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A B S T R A C T

Background: Dendritic spines are structural correlates of excitatory synapses in the brain. Their density and
structure are shaped by experience, pointing to their role in memory encoding. Dendritic spine imaging, fol-
lowed by manual analysis, is a primary way to study spines. However, an approach that analyses dendritic spines
images in an automated and unbiased manner is needed to fully capture how spines change with normal ex-
perience, as well as in disease.
New method: We propose an approach based on fully convolutional neural networks (FCNs) to detect dendritic
spines in two-dimensional maximum-intensity projected images from confocal fluorescent micrographs. We
experiment on both fractionally strided convolution and efficient sub-pixel convolutions. Dendritic spines far
from the dendritic shaft are pruned by extraction of the shaft to reduce false positives. Performance of the
proposed method is evaluated by comparing predicted spine positions to those manually marked by experts.
Results: The averaged distance between predicted and manually annotated spines is 2.81 ± 2.63 pixels
(0.082 ± 0.076 microns) and 2.87 ± 2.33 pixels (0.084 ± 0.068 microns) based on two different experts.
FCN-based detection achieves F scores> 0.80 for both sets of expert annotations.
Comparison with existing methods: Our method significantly outperforms two well-known software, NeuronStudio
and Neurolucida (p-value< 0.02).
Conclusions: FCN architectures used in this work allow for automated dendritic spine detection. Superior out-
comes are possible even with small training data-sets. The proposed method may generalize to other datasets on
larger scales.

1. Introduction

Dendritic spines are postsynaptic structures emanating from den-
dritic branches of most excitatory neurons in the mammalian brain.
Presynaptic nerve terminals appose functional spines, and together they
form excitatory synapses, units of excitatory chemical synaptic trans-
mission in the brain. A mature dendritic spine consists of a spine head
connected to the dendritic branch by a thin neck. A spine head houses
postsynaptic molecular machinery needed for generating excitatory
postsynaptic potentials, but also to initiate growth or retraction of the
spine structure itself. With the advent of modern high-resolution ima-
ging techniques, it has been shown that the density of dendritic spines,
and thus the overall density of synaptic contacts, changes dynamically
with experience during development and healthy adulthood (Djurisic
et al., 2013; Fu et al., 2012; Majewska and Sur, 2003; Zuo et al., 2005a,

b). In addition, under pathological conditions, such as Alzheimer's,
Huntington's or Parkinson's diseases, permanent loss of spines and sy-
napses has been extensively documented, and correlated with cognitive
decline or loss of motor function (Day et al., 2006; Graveland et al.,
1985; Grutzendler et al., 2007; Shankar et al., 2007).

Modern high-resolution microscopy techniques generate vast
amounts of dendritic spine images. However, there is a bottleneck to in-
depth analysis of the spine data due to manual inspection of large da-
tasets, which is laborious and inconsistent among different readers.
Moreover, dendritic spine structure itself is currently described by one
of the three categories that represent most obvious spine forms –
mushroom, thin, or stubby; while this approach is necessitated by
manual categorization process, it is likely simplifying the continuum of
change that these synaptic structures undergo with plasticity.
Therefore, generalizable and automated data-driven detection
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procedure to supplant manual identification of dendritic spines is
needed.

A number of strategies have been employed so far for automated
spine detection. Most of them rely on extraction of the dendritic shaft as
a crucial step in the detection pipeline. For example, Yuan et al. (2009)
used a grayscale skeletonization algorithm that is constrained with the
minimum description length principle and other neuroanatomy-specific
constraints. Zhang et al. (2007) traced the centerline of dendrite and
spines to extract the backbone using curvilinear structure detectors.
Another approach was to extract dendritic shaft and segment the spines
according to width-based criteria that utilize a common morphological
feature of the spines (Bai et al., 2007). In Janoos et al. (2009), dendritic
skeleton and spines were identified using a medial geodesic function
after dendrites were reconstructed using surface representation; this
algorithm is sensitive to parameters in image acquisition and to the type
of neurons being analysed. Based on traced dendritic shaft, Mukai et al.
(2011) performed spine detection using eigenvalue images. Su et al.
(2014) proposed an iterative backbone extraction method, directional
morphological filters and shortest path techniques to extract boundaries
of dendrite.

Another set of approaches studies the geometry of dendrites and
dendritic spines to build mathematical models to help with detection
and segmentation (Blumer et al., 2015; Fan et al., 2009; He et al., 2012;
Zhang et al., 2010). Fan et al. (2009) used curvilinear structure de-
tectors and an adaptive level-set model to detect spines. Further, Zhang
et al. (2010) improved on their previous detection results by using
gradient vector flow method. He et al. (2012) proposed more accurate
detection using the minimal cross-sectional curvature of spine tips; a
region-growing method was then employed to extract entire spines.
Blumer et al. (2015) developed a statistical dendrite intensity and a
spine probability model; their approach obviated a need for manual
annotations to create a reference standard by generating synthetic
fluorescent images from automated scanning electron microscope data;
however, the detection in their method was biased towards the shapes
of spines that were most frequent in the training set. Lastly, some efforts
used extracted spine features to further distinguish spines from non-
spine objects (Yuan et al., 2009; Zhang et al., 2007). In most of these
methods, there is a need to manually adjust parameters in different
steps of the algorithm. Furthermore, performance tends not to be con-
sistent across different datasets, or the algorithms are designed to ef-
ficiently detect certain spine categories.

An existing software package often used for dendritic spine detec-
tion is Neurolucida 360 (Dickstein et al., 2016). Its spine detection
depends both on dendritic shaft tracing and modelling of the protru-
sions from the dendritic shaft using meshes. The software allows for
both automatic and user-guided dendritic shaft tracing. Another soft-
ware package that is frequently used is NeuronStudio (Rodriguez et al.,
2008). For spine detection, NeuronStudio uses candidate voxel clus-
tering based on local intensity threshold, distance to the closest point on
the surface, and expected maximum spine height (Rodriguez et al.,
2008). Both NeuronStudio and Neurolucida 360 have a semi-automated
approach where seed-pixels and input parameters are used to trace
dendritic shaft; on our dataset, this semi-automated approach works
better than their fully automated versions.

Recently, deep convolutional neural networks (CNNs) have de-
monstrated enormous potential in the field of medical image analysis
(Christ et al., 2016; Kamnitsas et al., 2017). Unlike traditional machine
learning techniques, deep neural networks do not require hand-crafted
features and can be trained end-to-end for object detection and se-
mantic segmentation. Unlike patch-wise classification in traditional
computer vision, CNNs can be engineered to capture contextual in-
formation to reduce false positive rates. A subcategory of CNNs, fully
convolutional networks (FCNs), allows input images to have varied
sizes and produce correspondingly sized output image with efficient
inference and learning. FCNs have become the key component in se-
mantic segmentation systems (Long et al., 2015). The original FCNs

perform learnable up-sampling using fractionally strided convolution.
In the case of low-resolution image input, FCNs can up-sample with
efficient subpixel convolutions to be able to generate a super-resolution
image output (Shi et al., 2016); this process can also be applied to an
image style transfer task where the content of one image is transformed
by applying the style from another (Johnson et al., 2016). In biomedical
images, recent successes in precise image segmentation were achieved
by U-Net architecture (Ronneberger et al., 2015). In U-Net, contextual
information is propagated to up-sampling layers by concatenating
output of lower layers to higher layers, providing more feature chan-
nels.

Here, we apply FCNs to automated dendritic spine detection.
Similar to U-Net, we add the output of lower layers to higher layers to
combine low-level features with global features. This paper has three
main contributions. First, to the best of our knowledge, this is the first
instance of FCNs applied to automated dendritic spine detection, with
the exploration of different up-sampling methods. FCNs automatically
extract features for spine detection. Second, the pipeline with FCN is
self-contained: once the FCN model is trained, there is a minimal re-
quirement for manual parameter tuning; the detection result is not
highly dependent on the post-processing step that extracts dendritic
shaft. Third, this method outperforms existing available software
packages for spine detection overall, with higher success rate on thin
and faint spines that are of neurobiological significance. Although
training deep networks requires large datasets, our method works on a
small number of images. The method should be generalizable and ro-
bust, and thus we expect it to be deployed on a different dataset or a
much larger dataset with more significant diversity.

2. Material and methods

2.1. Dendritic spine detection pipeline

Our approach for performing automated spine detection and eval-
uating the results is summarized in Fig. 1 and is detailed in the ac-
companying sections below. First, dendritic spines are imaged as high-
resolution 3D volumes (“raw image”). After deconvolution, several
maximal intensity projection (MIP) images are generated from each
volume, ensuring that all the imaged spines are included. These pro-
jected 2D images are input into the CNNs. The output of the CNNs leads
to a probability map of the location of dendritic spines. Predicted po-
sitions of dendritic spines are extracted from the output of the network
by binarizing the probability maps. Dendrite shaft extraction is per-
formed to prune false detections that are far away from the dendrite
shaft. Finally, to evaluate accuracy of spine detections, the predicted
positions of the spines are compared with those that were annotated by
two expert readers.

Fig. 1. Pipeline of dendritic spine detection starting from raw image, including
pre-processing and post-processing steps.
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2.2. Dendritic spine imaging and pre-processing

Dendritic spine imaging was performed on visual cortex tissue ob-
tained from a transgenic YFP-H mouse line, in which expression of
yellow fluorescent protein (YFP) was localized to cortical layer 5 (L5)
(Feng et al., 2000). A cohort of ten wild-type (WT) male mice, postnatal
day 90 (P90) or older, a part of a previous larger study (Djurisic et al.,
2013) were used here. Imaging was as described previously (Djurisic
et al., 2013). Briefly, distal apical dendrites of L5 neurons were imaged
with a Leica TCS SP2 AOBS confocal microscope (Leica Microsystems
Inc, Bannockburn, IL) using a 63X oil immersion objective and 8X
zoom. Images were acquired at 1024×1024 pixels in x- and y-axis
(0.03 μm per pixel) and at 0.16-0.2 μm z-axis resolution. Apical tufts
and the primary dendritic shaft immediately below the main branching
of the dendrite (approximately layer 2/3 border) were used in the
analysis.

For this project, there are 20 volumes of microscopic images with a
total of 962 optical slices. Each of these volumes contains different
number of slices, varying from 31 to 88. Each slice was de-convolved in
Huygens Software (Scientific Volume Imaging, The Netherlands) with
target signal-to-noise ratio of 35. De-convolved images within a stack
were grouped into sub-stacks such that maximal number of distinctive
spines appeared after maximum intensity projection (MIP) in the z-axis.
Fig. 2 shows a projected raw (A) and a de-convolved sub-stack (B).
Slices in the beginning or end of the original volume containing no
dendritic structures were discarded. The sub-stacks were collapsed to
create a total of 60 MIP images, which comprised our dataset. Two
neuroscience experts provided manual annotations on the MIP images
independently using Adobe Illustrator (Adobe Systems), in combination
with Image J software (MBF “Image J for Microscopy” collection of
plugins by Tony Collins; US National Institutes of Health). The anno-
tations consisted of one seed pixel placed in the approximate center of
each spine head.

The 60 MIP images were split into training, validation, and test sets,
for the purposes of learning from examples, selecting models and tuning
hyper-parameters, and evaluating the performance on unseen data,
respectively. The training set was randomly selected from 16 different
volumes out of the 20 volumes; the validation set was from 2 randomly
selected volumes out of the rest of the 4 volumes; the test set was from
the remaining 2 volumes. It was ensured that the sub-stacks and thus
the MIP images from the same volume were kept together within the
same type of dataset. The resulting training set has 48 MIP images; the
validation set contains 5 MIP images, and test set 7 MIP images.

2.3. CNN for dendritic spine detection

We designed the FCN network so that the output image has the same
height and width as the input image (Long et al., 2015). Standard
processes of convolution, batch normalization, nonlinear activation,
and pooling operations were applied as described previously (Ioffe and
Szegedy, 2015; Szegedy et al., 2015). Briefly, during convolutions,
learnable kernels scan across each layer’s input, and the output is
generated as the inner products between weights of each kernel and
different local regions of the input image. To help regularization and
address internal covariate shift, we performed batch normalization
(BN) by normalizing data in each mini-batch during training. In the test
phase, the normalization was according to the estimated population
statistics, as described in Ioffe and Szegedy (2015). After BN, we ap-
plied leaky rectified linear units (leaky ReLU) to introduce nonlinearity
into the network. After leaky ReLU, we applied max-pooling to down-
sample the spatial size of the representation to reduce the amount of
computation and avoid overfitting.

In addition to the standard down-sampling processes, we used a
modified up-sampling procedure that chooses between fractionally
strided convolutions (FSC) or efficient subpixel convolutions (ESPC),
depending on the result of validation. FSC is also known as transposed
convolution; it is commonly used for learnable up-sampling. Unlike
FSC, the ESPC network does not calculate the multiplication of weights
with inserted zeros in the input matrix and is more efficient as a result;
it performs convolutions in low resolution space multiple times and
interweaves the extracted feature maps to form the final high-resolution
output in the last layer (Shi et al., 2016). Instead of up-sampling in the
last layer (Shi et al., 2016), we used ESPC in each up-sampling step to
increase the expressive power of the network.

Fully convolutional version of GoogleNet (Szegedy et al., 2015) was
used, and both FSC and ESPC were studied as different ways for up-
sampling, as depicted in Fig. 3. In up-sampling steps, the network can
combine fine local features from low-level layers with coarse global
features from high-level layers; this is referred to as a skip architecture
(Long et al., 2015). For convenience, we refer to the last layer before
up-sampling as the “scoring layer”, as it would have been the layer that
generate scores for classification tasks with final fully connected layers.
We modified the skip architecture to use layers immediately before
pooling layers, as layers with fine local features, instead of previously
used pooling layers (Long et al., 2015). The network takes 2D gray-scale
images as an input, each of size 1024×1024 pixels. The output of the
network is a tensor of size 1024× 1024×2 with 2 channels, each
corresponding to a class: “spines” or “non-spines”. The output of the
network is run through a softmax layer to generate probability maps for
the two classes. To unify the nomenclature of different models, we

Fig. 2. Projected sub-stack from raw microscopic images (A) and de-convolved images (B).
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denote the last up-sampling fold “r” after both FSC and ESPC, e.g. FSC-8
means FSC model with the final up-sampling step of r= 8. We explored
architectures having r= 8, r= 4, and r= 2.

Before training the network, we z-scored the input images using the
mean and the standard deviation of the training images to limit the
variation range of the weights during learning. The weights in the
convolutional layers were initialized using He initialization (He et al.,
2015); the weights in the transposed convolution layers (or FSC layers)
were initialized using bilinear kernels (Long et al., 2015). Updates of
the weights were performed iteratively using stochastic gradient des-
cent (SGD), in which the true gradient of the loss function is approxi-
mated by the gradient against a mini-batch of samples at each step
(LeCun et al., 1998). Based on our experiments during validation, the
batch size was set to 2 with an initial learning rate of 0.005 that de-
cayed 10% in every 500 epochs. The learning rate was chosen to pre-
vent overshooting, avoid being trapped in a local minimum, or taking
too long to train. In order to select among the six architectures, we
saved models with different weights initialization and checkpoints
during training. The number of epochs for each model was selected to
achieve the best performance of each model on validation data.

Training deep networks requires a lot of data, and data augmenta-
tion is commonly performed to inflate the training data while preser-
ving the ground truth (Yaeger et al., 1997). To alleviate overfitting, we
shuffled the training data and performed the following transformations
with experimentally determined probabilities to augment each mini-
batch of samples during SGD: (1) with a probability of 0.7, translating
the image in four directions by a distance randomly chosen within the
range of [-256, 256] pixels and padding the shifted part with zeros, (2)
with a probability of 0.5, flipping the image around the horizontal or
vertical axis, (3) rotating the image by a random integer in multiples of
90 degrees clockwise or counter-clockwise, and (4) with a probability of
0.5, raising the overall intensity of the image to a power drawn from a
Gaussian distribution with mean of 1.0 and standard deviation 0.3. The
data augmentation was performed stochastically to prevent the re-
generation of the same sample.

The ground truth needs to have the same shape as the output pre-
dictions from the network. Consequently, manual annotations in the
form of seed pixels were converted to binary masks of size 1024×1024

with circular regions centred at the seed pixels. The radii of the circular
regions were set to 3 pixels: using smaller radii increased training time,
whereas circles with larger radii tended to enclose background pixels
that are non-spine. The probability maps generated from the output of
the network were compared with these binary masks to compute the
loss function. Cross entropy loss between the prediction and the ground
truth was computed and regularized by the L2 norm of the weights. Due
to batch normalization, L2 regularization was not used as the primary
method to prevent overfitting. Therefore, the coefficient was set to be a
small number, 1e-6. The loss was minimized using Adam optimization
(Kingma and Ba, 2014).

2.4. Post-processing

Post-processing steps are independent from the rest of the pipeline,
including probability map binarization and dendritic shaft extraction,
as shown in Fig. 1. We binarized the output probability maps generated
from the network in order to extract predictions in the form of pixel
coordinates. The threshold for the binarization is the product of a
constant coefficient β with the mean of the probability map. The value
of β is determined during validation and is fixed at 200 for all experi-
ments. After the binarization, the centroid of each connected region is
selected as a candidate position of a spine.

To eliminate false detections that can be located far away from the
main branches of the dendrite in some images, we binarize the MIP
image using Otsu’s method and remove small open areas to estimate the
boundaries of the main dendritic shaft. Here we make another as-
sumption that spines are within a cut-off distance of 60 pixels (1.8
microns) away from the approximate boundaries of the shaft. This as-
sumption is based on the typical length of spine necks. Any detection
outside the cut-off is discarded. The parameters used in this step are
fixed in all experiments. As will be shown in Section 3.1, this step,
which was designed to improve the performance, turned out to be
unnecessary for the best-performing models.

2.5. Evaluation of detection

Predicted spines that were too remote from the dendritic shaft were

Fig. 3. Architecture of up-sampling using FSC
or ESPC with r= 2, r= 4, and r= 8. Input and
output of the model are in black. Intermediate
layers are shown in different colors. Layers of
the same color have the same height and
width. Layers that are identical between
GoogleNet and our architecture (blocks of
conv/BN/ReLU/pooling), up to the scoring
layer are not depicted. After each intermediate
up-sampling step, we sum the output of each
up-sampled layer with the conv/BN output of
the layer immediately before the pooling op-
eration. Only the layers involved in the sum-
mation are shown. Each up-sampling step is
denoted by arrows: the difference between ar-
chitectures having r= 8, r= 4, and r=2 lies
in the last up-sampling step, denoted by arrows
of different styles. For r= 8, the up-sampling is
directly from 128×128×2 (orange layer) to
the output layer of size 1024× 1024×2; for
r= 4: 4-fold up-sampling from the
256× 256×2 layer (purple) to the output
layer; for r= 2, two-fold up-sampling from
512×512×2 (blue) to the output layer. The
input image has one channel with a size of
1024×1024×1. The output layer is a tensor
of shape 1024× 1024×2 which is run
through a softmax layer that generates prob-

ability maps for the two classes being predicted (spines or non-spine).
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pruned away and not considered in the evaluation. For a predicted
spine to be counted as a true positive it had to be within a distance of δ
pixels from the closest seed pixel. Unless otherwise noted, all results
reported used a fixed δ at 16 pixels. The robustness of the choice of both
the binarization coefficient β and the distance tolerance δ is analysed in
Section 3.1. Although some spines in one MIP image may re-appear in
the MIP image from a neighbouring sub-stack, we treat each MIP image
independently during annotation and evaluation. We evaluated the
detection pipeline on a per-spine basis, using the results on the test
images as our final results. The metrics include the number of true
positives (TP), false positives (FP), false negatives (FN), precision (= TP
/ (TP+FP)), recall (= TP / (TP+ FN)), and F score (harmonic mean of
precision and recall). We also calculated the mean Euclidean distance
between our predictions and the manual markings.

The final results are compared with the semi-automated versions of
two available software packages (Section 3.2): NeuronStudio (NS) and
Neurolucida 360 (NL). Both NS and NL are based on skeleton extraction
and need human intervention to achieve reasonable results. In NS, seed
pixels on the dendritic shaft need to be provided manually, after which
the program traces the skeleton and detect spines at the vicinity of the
shaft. In NL, we used the Rayburst Crawl method to trace the main
shaft, and the tracing was mostly manual for better performance.
Parameters such as outer range, minimum height, detector sensitivity,
and minimum voxel count were tuned to optimize the performance.
Two dimensional MIP images were input to NS, and the pre-MIP sub-
stacks were input to NL as three dimensional volumes. If NS failed to
trace the skeleton and detected zero spine in an image, or if NL failed to
load a sub-stack with only two raw image slices, the corresponding MIP
image was excluded from evaluation. The coordinates of predicted
spine heads from NS and NL were regarded as the final results and were
compared with the manual annotations from the two readers in the
same way as the evaluation of our method. Lastly, Wilcoxon signed-
rank tests were conducted to calculate the p-values based on F scores
per image from different methods.

All experiments related to CNNs were conducted in TensorFlow
(Abadi et al., 2016). Each training of 1000 epochs took less than one
day on a Tesla K40c GPU from Nvidia. Each Tesla K40c has 12 G of
memory. Our model took on average 4 s to make predictions on one
image. Our data and code will be available upon request.

3. Results and discussion

3.1. Model selection from different FCN architectures

The models we compared in the validation process include six ar-
chitectures with different up-sampling schemes: FSC-8, FSC-4, FSC-2,
ESPC-8, ESPC-4, and ESPC-2. In addition, we compared the validation
results with those from GoogleNet FCN-8 s, VGG16 FCN-8 s (Long et al.,
2015), and UNet (Ronneberger et al., 2015) trained on our data. The
model selection was based on F scores achieved on the validation set
using Reader 1′s annotations, because only Reader 1′s annotations were
used in training; the performance was also evaluated based on Reader
2, as shown in Table 1. The model with ESPC-4 achieves the highest F
score of 0.83 when aggregating TPs, FPs, and FNs for the entire vali-
dation dataset based on Reader 1 (or 0.83 ± 0.006 when averaging F
scores for each image), as well as the highest F score of 0.83 based on
Reader 2 (or 0.84 ± 0.006 when averaging F scores for each image).
Wilcoxon signed-rank tests were used to test the difference in the per-
formance between ESPC-4 vs. all other architectures (Table 3 in Sup-
plemental Materials): while there is no statistically significant differ-
ence in recall using ESPC-4 vs. other architectures, the precision of
ESPC-4 was significantly higher relative to FSC-4, ESPC-2, and Goo-
gleNet FCN-8 s (p < 0.05), and trended higher against all other ar-
chitectures. Therefore, we used ESPC-4 to evaluate the test set.

3.2. Post-processing: effect of shaft extraction is negligible

The effect of shaft extraction (SE) as a post-processing step is
evaluated for each architecture by changes in F scores before and after
the shaft extraction (Table 1). After SE, precision modestly increased for
all the architectures tested, as it successfully removed false positives.
On the other hand, recall values decreased during shaft removal; one
possible explanation is that spines that were correctly detected in the
vicinity of the shaft of low S/N (i.e., shaft is in focus in the neighbouring
sub-stack) were removed in the SE step as false positives. The ESPC-4
model, along with FSC-8, VGG16 FCN-8 s, are not significantly affected
by the SE step on any of the performance metrics (Table 4, Supple-
mental Materials). For all other architectures, the SE step modestly, but
significantly improved precision, while recall and F scores were un-
affected (Table 4, Supplemental Materials). Unlike previously published
methods that rely on shaft extraction for accurate spine detection, our
pipeline does not depend on shaft extraction for better performance.

3.3. Visualization of weights and activation maps

There are 64 filters in the first convolutional layer, each having a
shape of 7×7. The trained weights in the first convolutional layer of
ESPC-4 are shown in Fig. 4. It is noticeable that the weights have
captured low-level features such as edges, contrast, and local patterns.

The second channels of the activation maps from selected layers are
shown in Fig. 5. Those selected layers are directly involved in the
summation operation in the network, fusing local (fine) features with
global (coarse) features. The summation of the first two columns gen-
erates the third column. The last map shown (C3) is the closest to the
output layer, and it contains high signals for regions representing
spines. Also visible in C3 are few boutons (non-spine category), because
of their similar morphology to spines and due to high signal value.
However most of the boutons are suppressed by the probability map
binarization and shaft extraction process.

3.4. Addressing overfitting

As mentioned in Section 2.2, the validation set was used for model
selection and hyper-parameter tuning. We used F scores as the metric
for selecting models. F scores can only be computed after binarization
of the probability map. The performance evaluated before the shaft
extraction (SE) during training process is shown in Fig. 6, using the
training of ESPC-4 as an example. The losses and F scores on the
training data and validation data versus training epochs have close
values before 700 epochs, and we used early stopping during training to
prevent further overfitting. Although we have a small number of
images, each image has high resolution and contain around 30 spines.
Therefore, our training images contain around 1000 spine incidences.
Furthermore, the stochastic data augmentation, batch normalization,
and weights regularization all contribute to prevent overfitting. The F
scores do not increase until around 200 epochs, owing to the fact that
the binarization of the probability map was based on a high threshold
designed to extract spines that occupy very small regions of the image.
Also, it was observed that the onset of increasing F scores occurred later
in ESPC networks than in FSC networks.

3.5. Performance on test data

The precision and recall evaluated on the test sets using ESPC-4 are
plotted by varying β with =δ 16 pixels, as shown in Fig. 7 (A). An-
notations from both readers are used as the reference standard. The F
scores on the test sets are 0.822 and 0.847 from the two readers re-
spectively. The values of precision and recall against both readers with
fixed =β 200 and varying δ are shown in Fig. 7 (B). When the tolerance
δ is greater than 6 pixels, the precision and recall values are stable.
When δ is smaller than 6 pixels, the performance decreases largely with
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Table 1
Comparison of Precision, Recall, and F scores in validation data using different architectures before and after the extraction of dendritic shaft.

Architectures Reader 1 Reader 2

Before Shaft Extraction After Shaft Extraction Before Shaft Extraction After Shaft Extraction

P R F P R F P R F P R F

FSC-8 0.73 0.89 0.80 0.74 0.86 0.79 0.75 0.87 0.80 0.76 0.84 0.80
FSC-4 0.70 0.91 0.79 0.74 0.89 0.80 0.72 0.88 0.79 0.76 0.86 0.81
FSC-2 0.73 0.81 0.77 0.75 0.78 0.76 0.76 0.80 0.78 0.78 0.78 0.78
ESPC-8 0.68 0.87 0.77 0.78 0.86 0.82 0.70 0.84 0.76 0.79 0.83 0.81
ESPC-4 0.79 0.88 0.83 0.80 0.86 0.83 0.83 0.87 0.85 0.83 0.84 0.83
ESPC-2 0.66 0.90 0.76 0.74 0.89 0.81 0.68 0.88 0.77 0.77 0.87 0.81
GoogleNet FCN-8s 0.72 0.86 0.79 0.76 0.85 0.80 0.75 0.85 0.80 0.79 0.84 0.82
VGG16 FCN-8s 0.77 0.89 0.82 0.78 0.87 0.82 0.78 0.86 0.82 0.79 0.84 0.82
UNet 0.73 0.94 0.82 0.74 0.91 0.82 0.76 0.93 0.84 0.77 0.90 0.83

Fig. 4. Filters in the first convolutional layer of ESPC-4. Each filter has size 7×7, showing the low-level features learned by the network. The filters are sorted from
high variance to low variance.

Fig. 5. The second channel of the output of selected layers (or activation maps) in the ESPC-4 model applied on an image from validation data. The x and y
dimensions of images in rows A, B, and C, are in accordance with the red, orange and purple layers in Fig. 3, respectively: Row A: 64×64, Row B: 128× 128, and
Row C 256×256 pixels. Flow from Fig. 3: C1-B1-A1-A2-A3-B2-B3-C2-C3. C1 is from the lowest layer among the nine, showing edges of the all structures in the
image. B1 is from the convolution on the orange block before pool3, with lower resolution than C1 and higher contrast between spines and dendritic shaft. A1 has
even lower resolution, and the details about spines are lost. Starting from A2, the images are from the up-sampling half of the architecture. A2 exhibit the
checkerboard patterns known to exist in such networks. The summation of A1 and A2 leads to A3. B2 is from the convolutional up-sampling from A3. The summation
of B1 and B2 leads to B3, and C2 is from the convolutional up-sampling from B3. We can see from C2 that the spines have higher values than the background pixels.
Finally, the summation of C1 and C2 leads to C3, during which the local information in C1 is combined with the global information in C2 to generate C3. In the case of
ESPC-4, the layer corresponding to C3 gets up-sampled directly to the output of the network. For the purpose of visualization, values in all images are clipped from -2
to 4.
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decreasing tolerance. This means that stricter evaluation criteria have
an effect only when the distance tolerance is below 6 pixels.

The influence exerted by the variation in β and δ on F scores in test
data is illustrated in the heat maps in Fig. 8, for both Reader 1 (A) and
Reader 2 (B). The F scores are relatively invariant to changes of β be-
tween 160 and 220 and of δ between 12 and 18 pixels (Reader 1:
0.81 ± 0.0077, Reader 2: 0.84 ± 0.0086) for both readers.

The averaged distance between the predicted true spines and an-
notated ones is 2.81 ± 2.63 pixels (0.082 ± 0.076 microns) based on

Reader 1 and 2.87 ± 2.33 pixels (0.084 ± 0.068 microns) based on
Reader 2. When evaluating one reader’s annotations against another,
the F score is 0.925, indicating human performance is still better, but
comparable to the automated one.

Three examples of the process are shown in Fig. 9., starting with the
input de-convolved MIP images (Fig. 9A), through to the prediction
results before and after shaft extraction (Figs. 9D and E). Spines that are
too remote from the main shaft are not considered in detection. Despite
the fact that the same spine missed in one MIP image may be detected

Fig. 6. Training and validation losses (A) and F scores (B) vs. training epochs before shaft extraction evaluated based on Reader 1 using ESPC-4.

Fig. 7. Performance on test data. Precision-Recall curve with changing parameter β and fixed =δ 16 pixels (A). Precision and recall values with changing parameter δ
and fixed β=200 (B). Both are plotted using two sets of annotations.

Fig. 8. Heat map of F-scores with varying parameters (β and δ) evaluated based on Reader 1 (A) and Reader 2 (B).
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Fig. 9. Prediction results from three example images. (A) De-convolved MIP image, (B) Predicted probability map output from a trained model, (C) Binarized
prediction from a trained model, (D) Predicted spines before shaft extraction (centers of red boxes) overlaid on a de-convolved MIP image with reader 1′s annotations
(centers of green boxes), (E) Predicted spines after shaft extraction (centers of red boxes) overlaid on a de-convolved MIP image with reader 1′s annotations (centers
of green boxes). The size of the bounding boxes is fixed at 32 pixels and used only for visualization purposes. True positive predictions (indicated by red boxes that
overlap with green boxes) are generally very close to the corresponding seed pixels. The examples shown cover the challenging cases of multiple branches of
dendrites, faint spines, and small branches closer to the edges of images, as well as existence of axons and boutons that are potential false positives.
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in another MIP image, they were regarded as different spines during
evaluation. Not every spine is at the vicinity of the dendritic shaft in
MIP images, indicating the need for three-dimensional analysis to avoid
such false negatives.

3.6. Comparison with other dendritic spine detection methods

As described in Section 2.5, dendritic spine detection results using
our method are compared against the results obtained from two
available software packages, NeuronStudio (NS) and Neurolucida 360
(NL). Software and/or data from other related published methods (Bai
et al., 2007; He et al., 2012; Su et al., 2014; Yuan et al., 2009) were not
made available to us for comparison. Table 2 summarizes the results,
comparing the total number of true positives (TP), false positives (FP),
false negatives (FN), precision, recall, and F scores between our pipe-
line, NS and NL. Using our ESCP-4 pipeline, F score was robustly in-
creased by 83% relative to NS, and 32% when compared to NL. These
increases are significant; p= 0.018 for both NS and NL vs. our method,
using Wilcoxon signed-rank tests based on F scores per image. The main
improvement from our pipeline is from about five times fewer false
positives relative to both NS and NL, and about twice as many true
positives and two-fold fewer false negatives when compared to Neu-
ronStudio. We hypothesize that most of the differences are due to the
fact that thin and faint spines are often missed in the software. Even
when compared to NL, which has comparable recall values to our
method, our method detects 31 more spines from the “thin” category
out of the total of 213 true positives based on Reader 1′s annotations.
According to the distribution of spine categories in our dataset
(Fig. 10), thin spines constitute almost 40% of the total number of
spines; by extension, undercounting thin spines would contribute to a
significant underestimation of total spine numbers, as well as influence
conclusions on the involvement of thin spines in learning.

Because of heavy reliance on the shaft extraction, NS and NL
struggle to distinguish a dendritic spine from a neuronal structure of
similar morphology close to the traced skeleton, resulting in more false
positives and lower precision. Furthermore, the shaft extraction in NS

and NL introduces error when part of the shaft has low intensity. In this
case, manual adjustment on the shaft is needed, and is usually not
perfect. In contrast, we have shown that shaft extraction is not indis-
pensable as an additional post-processing step when FCN pipeline is
used, thus reducing the amount of manual intervention needed for ac-
curacy, and making the spine detection closer to fully automated.
Together, our results suggest that FCNs, and ESPC-4 model applied to
the test-set, offer significant improvements in the accuracy of dendritic
spine detection when compared to other frequently used methods, an
improvement which is, in addition to the automation, known to be
achievable with deep learning approaches.

4. Conclusions and future work

We present an automated pipeline for 2D dendritic spine detection
using fully convolutional neural networks with different up-sampling
schemes, as a pilot approach for future 3D detection efforts. Unlike
other approaches that can be limited to datasets or certain types of
spines, good predictive models in machine learning are capable of
generalizing. In addition, our approach works even on a small set of
images, with the flexibility to adapt to the increasing need of processing
large datasets of dendritic spine images. Unlike the approaches that
design the discriminative features of spines using mathematical models,
our deep networks can be trained from end-to-end and learn the fea-
tures automatically. With trained models, our method requires minimal
parameter tuning. Furthermore, instead of heavily relying on finding
the exact boundaries of the dendritic shaft as in some previous efforts,
we found that dendritic shaft extraction for pruning false positives in
the post-processing stage is not critical with FCNs. The performance of
our model significantly exceeds that of the semi-automated versions of
NeuronStudio and Neurolucida 360.

To our knowledge, our method is the first to apply convolutional
neural networks to the task of dendritic spine detection. The deep
learning approach is advantageous since it can learn a complex image
recognition task, and it performs well. However, there are some lim-
itations of our study, and improvements and extensions could be made
to enhance the technique. First, training deep networks can be time-
consuming, and requires a large amount of manually labelled images.
To ameliorate the latter, we used approximated masks as our ground
truth and performed detection using a method designed for pixel-level
segmentation tasks where each pixel is a training example. The eva-
luation of the method is therefore on a per-spine basis instead of pixel-
wise. If more annotated data from different imaging modalities were
provided, we could train a more powerful model. Second, spines may
not retain the same morphology in MIP images as in each slice, let alone
in three dimensions. Also, some spines imaged on top of the dendritic
shaft were neglected in MIP images. To address this limitation, we are
currently working on extending our method to three-dimensional image
data.

There are important research applications of our work. Once den-
dritic spines are detected by our methods, additional image processing
can be performed to extract image features for spine analysis of each
detected spine, such as segmentation and spine density calculation.
These features can then be correlated with biological or clinical aspects
of the tissue to glean biological insights into functional changes in
dendritic spines that may heretofore been overlooked.

Table 2
Comparison of our method with two existing software packages evaluated by both readers.

TP FP FN Precision Recall F score

Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2 Reader 1 Reader 2

NeuronStudio 133 142 204 194 125 134 0.396 0.423 0.516 0.515 0.448 0.464
Neurolucida 360 222 212 212 202 46 54 0.500 0.524 0.822 0.804 0.622 0.634
Our method 227 213 47 33 45 49 0.819 0.873 0.826 0.822 0.822 0.847

Fig. 10. Distribution of spine types in our dataset.

X. Xiao et al. Journal of Neuroscience Methods 309 (2018) 25–34

33



Acknowledgements

This research was supported by a collaborative seed grantfrom the
Stanford Bio-X program to D.R. and C.J.S. Spine images were derived
from experimental material obtained from M.D. and C.J.S. supported by
NIH grant EY02858.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jneumeth.2018.08.
019.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., 2016. TensorFlow: a system for large-scale machine
learning. OSDI 16, 265–283.

Bai, W., Zhou, X., Ji, L., Cheng, J., Wong, S.T., 2007. Automatic dendritic spine analysis in
two-photon laser scanning microscopy images. Cytom. Part A 71, 818–826.

Blumer, C., Vivien, C., Genoud, C., Perez-Alvarez, A., Wiegert, J.S., Vetter, T., Oertner,
T.G., 2015. Automated analysis of spine dynamics on live CA1 pyramidal cells. Med.
Image Anal. 19, 87–97. https://doi.org/10.1016/j.media.2014.09.004.

Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M.,
Armbruster, M., Hofmann, F., D’Anastasi, M., Sommer, W.H., 2016. Automatic liver
and lesion segmentation in CT using cascaded fully convolutional neural networks
and 3D conditional random fields. International Conference on Medical Image
Computing and Computer-Assisted Intervention 415–423.

Day, M., Wang, Z., Ding, J., An, X., Ingham, C.A., Shering, A.F., Wokosin, D., Ilijic, E.,
Sun, Z., Sampson, A.R., Mugnaini, E., 2006. Selective elimination of glutamatergic
synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9 (2),
251–259.

Dickstein, D.L., Dickstein, D.R., Janssen, W.G.M., Hof, P.R., Glaser, J.R., Rodriguez, A.,
O’Connor, N., Angstman, P., Tappan, S.J., 2016. Automatic dendritic spine quanti-
fication from confocal data with Neurolucida 360. Curr. Protoc. Neurosci. 77,
1.27.1–1.27.21.

Djurisic, M., Vidal, G.S., Mann, M., Aharon, A., Kim, T., Santos, A.F., Zuo, Y., Hübener,
M., Shatz, C.J., 2013. PirB regulates a structural substrate for cortical plasticity. Proc.
Natl. Acad. Sci. 110 (51), 20771–20776.

Fan, J., Zhou, X., Dy, J.G., Zhang, Y., Wong, S.T., 2009. An automated pipeline for
dendrite spine detection and tracking of 3d optical microscopy neuron images of in
vivo mouse models. Neuroinformatics. 7, 113–130.

Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M.,
Nerbonne, J.M., Lichtman, J.W., Sanes, J.R., 2000. Imaging neuronal subsets in
transgenic mice expressing multiple spectral variants of GFP. Neuron 28 (1), 41–51.

Fu, M., Yu, X., Lu, J., Zuo, Y., 2012. Repetitive motor learning induces coordinated for-
mation of clustered dendritic spines in vivo. Nature 483 (7387), 92–95.

Graveland, G.A., Williams, R.S., DiFiglia, M., 1985. Evidence for degenerative and re-
generative changes in neostriatal spiny neurons in Huntington’s disease. Science 227
(4688), 770–773.

Grutzendler, J., Helmin, K., Tsai, J., Gan, W.B., 2007. Various dendritic abnormalities are
associated with fibrillar amyloid deposits in Alzheimer’s disease. Ann. N. Y. Acad. Sci.
1097 (1), 30–39.

He, T., Xue, Z., Wong, S.T., 2012. A novel approach for three-dimensional dendrite spine
segmentation and classification. SPIE Med. Imaging. 8314https://doi.org/10.1117/
12.911693. 831437-831437.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. Proceedings of the IEEE International
Conference on Computer Vision. pp. 1026–1034.

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. International Conference on Machine Learning. pp.
448–456.

Janoos, F., Mosaliganti, K., Xu, X., Machiraju, R., Huang, K., Wong, S.T., 2009. Robust 3d
reconstruction and identification of dendritic spines from optical microscopy ima-
ging. Med. Image Anal. 13, 167–179.

Johnson, J., Alahi, A., Fei-Fei, L., 2016. Perceptual losses for real-time style transfer and
super-resolution. European Conference on Computer Vision 694–711.

Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane, A.D., Menon, D.K.,
Rueckert, D., Glocker, B., 2017. Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78. https://doi.
org/10.1016/j.media.2016.10.004.

Kingma, D., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412. 6980.

LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R., 1998. Efficient backprop. In Neural
Networks: Tricks of the Trade. Springer, Berlin Heidelberg, pp. 9–50.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3431–3440.

Majewska, A., Sur, M., 2003. Motility of dendritic spines in visual cortex in vivo: changes
during the critical period and effects of visual deprivation. Proceedings of the
National Academy of Sciences 100 (26), 16024–16029.

Mukai, H., Hatanaka, Y., Mitsuhashi, K., Hojo, Y., Komatsuzaki, Y., Sato, R., Murakami,
G., Kimoto, T., Kawato, S., 2011. Automated analysis of spines from confocal laser
microscopy images: Application to the dis- crimination of androgen and estrogen
effects on spinogenesis. Cereb. Cortex 21, 2704–2711.

Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., Wearne, S.L., 2008.
Automated three-dimensional detection and shape classification of dendritic spines
from fluorescence microscopy images. PLoS One 3, e1997. https://doi.org/10.1371/
journal.pone.0001997.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical
image segmentation. International Conference on Medical Image Computing and
Computer-Assisted Intervention 234–241.

Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., Sabatini, B.L.,
2007. Natural oligomers of the Alzheimer amyloid-ß protein induce reversible sy-
napse loss by modulating an NMDA-type glutamate receptor-dependent signaling
pathway. J. Neurosci. 27 (11), 2866–2875.

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.,
2016. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1874–1883.

Su, R., Sun, C., Zhang, C., Pham, T.D., 2014. A novel method for dendritic spines de-
tection based on directional morphological filter and shortest path. Comput. Med.
Imaging Graph. 38, 793–802.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A., 2015. Going deeper with convolutions. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1–9.

Yaeger, L.S., Lyon, R.F., Webb, B.J., 1997. Effective training of a neural network character
classifier for word recognition. Adv. Neural Inf. Process. Syst. 807–816.

Yuan, X., Trachtenberg, J.T., Potter, S.M., Roysam, B., 2009. MDL constrained 3-d
grayscale skeletonization algorithm for automated extraction of dendrites and spines
from fluorescence confocal images. Neuroinformatics 7, 213–232. https://doi.org/
10.1007/s12021-009-9057-y.

Zhang, Y., Zhou, X., Witt, R.M., Sabatini, B.L., Adjeroh, D., Wong, S.T., 2007. Dendritic
spine detection using curvilinear structure detector and LDA classifier. Neuroimage
36, 346–360.

Zhang, Y., Chen, K., Baron, M., Teylan, M.A., Kim, Y., Song, Z., Greengard, P., Wong, S.T.,
2010. A neurocomputational method for fully automated 3d dendritic spine detection
and segmentation of medium-sized spiny neurons. Neuroimage 50, 1472–1484.

Zuo, Y., Lin, A., Chang, P., Gan, W.B., 2005a. Development of long-term dendritic spine
stability in diverse regions of cerebral cortex. Neuron 46 (2), 181–189.

Zuo, Y., Yang, G., Kwon, E., Gan, W.B., 2005b. Long-term sensory deprivation prevents
dendritic spine loss in primary somatosensory cortex. Nature 436 (7048), 261–265.

X. Xiao et al. Journal of Neuroscience Methods 309 (2018) 25–34

34

https://doi.org/10.1016/j.jneumeth.2018.08.019
https://doi.org/10.1016/j.jneumeth.2018.08.019
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0005
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0005
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0005
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0010
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0010
https://doi.org/10.1016/j.media.2014.09.004
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0020
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0025
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0025
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0025
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0025
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0030
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0035
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0035
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0035
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0040
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0040
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0040
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0045
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0050
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0050
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0055
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0055
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0055
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0060
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0060
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0060
https://doi.org/10.1117/12.911693
https://doi.org/10.1117/12.911693
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0070
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0070
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0070
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0075
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0075
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0075
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0080
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0080
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0080
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0085
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0085
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1016/j.media.2016.10.004
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0095
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0095
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0100
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0100
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0105
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0105
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0105
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0110
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0110
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0110
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0115
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0115
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0115
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0115
https://doi.org/10.1371/journal.pone.0001997
https://doi.org/10.1371/journal.pone.0001997
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0125
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0125
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0125
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0130
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0130
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0130
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0130
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0135
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0135
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0135
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0135
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0140
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0140
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0140
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0145
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0145
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0145
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0150
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0150
https://doi.org/10.1007/s12021-009-9057-y
https://doi.org/10.1007/s12021-009-9057-y
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0160
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0160
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0160
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0165
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0165
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0165
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0170
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0170
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0175
http://refhub.elsevier.com/S0165-0270(18)30255-3/sbref0175

	Automated dendritic spine detection using convolutional neural networks on maximum intensity projected microscopic volumes
	Introduction
	Material and methods
	Dendritic spine detection pipeline
	Dendritic spine imaging and pre-processing
	CNN for dendritic spine detection
	Post-processing
	Evaluation of detection

	Results and discussion
	Model selection from different FCN architectures
	Post-processing: effect of shaft extraction is negligible
	Visualization of weights and activation maps
	Addressing overfitting
	Performance on test data
	Comparison with other dendritic spine detection methods

	Conclusions and future work
	Acknowledgements
	Supplementary data
	References




