reference standard and is used to evaluate the performance of the 
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algorithm. In multiple conditions, imaging is the reference standard (eg, pneumothorax), 

where high-quality annotations are needed for the testing imaging data set because this data 

set functions as the reference standard. The quality and veracity of the testing data set is 

arguably more important than that of the training set because this data set is used for 

performance testing and regulatory approval.

Data Set Size

To ensure generalizability, large training data sets are often essential. For specific targeted 

applications or populations, relatively small data sets (hundreds of cases) may be sufficient. 

Large sample sizes are especially required in populations with substantial heterogeneity or 

when differences between imaging phenotypes are subtle (35). The algorithm performance 

for computer vision tasks increases logarithmically with increased training data volume 

(64,65). Therefore, a proper sample size is needed. The main questions for the power 

calculation include the following: (a) which cases need to be included in the sample to allow 

for generalizability in a larger population, and (b) how many cases are needed to show an 

effect (66). The sample size calculation for test data sets should use traditional power 

calculation methods to estimate the sample size. In general, the development of 

generalizable AI algorithms in medical imaging requires statistically powered data sets in 

the order of hundreds of thousands or millions, which is problematic for many researchers 

and developers.

One partial solution for this problem may be semisupervised learning. Fully annotated data 

sets are needed for supervised learning, whereas semisupervised learning uses a combination 

of annotated and unannotated images to train an algorithm (67,68). Semisupervised learning 

may allow for a limited number of annotated cases; however, large data sets of unannotated 

images are still needed.

Another potential future solution to increase data sample size may be the generation of 

synthetic data through generative adversarial networks (69). Generative adversarial networks 

have the potential to synthesize unlimited numbers of high-quality realistic images that can 

be added to training data sets for development of detection and classification algorithms. 

First results in synthesized radiographs and mammograms are promising. However, limited 

evidence is available, especially when abnormalities are present on images (69,70).

Data Sources

Most academically developed AI algorithms in medical imaging have been trained, 

validated, and tested with local data from a single institution (1). Whereas multi-institutional 

data from different geographic areas would include a wide variety of imaging machines, 

ethnicities, and pathologies, single-institutional data are commonly used due to lack of 

access to multi-institutional data. Many medical centers lack motivation and resources to 

share data with other institutions or companies that develop AI algorithms due to regulatory 

and privacy issues, although medical image data can be shared without violating General 

Data Protection Regulation or HIPAA regulations with proper de-identification methods and 

secure data handling. Currently, medical image data are stored in isolated decentralized 
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silos, limiting the development of generalizable unbiased AI algorithms, which could 

theoretically be solved by having centralized data storage systems. When data are being 

made available to AI developers, appropriate data management is essential. Wilkinson et al 

(71) describe the FAIR (findability, accessibility, interoperability, and reusability) principle 

for good data management.

Open-Source Data Sets

An increasing number of data sets has been open sourced to address the problem of data 

access in medical research. Data sets are available in a wide range of domains from 

neuroimaging (72–77), breast imaging (36,78), chest radiographs (41,79), knee MRI (80), 

body CT (60), and others; a list of well-known open-source data sets is given in Table 2. 

Whereas open-source data sets stimulate the development of novel AI algorithms in the 

medical imaging field, there are important limitations. First, there is a wide variety of 

number and quality of images and availability of metadata and clinical information. Second, 

some open-source data sets are (partly) acquired by using outdated machines, contain low-

quality images, lack expert labeling or data curation, or have a sample size that is too small 

to reach high-quality algorithms that can be used clinically. Moreover, many open-source 

data sets are restricted to noncommercial (research only) use (79). This is a major limitation 

for researchers wishing to develop marketable algorithms, as commercial adoption is a 

common avenue for clinical deployment.

Bias

One of the most important limitations of training AI algorithms based on data from a single 

institution or from multiple institutions in a small geographic area is sampling bias. If an AI 

algorithm trained this way is applied to a different geographic area, then results of the 

algorithm may be unreliable due to differences between the sample population and target 

population (81). Other sources of bias include differences in age, proportions of race and 

sex, use of imaging machines (vendors, types, acquisition protocols), and prevalence of 

diseases. There may even be biases that researchers are unaware of, such as variations in 

local practice. For many medical applications there is a substantial variability between 

experts who evaluate images, which is true in clinical practice because it is inherent when 

labels and segmentations are manually created. This variability may result in biased labels 

and segmentations that may be mitigated by having multiple experts evaluating the same 

case (82,83). However, substantial costs and time delays often limit image assessment by 

multiple experts. Another important reason for using training data from a widespread 

geographic region is the availability of AI algorithms to patients in developing countries. 

Most AI algorithms are developed by research groups and companies who have access to 

training data sets with images from patients in developed countries (84).

Data Format

The two key types of formats relevant to AI application development are image data formats 

and image annotation formats. Nearly all PACS store medical images in DICOM format, 

which is the international standard for image objects. However, groups who collect images 
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may convert them from DI-COM to other formats such as portable networks graphics, or 

PNG, tagged image file format, or TIFF, or NIFTI for ease of distribution. However, one 

should keep in mind that important DICOM metadata are removed with these conversions. 

Image converting programs are sufficiently prevalent and accessible that there is usually no 

problem accessing and using image data acquired from multiple institutions in AI 

application development.

Unlike with image data, image annotations are not stored in a single common format. A 

major limitation of current commercial imaging systems that acquire image annotations (eg, 

for tracking cancer lesions [85–91]) is that they generally do not store annotations in a 

format that permits reuse for AI development. Image annotations are commonly stored in 

PACS and other systems as DICOM presentation state objects (92), which often vary among 

vendors and from which it is difficult to extract regions of interest, and usually these objects 

do not contain image labels. Even if they use DICOM structured reporting, or DICOM-SR 

(93), which provides different use case–specific templates for storing explicit details of 

image annotations, similar kinds of annotation data across systems may be stored by using 

different types of DICOM SR templates that thwart interoperability and reuse of annotations 

for AI development when acquiring them from different sites or even from different 

commercial systems within a single site. An important image annotation format for saving 

regions of interest is the DICOM segmentation map format (92,94), which is part of the 

DICOM standard. For nongraphic annotations, namely image labels such as radiologic 

findings or diagnoses, the annotation and image markup, or AIM, format (95–97) was 

developed and recently incorporated into the DICOM-SR standard (92). A few vendors of 

AI products and PACS have begun supporting this standard, as well as the open-source 

ePAD web-based image viewing and annotation tool (48). Adopting these standards for 

storing these image annotation data will enable multicenter sharing, aggregating, and 

repurposing of image data for studying new quantitative imaging biomarkers.

Federated Learning

In 2017, Google (Mountain View, Calif) introduced federated learning, a potential solution 

for the availability of data for AI algorithm development (98). With current practice, de-

identified data are transferred from the hospital (or silo) to a central storage system, whereas 

with federated learning the data stay in the hospital while the algorithm can be trained 

locally at multiple locations (Fig 5). Moreover, the algorithm itself takes up substantially 

less storage compared with image data. Therefore, distribution of algorithm training across 

institutions may be a viable solution.

Different approaches have been proposed, including parallel and nonparallel training 

methods. Parallel training methods were developed to speed up algorithm training by 

splitting the data set in separate samples. Different models are trained on each split of the 

data and finally the gradients are transferred to a central model (99,100). With nonparallel 

training, a sequential or cyclical method is used where the model is updated with data from 

each institution. Federated learning has not yet been evaluated extensively in the medical 

imaging field. Chang et al (35) simulated image classification with nonparallel federated 
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learning across four institutions and found better performance than with models based on 

single institutions and similar performance as centrally hosted patient data.

Despite the potential benefits of this technique, there are important problems that need to be 

solved before federated learning can be applied. First, scalability is limited because image 

annotation and labeling needs to be performed to an agreed standard per site, because data 

cannot leave an institution. Second, substantial computation resources may need to be 

replicated and placed within each facility for federated learning. Third, preprocessing and 

organizing the data for ingestion by the algorithm (an estimated 80% or more of the effort) is 

challenging in the federated approach, because the visibility of data to the algorithm 

developers is impeded. Fourth, variations in terminology across sites requires mapping to a 

common controlled terminology. Fifth, only gradient information is shared with algorithm 

developers, which is a step toward protecting protected health information data leaving the 

hospital because raw image data does not have to be shared. However, sensitive information 

may still be present in the gradient information. Lastly, there will be heterogeneity across 

different institutions in terms of patient populations, data volume, data format, et cetera. 

However, although federated learning is an attractive model, it is not yet applicable in the 

clinical setting due to its very early phase. Federated solutions to data structuring, labeling, 

and computing—as well as agreed cross-site standardization of all data formats—will need 

to be developed for this approach to achieve large-scale adoption.

Data Label Relationship to Future Implementation

It may never be possible to constrain medical imaging to a finite number of labels 

deterministically. While most of the AI research and solutions in medical imaging today are 

still carried out solving specific isolated tasks and based on curated data labeling, this is an 

approach at odds with the desired future state of a continuous learning environment enabling 

the autonomous incremental adaption to an ever more complex medical system. Practically, 

this will require the infrastructure to update the prediction model to take into account 

different data distributions or new information. Data curation and labeling strategies will 

therefore adapt to new AI techniques continuously learning from streaming (even 

multimodal) data, which will challenge any static approach to data labeling and training.

Conclusion

Image data availability is an important hurdle for implementation of artificial intelligence 

(AI) in the clinical setting. AI researchers need to be aware of the data source and potential 

biases, which may affect generalizability of AI algorithms. New approaches such as 

federated learning, interactive reporting, and synoptic reporting may help to address data 

availability in the future. However, curating and annotating data, as well as computational 

requirements, are substantial barriers.
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Learning Objectives:

After reading the article and taking the test, the reader will be able to:

• List the different steps needed to prepare medical imaging data for 

development of machine learning models

• Discuss the new approaches that may help address data availability to 

machine learning research in the future

• Identify properly de-identified medical data according to the U.S. Health 

Insurance Portability and Accountability Act (HIPAA) and European General 

Data Protection Regulation (GDPR) standards

Accreditation and Designation Statement

The RSNA is accredited by the Accreditation Council for Continuing Medical Education 

(ACCME) to provide continuing medical education for physicians. The RSNA designates 

this journal-based SA-CME activity for a maximum of 1.0 AMA PRA Category 1 
Credit™. Physicians should claim only the credit commensurate with the extent of their 

participation in the activity.

Disclosure Statement

The ACCME requires that the RSNA, as an accredited provider of CME, obtain signed 

disclosure statements from the authors, editors, and reviewers for this activity. For this 

journal-based CME activity, author disclosures are listed at the end of this article.
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Essentials

• Image data availability is an important hurdle for implementation of artificial 

intelligence (AI) in the clinical setting.

• AI researchers need to be aware of the data source and potential biases, which 

may affect generalizability of AI algorithms.

• New approaches such as federated learning, interactive reporting, and 

synoptic reporting may help to address data availability in the future; 

however, curating and annotating data, as well as computational requirements, 

are substantial barriers.
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Figure 1: 
Diagram shows process of medical image data handling.
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Figure 2: 
Diagram shows value hierarchy of imaging annotation. Most useful but least abundant is 

ground truth (pathologic, genomic, or clinical outcome data). Prospective annotation is 

incredibly valuable due to availability of contemporaneous information (clinical and/or 

laboratory data). By comparison, retrospective annotations are least valuable.
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Figure 3: 
Image in posterior-anterior direction shows nonspecific abnormality on chest radiograph. 

Application of most accurate label for nonspecific finding such as opacity in left lung 

(circle) is challenging in absence of other clinical and laboratory data.
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Figure 4: 
Axial images show medical image segmentations performed by experts. (a) CT examination 

of patient with lung nodule. (b) Nodule is independently and blindly segmented by three 

medical experts with free open-source software package (Horos, version 3.3.5; Nimble d/b/a 

Purview, Annapolis, Md). (c) Magnified image of segmentations. There are differences 

between segmentations; however, these differences are small and not clinically relevant.
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Figure 5: 
Diagram shows centralized versus federated learning. (a) Current artificial intelligence (AI) 

model development is through centralized model, in which de-identified data are transferred 

to centralized data storage system where AI algorithm can be developed. (b) In the future, 

federated learning may be used, in which data stays in each hospital. With federated 

learning, instead of transferring data outside each hospital, data stays in hospitals and AI 

model is sent to and trained in hospitals.
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Table 1:

Protected Health Information Identifiers according to the Health Insurance Portability and Accountability Act

Identifier

Name

Address
*

All elements (except years) of dates related to an individual
†

Telephone numbers

Fax number

E-mail address

Social Security number

Medical record number

Health plan beneficiary number

Account number

Certificate or license number

Any vehicle or other device serial number

Device identifiers and serial numbers

Web URL

Internet Protocol (IP) address

Finger or voice print

Photographic image
‡

Any other characteristic that could uniquely identify the individual

Source.—Reference 101.

*
All geographic subdivisions smaller than state, including street address, city, county, and zip code.

†
Including birth date, admission date, discharge date, date of death, and exact age if older than 89 years.

‡
Photographic images are not limited to images of the face.
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Table 2:

Large Open-Source Medical Imaging Data Sets

Data Set Description Image Types
No. of 
Patients Ground Truth

Single or 
Multiple 
Institutions

American College of Radiology Imaging Network 
National CT Colonography Trial (ACRIN 6664) 
(102)

CT 825 Pathology (biopsies) Multiple

Alzheimer’s Disease Neuroimaging Initiative (103) MRI, PET >1700 Clinical (follow-up) Multiple

Curated Breast Imaging Subset of the Digital 
Database for Screening Mammography (36)

Mammography 6671 Pathology (biopsies) Multiple

ChestX-ray8, National Institutes of Health chest x-
ray database (41)

Radiography 30 805 Imaging reports Single

CheXpert, chest radiographs (79) Radiography 65 240 Imaging reports Single

Collaborative Informatics and Neuroimaging Suite 
(104)

MRI Clinical (follow-up) Multiple

DeepLesion, body CT (60) CT 4427 Imaging Single

Head and neck PET/CT (105) PET/CT, CT 298 Pathology (biopsies), 
clinical (follow-up)

Multiple

Lung Image Database Consortium image 
collection (106)

CT, radiography 1010 Imaging, clinical for a 
subset

Multiple

MRNet, knee MRI (80) MRI 1370 Imaging reports Single

Musculoskeletal bone radiographs, or MURA 
(107)

Radiography 14 863 Imaging reports Single

National Lung Screening Trial (108) CT, pathology 26 254 Clinical (follow-up) Multiple

PROSTATEx Challenge, SPIE-AAPM-NCI 
Prostate MR Classification Challenge (109)

MRI 346 Pathology (biopsies), 
imaging

Multiple

Radiological Society of North America Intracranial 
Hemorrhage Detection (110)

CT 25 000 Imaging Multiple

Cancer Genome Atlas Kidney Renal Clear Cell 
Carcinoma data collection (111)

CT, MRI 267 Pathology (biopsies), 
clinical (follow-up)

Multiple

Virtual Imaging Clinical Trial for Regulatory 
Evaluation (112)

Mammography, digital 
breast tomosynthesis

2994 Imaging Multiple

Note.—AAPM = American Association of Physicists in Medicine, NCI = National Cancer Institute, SPIE = Society of Photo-Optical 
Instrumentation Engineers.
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