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A B S T R A C T

Automatic and reliable segmentation for geographic atrophy in spectral-domain optical coherence tomography
(SD-OCT) images is a challenging task. To develop an effective segmentation method, a two-stage deep learning
framework based on an auto-encoder is proposed. Firstly, the axial data of cross-section images were used as
samples instead of the projection images of SD-OCT images. Next, a two-stage learning model that includes
offline-learning and self-learning was designed based on a stacked sparse auto-encoder to obtain deep dis-
criminative representations. Finally, a fusion strategy was used to refine the segmentation results based on the
two-stage learning results. The proposed method was evaluated on two datasets consisting of 55 and 56 cubes,
respectively. For the first dataset, our method obtained a mean overlap ratio (OR) of 89.85 ± 6.35% and an
absolute area difference (AAD) of 4.79 ± 7.16%. For the second dataset, the mean OR and AAD were
84.48 ± 11.98%, 11.09 ± 13.61%, respectively. Compared with the state-of-the-art algorithms, experiments
indicate that the proposed algorithm can provide more accurate segmentation results on these two datasets
without using retinal layer segmentation.

1. Introduction

Age-related macular degeneration (AMD) is the most common cause
of irreversible blindness among the elderly individual and often pre-
sents with various phenotypic manifestations [1]. The advanced stage
of non-exudative AMD is characterized by geographic atrophy (GA),
which is mainly caused by atrophy of the retinal pigment epithelium
(RPE) [2,3]. One of the major causes of visual acuity loss is the de-
velopment of GA, which is generally associated with retinal thinning
and loss of RPE and photoreceptors. To monitor the GA progression
objectively or make treatment decisions, clinicians need to quantify and
characterize morphologic alternations that appear within the atrophic
area. However, manual labeling is time-consuming and subject to inter-
observer variability, which can potentially result in qualitative differ-
ences. Therefore, automatic GA segmentation plays an important role in
the diagnosis of advanced AMD and predicting future expansion of GA.

Most automatic or semi-automatic segmentation algorithms seem to
be based on 2D color fundus photographs (CFP) or fundus auto-
fluorescence (FAF), which can generally produce useful results [4–7].
However, these methods are just applied to quantify the atrophic area

and failed to identify the retinal structure axially in fundus imaging
modalities. Compared with fundus imaging, spectral-domain optical
coherence tomography (SD-OCT) can non-invasively generate high-re-
solution three-dimensional (3D) representations of retinal structures,
which allows the axial differentiation of retinal structures and the
generation of volumetric image data. GA regions are visualized by
considering an axial projection of the volumetric data (en face OCT
fundus images), which can be used to accurately identify imaging
characteristics of GA and provide detailed anatomic assessments.

Previous methods have been proposed to estimate the intra-retinal
layers in images with GA using graph theory and dynamic program-
ming, and the segmentation results were later used to measure the
thickness [8] or volume [9] of RPE, which can be used for the eva-
luation of GA. However, it is hard for these methods to produce the
outlines of the GA regions. Previous methods have used the projection
images generated from SD-OCT volumetric data to identify the GA re-
gions directly [10]. Tsechpenakis et al. [11] proposed a geometric de-
formable model driven by dynamically updated probability fields,
which is used to segment the GA in dry AMD in human eyes. Chen et al.
[12] proposed a semi-automated GA segmentation algorithm for SD-
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OCT images. A geometric active contour model was employed to detect
and segment the extent of GA in the projections images automatically.
A level set approach was also developed to segment GA regions in both
SD-OCT and FAF images [13,14]. However, these methods need seed
selections for initialization. To improve the segmentation accuracy, Niu
et al. [15] proposed an automatic method that combines a region-based
CeV model with a local similarity factor in projection images of a
choroid sub-volume. However, all of the methods discussed thus far
principally identify GA regions based on the en face OCT fundus images,
which are sensitive to the segmentation of RPE.

With the development of deep neural networks, the capability of
automatic feature extraction has seen tremendous improvement, and
learned features are highly convolved to encode the intrinsic structures
of an image for classification, recognition, and segmentation [16–20].
Deep learning has been successfully applied to medical image analysis,
including liver segmentation [16], prostate segmentation [17], and
brain tissue segmentation [18]. Ji et al. [19] proposed a deep voting
model for automated GA segmentation of SD-OCT images without ret-
inal layer segmentation, which achieved high segmentation accuracy.
Accurately segmenting lesions in B-scan images is a challenging task
because the same lesions have a wide variety of manifestations in dif-
ferent patients, so it is hard to learn the representative features with the
same method. Therefore, a two-stage learning framework was designed
to obtain deep representations and structures of SD-OCT images to
segment lesions.

An effective two-stage learning model was proposed based on auto-
encoder for automated GA segmentation. The model includes an offline-
learning phase and a self-learning phase. The axial data of cross section
images were used as input data to feed into the network, and then the
offline-learning model and self-learning model were used to determine
the categories of the axial data. Finally, the integration strategy was
used to refine the segmentation results based on the two-stage learning
results [21]. Experimental results show that the proposed method can
provide more accurate segmentation results compared with state-of-
the-art methods.

Compared with the existing methods, the main contributions of
proposed method can be summarized as follows: (1) The self-learning
model reduces the influence of image diversity on segmentation by
learning the discriminative features of individual cube. (2) A fusion
strategy is proposed to reduce the false positives effectively by com-
bining two-stage learning results and to improve the accuracy of the
segmentation results. (3) We conducted comprehensive experiments on
two datasets, and experimental results indicate that the proposed
method achieves superior performance over the state-of-art approaches
on all these datasets. This paper is organized as follows. We introduce
the auto-encoder model and the details of offline-learning and self-
learning in section 2. Section 3 explains the results of the experiment.
Important relevant issues are discussed in section 4.

2. Methodology

Fig. 1 shows a flowchart of the proposed method. An offline-
learning model was first developed and used for learning the common
features from training samples. A self-learning model is then used
exploited for learning the discriminative features to effectively remove
false positives generated by the offline-learning model. Finally, the
outputs of these two models are fused to obtain the segmentation re-
sults.

2.1. Preprocessing

SD-OCT images contain speckle noise due to the wavelength of the
imaging beam and the structural details of the imaged object.
Therefore, a bilateral filter [5] is used to reduce the noise from the
images, which is better for edge preservation compared with traditional
denoising methods. As shown in Fig. 2, a variety of structural

differences between the SD-OCT cube and B-scan images were obvious
due to the differences of the retinal structure and the characteristics of
SD-OCT imaging. Fig. 2 (a) shows a full projection image of one SD-OCT
cube with GA. The ground truth and Chen's segmentation result are
overlaid on projection image with red lines and green lines, respec-
tively. The projection image clearly contains obvious intensity in-
homogeneity, and the contrast between the background and lesion is
low. These create challenges because they can easily lead to some GA
lesions being omitted, as in Chen's segmentation result.

Based on Fig. 2 (a), three B-scans labeled with blue lines were se-
lected, and the corresponding images are shown in Fig. 2 (b), where the
GA lesions are covered by blue regions. However, B-scans cannot di-
rectly reflect the morphological characteristics of lesions, which can be
identified as GA by the thickness of the RPE and the length of the re-
flected light band. Fig. 2 (c) shows three GA gray signals (A-scans) with
red lines and three non-GA gray signals (A-scans) with blue lines, which
were selected from three B-scans. There are obvious distinguishing
differences between them. In this case, we can transform the image
segmentation problem into a classification problem for the axial data of
B-scans by using the axial data as samples.

Thus, 3D SD-OCT cubes were converted into 2D B-scan sets as in
Fig. 2 (b). These B-scans were used to extract axial data to form training
and testing samples. As shown in Fig. 2(a) and (b), for each OCT image,
each pixel in the projection image is generated by averaging the D-
dimensional vector x along the axial A-scan lines. The dataset is defined
as X= = …x y x εR y εL i M{( , )| , , 1, }i i i

D
i , where M is the total numbers of

A-scans in the dataset, and yi is the class label of the vector x. For each
OCT image, the dimension of each vector x is D=1024. For the label
set, our goal is to classify the axial data of OCT images as GA regions
and non-GA regions, so the label set is L={1, 0}. Therefore, the sample
space can be mapped into the label space by the mapping function

⋅ →f x y( ): .

2.2. Offline-learning model

As shown in Fig. 1, the proposed offline-learning model is stacked
with three sparse auto-encoders (SAEs), and its structure is composed of
five layers, including an input layer, three hidden layers, and an output
layer. The axial data with 1024 dimensions were fed as input data into
the model to obtain deep representations, and then a classifier was
trained by the representations and its corresponding labels. Finally, a
fine-tuning process was adopted to optimize the offline-learning model.

The auto-encoder is an unsupervised nonlinear neural network that
attempts to make its reconstructed images approximating its input
images. An auto-encoder is composed of' an encoder and a decoder. The
encoder maps the input to a hidden representation through the function

= +h f W b( x )(1) (1) (1) , where the superscript (1) represents the first
layer, f is a transfer function of the encoder, W is the weight matrix, and
b is the bias vector. The decoder then maps this representation h back to
the original input x as = +x̂ f W h b( )(2) (2) (2) , where the superscript (2)
represents the second layer, h is the representations of input data, and
W, f, and b have the same meaning as in the first layer. Finally, the
model was optimized based on a cost function that measures the error
between the input data and the reconstruction. The cost function is
defined as the mean squared error function:
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Ωweights is the L2 regularization term constraint with coefficient λ, which
is defined in equation (2), where L is the number of hidden layers, n is
the number of samples, and k is the number of variables in the training
data:
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In order to ensure the sparsity of the output from the hidden layer,
the sparsity regulation term constraint was adopted as follows:
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For each auto-encoder, the main goal is to obtain the optimized
parameters to obtain accurate deep representations by minimizing the
loss calculated by equation (1). The gradient descent is used for training
the auto-encoder.

Multiple SAEs are stacked together by feeding the output layer from
the low-level SAE as the input layer of a high-level SAE to form the
stacked sparse auto-encoder (SSAE), which is able to extract more
useful and high level features. However, high-level features learned
from the unsupervised SSAE are only data-adaptive and cannot dis-
criminate the GA and background. To make the learned feature re-
presentation discriminative, supervised fine-tuning is often adopted by
stacking another classification output layer on the top of the encoding
part of the SSAE.

2.3. Self-learning model

It is difficult for the offline learning model to produce accurate
segmentation results due to the variety of the images. In experimental
observations, several normal regions were misclassified into lesion re-
gions, which resulted in false positives (the most common segmentation

errors). The reason for these misclassifications is that there are many
similar features between the normal regions and lesion regions. In this
case, if the network can learn to discriminate specific false positives
from each cube, the performance can be efficiently improved. Thus, a
self-learning model was proposed to learn the discriminative features to
improve the segmentation performance further [22]. More specifically,
we trained a specific model to learn the discriminative features of each
individual cube to compensate for the deficiency of discrimination
caused by different patients and limited training samples.

A key step for training the self-learning model is the selection of
training samples, which should select representative samples to en-
hance the discrimination. In the self-learning stage, the coarse labels
generated from the offline-learning probability map were used to train
the classifier. Fig. 3 shows an example of selecting training samples for
the self-learning model. Firstly, the probability map in Fig. 3 (a) re-
sulting from the offline-learning model was converted into the binary
map in Fig. 3 (b). The maximal connected region of the binary map was
then selected to be the candidate region of positive labels. In order to
obtain more accurate negative labels, a rectangle that can cover the
candidate regions of positives was adopted, as shown in Fig. 3 (d). This
can minimize the mistakes of negative sample selection.

When choosing negative labels, the low-probability regions of the
offline-learning probability map were considered as candidates. Finally,
the corresponding axial data were extracted based on the position in-
formation to form the training data. To ensure the balance of positive
samples and negative samples, 2000 positive samples and 2000 nega-
tive samples were chosen. In addition, we used the same architecture as
the offline-learning model to implement the self-learning model.

Fig. 1. The flowchart of the two-stage learning model.
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2.4. Fusion strategy

As mentioned, the output of offline-learning model and self-learning
model are fused to obtain the final segmentation result. The fusion
strategy is defined as follows:

= ⎧
⎨⎩

+ − ≤
− >

P P P P T
P P P T

P
( )/2 | |f s f s

f f s (4)

where P is the fusion probability, and Pf and Ps are the predicted
probability of offline-learning model and the self-learning model, re-
spectively. There may be some mistakes in the self-learning segmen-
tation because the provided labels for self-learning may be not correct.
Therefore, a threshold was set for the output of the two models to re-
duce the influence of self-learning mistakes and to improve the ro-
bustness of the whole model. The average of the two outputs is taken as
the final result when the absolute value of the difference between Pf
and Ps is less than T. When this condition is not met, we use the result of
the offline-learning model as the final result.

Fig. 2. The structural difference in SD-OCT data. (a) The full projection image of SD-OCT cube with GA where the ground truth and Chen's segmentation result are
overlaid on projection image with red line and green line respectively. (b) Three B-scan images of the cross section selected from (a) where the blue regions are GA
lesion. (c) The gray signals of selected A-scans, where the A-scans with GA and A-scans without GA are represented by red lines and blue lines respectively.

Fig. 3. An example of selecting training data for self-learning model. (a) The
result produced by offline-learning model. (b) The binary image produced by
(a). (c) The candidate area for positive samples. (d) The candidate area for
negative samples.

Fig. 4. An example of the fusion strategy. (a) The
result of the offline-learning model. (b) The result of
the self-learning model. (c) The fusion result. (d)
Ground truth.
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As shown in Fig. 4, there are some false positives in the result of
offline-learning model because of the model cannot learn the detailed
features of each individual cube. The self-learning model was used to
overcome the problem, but some false negatives were produced because
of the errors in the process of label selection. Therefore, we fused the
results of offline-learning and self-learning, as shown in the final result
in Fig. 4 (c). By comparing to ground truth, we can conclude that the
proposed fusion strategy is effective for SD-OCT image segmentation.

3. Experiment and results

3.1. Datasets and experimental platform

Two different datasets [12,15,19] were used to evaluate the per-
formance of the proposed method, and the training and testing datasets
contain GA lesions. Each SD-OCT image set was acquired over a 6× 6
mm2 macular area with a 2-mm axial depth (corresponding to 1024
pixels) using a Cirrus device (Carl Zeiss Meditec, Inc., Dublin, CA). The
first dataset (dataset 1) consists of 55 cubes (the data size of 51 of the
cubes is 1024× 512×128, and the others are 1024×200×200).
Two different clinical ophthalmologists manually outlined each OCT
cube twice in different sessions to form the "gold standard." A region
was considered as a positive sample when two experts outlined the
region as GA each time; otherwise, the region is considered as negative
sample.

The second dataset (dataset 2) consists of 56 cubes (all of the data
sizes are 1024×200×200). A clinical ophthalmologist manually
drew the outline of the GA area based on FAF images and registered the
outline in the projection images to obtain the ground truth. In the
training phase, we randomly selected 100,000 axial data with GA as
positive samples and 100,000 normal axial data without GA as negative
samples for each dataset. In the testing phase, 3D cubes were directly
fed into the proposed model to obtain the results. Both the training and
testing phases of the segmentation model were run on a platform with
an Intel(R) Xeon(R) processor with 256 GB of RAM and no GPU.

3.2. Parameter analysis and valuation metrics

3.2.1. Network parameters
Table 1 summarizes the structure of the auto-encoder and the

parameter settings for the auto-encoder training. The coefficients λ and
β are adjusted manually by experiments. The SSAE network consists of
five layers, including an input layer, three hidden layers, and an output
layer. We investigated two models that have the exact same structure
and parameter settings but different training data.

3.2.2. Evaluation metrics
Three criteria were used to evaluate the performance of the pro-

posed method: the overlap ratio (OR), absolute area difference (AAD),
and correlation coefficient (CC). OR is defined as the percentage of area
in which both segmentation methods agree with respect to the presence

of GA over the total area in which at least one of the methods detects
GA (Jaccard index):

= ∩ ∪OR X Y Area X Y Area X Y( , ) ( )/ ( ) (5)

where X and Y are the regions inside the segmented GA contour pro-
duced by two different methods (or graders), respectively. The opera-
tors ∩ and ∪ indicate union and intersection, respectively. The mean OR
and standard deviation values are computed across scans in the data-
sets.

AAD measures the absolute difference between the GA areas seg-
mented by two different methods:

= −AAD X Y Area X Area Y( , ) ( ) ( ) (6)

The mean AAD and standard deviation values are computed across
scans in the datasets. CC was computed using linear correlation be-
tween the measured areas of GA computed by the segmentation of
different methods or readers and measuring the linear dependence
using each scan as an observation.

3.3. Fusion threshold setting

The final segmentation results are affected by the threshold T in the
process of fusing the offline probability map and self-probability map.
This threshold indicates the gap between two segmentation models.
Fig. 5 shows the OR of the segmentation results of the two datasets by
different threshold values in the range of [0.1, 1].

OR increases in the threshold range of [0.1, 0.9] and decreases in
the range of [0.9, 1] in dataset 1. In dataset 2, the overlap ratio of the
segmentation results remains stable in the threshold range of [0.1, 0.5]
and decreases in the range of [0.5, 1]. For both datasets, we obtained
the best performance at two different thresholds (0.9 and 0.5, respec-
tively). To construct a unified segmentation model, we balanced the
thresholds of the two segmentation models by setting it as 0.5.

3.4. Testing

3.4.1. Test I: segmentation results on the dataset with size of
1024×512×128

In the first experiment, we validated the proposed model on dataset
1, which contains 55 SD-OCT cubes from eight patients. The testing
time for each cube is 98 s, including the offline-learning testing and self-
learning testing. As shown in Fig. 6, eight examples were selected to
illustrate the performance of the model. The ground truth and the re-
sults of our segmentation results are overlaid on the projection image,
where red lines represent the ground truth and green lines show our
segmentation results. These examples show cases with different in-
tensity inhomogeneity and complexity, which increase the difficulty of
segmentation. However, the proposed method can avoid these pro-
blems and obtain more accurate results.

Fig. 7 shows a comparison of our segmentation results with three
other methods. The red, white, green, yellow, and blue lines represent
the ground truth and segmentation results from Chen [12], Niu [15], Ji
[19], and the present study, respectively. For the second and fourth
cases, all of these methods obtained better performance because the
images have higher contrast. However, for the low-contrast images, the
other methods fail to perform well. In the third case, Niu's method
misclassifies the normal region as a lesion region, while Chen's method
misclassifies the lesion region as a normal region. For the sixth case,
Chen, Niu, and Ji's methods misclassify the lesion region as a normal
region. For the first and fifth cases, both Chen and Niu's methods mis-
classify the lesion region as a normal region, and Ji's method mis-
classifies the normal region as a lesion region in the fifth case.

Tables 2 and 3 quantitatively compare between the segmentation
results obtained with different methods and the ground truth on dataset
1 both with and without the training data. The proposed method fused
the results of offline-learning and self-learning, while the SSAE

Table 1
The parameters of the network models.

Parameter Value

Number of nodes in input layer 1024
Number of nodes in output layer 2
Number of nodes in layer 1 924
Number of nodes in layer 2 824
Number of nodes in layer 3 724
Unsupervised training epochs 1000
Supervised Training Epochs 2000
L2 weight regularization λ 0.004
Loss function Msesparse
Sparsity regularization β 4
Training algorithm trainscg
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represents the results of offline-learning. By integrating the offline-
learning and self-learning results, our segmentation result has a higher
OR, lower AAD, and higher CC than Chen, Niu, and Ji's methods, in-
dicating that our segmentation results are close to the manual outlines.

3.4.2. Test II: segmentation results on the dataset with a size of
1024×200×200

In the second experiment, we validated our models on dataset 2,
which contains 56 SD-OCT cubes from 56 patients. The testing time for
each cube is 50 s, including the offline-learning testing and self-learning
testing. As shown in Fig. 8, eight examples were selected to illustrate
the performance of the model. In each image, the ground truth and our
segmentation results are overlaid on the projection. The red lines re-
present the boundary of the ground truth, and the green lines show the
boundary of our segmentation results. The results of the proposed
model are similar to the ground truth.

Fig. 9 qualitatively displays our segmentation results with those of
the other three methods in six cases. In each figure, the red lines in-
dicate the outline of the ground truth, and the white, green, yellow, and
blue lines show Chen's [12], Niu's [15], Ji's [19], and our segmentation
results, respectively. For the third case, all the method can perform well
because of the obvious lesion features, while for other cases, Chen, Niu,
and Ji's methods misclassify the normal region as a lesion region in the

first and fifth cases. For the second case, Chen and Niu's methods
misclassify the lesion region as a normal region. In the fourth and sixth
cases, Chen, Niu, and Ji's methods misclassify the lesion region as a
normal region. Thus, the segmentation results of our methods are better
than those of the other three methods.

Tables 4 and 5 summarize the average quantitative results between
the segmentation results and ground truth of the different methods on
dataset 2. Table 4 shows the results from when the testing data included
the training data, and Table 5 shows the results obtained without the
training data. Compared with other methods, our segmentation result
has a higher OR, lower AAD, and higher CC. The higher OR shows that
our segmentation result is similar to the outline of the manual outline,
and the low AAD indicates that the estimated areas of our model are
similar to the manual productions. The higher CC indicated that our
segmentation results are more similar to the ground truth.

For these two datasets, a majority of cases have a better segmen-
tation performance, but there is a set of data with lower overlap. One of
the main challenges for the automated segmentation of lesions from
retinal images is that there are many interference factors, such as vas-
cular and optic nerves. All of these factors affect the segmentation
performance. The most direct solution is to remove these effects in the
preprocessing step. However, there is a big difference in the structures
of different people, and we have no common methods to address them.

Fig. 5. The overlap ratio of segmentation result by different threshold value.

Fig. 6. Segmentation results and ground truth overlaid on full projection images for eight example cases in dataset 1.
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The self-learning strategy can train the models using the characteristics
of images and effectively reduce the effect of the factors. Offline-
learning can support self-learning to obtain the correct labels.

A case of failure is shown in Fig. 10. It is obvious that all the
methods failed to segment the lesion, including the present method.
This occurred because there are too many similar pixels that are

Fig. 7. Comparison of the segmentation result overlaid on projection images in dataset 1.

Table 2
Quantitative results (mean ± standard deviation) of segmentation methods and ground truth on dataset 1 including training data.

Methods Criteria Avg. expert Expert A1 Expert A2 Expert B1 Expert B2

Chen's method CC 0.970 0.967 0.964 0.968 0.977
AAD[mm2] 1.438 ± 1.26 1.308 ± 1.28 1.404 ± 1.31 1.597 ± 1.33 1.465 ± 1.14
AAD[%] 27.17 ± 22.06 25.23 ± 22.71 26.14 ± 21.48 29.21 ± 22.17 27.62 ± 20.57
OR[%] 72.60 ± 12.01 73.26 ± 15.61 73.12 ± 15.15 71.16 ± 15.42 72.09 ± 14.82

Niu's method CC 0.979 0.975 0.976 0.976 0.975
AAD[mm2] 0.811 ± 0.94 0.758 ± 0.99 0.853 ± 1.04 0.984 ± 1.08 0.897 ± 1.05
AAD[%] 12.95 ± 11.83 12.62 ± 12.86 13.32 ± 12.74 14.91 ± 12.65 14.07 ± 11.78
OR[%] 81.86 ± 12.01 81.42 ± 12.12 81.61 ± 12.29 80.05 ± 13.05 80.65 ± 12.51

Ji's
method

CC 0.986 0.986 0.985 0.985 0.991
AAD[mm2] 0.67 ± 0.73 0.55 ± 0.74 0.62 ± 0.80 0.82 ± 0.83 0.69 ± 0.66
AAD[%] 11.49 ± 11.50 9.75 ± 11.35 10.32 ± 11.09 13.58 ± 12.41 11.73 ± 9.35
OR[%] 86.94 ± 8.75 87.64 ± 8.75 87.71 ± 8.32 85.17 ± 9.40 86.37 ± 7.67

SSAE CC 0.9829 0.9826 0.9814 0.9832 0.9832
AAD[mm2] 0.33 ± 0.26 0.27 ± 0.23 0.26 ± 0.25 0.22 ± 0.25 0.24 ± 0.23
AAD[%] 1.67 ± 0.82 1.36 ± 0.74 1.28 ± 0.74 1.05 ± 0.75 1.18 ± 0.74
OR[%] 71.54 ± 16.09 71.76 ± 15.64 72.05 ± 15.88 71.62 ± 15.73 72.06 ± 15.68

AlexNet CC 0.9934 0.9901 0.9881 0.9877 0.9908
AAD[mm2] 0.36 ± 0.44 0.52 ± 0.61 0.64 ± 0.62 0.78 ± 0.72 0.68 ± 0.58
AAD[%] 5.99 ± 6.57 7.88 ± 7.57 9.94 ± 8.00 12.30 ± 9.12 10.52 ± 6.19
OR[%] 86.47 ± 8.24 84.03 ± 9.64 83.61 ± 9.08 81.70 ± 9.70 82.68 ± 8.88

VGG CC 0.9945 0.9920 0.9897 0.9897 0.9915
AAD[mm2] 0.33 ± 0.46 0.40 ± 0.52 0.49 ± 0.58 0.65 ± 0.59 0.53 ± 0.54
AAD[%] 5.91 ± 10.15 6.48 ± 9.12 7.91 ± 10.25 10.34 ± 9.98 8.53 ± 8.62
OR[%] 86.61 ± 8.95 84.57 ± 9.92 84.21 ± 9.61 82.56 ± 10.23 83.46 ± 9.54

Our proposed model CC 0.9985 0.9945 0.9935 0.9930 0.9961
AAD[mm2] 0.18 ± 0.20 0.38 ± 0.53 0.45 ± 0.56 0.65 ± 0.64 0.52 ± 0.51
AAD[%] 3.67 ± 6.02 6.02 ± 7.44 7.11 ± 7.83 9.86 ± 8.8 8.11 ± 6.16
OR[%] 90.73 ± 5.75 88.29 ± 7.59 88.10 ± 7.24 85.98 ± 8.04 87.12 ± 6.74
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seriously affected by the light. Furthermore, for our method, the lesion
region is too small to obtain enough self-learning training data, so it
produced an undesirable segmentation result.

In recent years, convolutional neural networks (CNNs) have been
extensively applied in medical image analysis and have achieved re-
markable success in many applications [23–32]. Therefore, in addition
to comparing the proposed with traditional methods like Chen and
Niu's, we also compared it to AlexNet [23] and VGG-19 [24]. The
training data were the same as that of the proposed method, and we
used the axial data as samples (there are 200,000 samples in total, and
the size of each sample is 1024×1). From Tables 2 and 4, it is obvious
that the proposed method achieved better results. AlexNet is seriously
affected by the quality of images, and when the images have intensity
inhomogeneity, the results of AlexNet produce many false positives,
while the proposed method can distinguish them well by the fusion
strategy. VGG-19 is composed of multiple convolution layers, pooling
layers, and fully connected layers. Its accuracy has been effectively
improved, but the manifold layers make the network use much more
resources than other methods. Lastly, the inspirit function of AlexNet
and VGG-19 easily causes non-repairable neuronal necrosis, which re-
sults in insufficient gradients to optimize the whole model. For the
SSAE model, a very obvious gap is produced compared with the pro-
posed method because of the individual differences. The comparison

results make it obvious that the self-learning can have a great influence
on the segmentation results.

4. Discussion

In this paper, we proposed the two-stage learning method based on
stack sparse auto-encoder for automated geographic atrophy segmen-
tation in SD-OCT images. The proposed method integrates the self-
learning and offline-learning to determine the label of each axial data.
Then, we use fusion strategy to refine the segmentation results based on
the two-stage learning results. The quantitative experimental results
demonstrated that the proposed method has higher segmentation ac-
curacy than state-of-the-art methods [12,15,19]. This indicates that the
model could potentially contribute to automatically identifying GA
regions and provide an objective and reliable quantitative assessments
for measuring and tracking non-exudative age-related macular degen-
eration.

One of the main challenges for automated segmentation is that
many non-GA tissues influence the GA segmentation. Furthermore, it is
hard to use simple methods to remove these non-GA regions because of
the irregularity and differences of the tissues between different patients.
Thus, we proposed the self-learning model for the GA segmentation,
which learns the features of each individual cube to reduce the false

Table 3
Quantitative results (mean ± standard deviation) of segmentation methods and ground truth on dataset 1 without training data.

Methods Criteria Avg. expert Expert A1 Expert A2 Expert B1 Expert B2

SSAE CC 0.9754 0.9764 0.9754 0.9774 0.9767
AAD[mm2] 0.39 ± 0.28 0.34 ± 0.27 0.33 ± 0.28 0.30 ± 0.28 0.31 ± 0.27
AAD[%] 2.44 ± 1.13 2.09 ± 1.08 2.0 ± 1.07 1.75 ± 1.08 1.90 ± 1.10
OR[%] 68.41 ± 17.21 69.22 ± 16.72 69.62 ± 17.08 69.60 ± 16.89 69.86 ± 16.86

AlexNet CC 0.9899 0.98.60 0.9832 0.9828 0.9866
AAD[mm2] 0.39 ± 0.45 0.56 ± 0.60 0.69 ± 0.62 0.82 ± 0.72 0.72 ± 0.60
AAD[%] 7.76 ± 7.45 10.01 ± 8.39 12.39 ± 9.03 14.98 ± 10.24 12.97 ± 7.28
OR[%] 83.45 ± 9.46 80.65 ± 10.83 80.04 ± 10.19 78.04 ± 10.79 79.00 ± 10.07

VGG CC 0.9919 0.9888 0.9855 0.9858 0.9879
AAD[mm2] 0.33 ± 0.45 0.42 ± 0.52 0.52 ± 0.59 0.68 ± 0.60 0.56 ± 0.55
AAD[%] 7.05 ± 10.82 7.87 ± 9.90 9.75 ± 11.27 12.45 ± 10.73 10.36 ± 9.43
OR[%] 83.71 ± 10.02 81.18 ± 11.16 80.68 ± 10.73 78.94 ± 11.28 79.85 ± 10.68

Our proposed model CC 0.9979 0.9930 0.9918 0.9914 0.9951
AAD[mm2] 0.21 ± 0.20 0.33 ± 0.4 0.38 ± 0.53 0.57 ± 0.60 0.45 ± 0.48
AAD[%] 4.79 ± 7.16 6.33 ± 8.25 7.23 ± 8.99 10.22 ± 9.69 8.26 ± 6.97
OR[%] 89.85 ± 6.35 87.35 ± 8.20 87.23 ± 7.88 84.98 ± 8.66 86.18 ± 7.33

Fig. 8. Segmentation results and ground truth overlaid on full projection images for eight example cases in dataset 2.
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positives. Compared to other methods, the proposed method can im-
prove the segmentation accuracy effectively by combining the results of
offline-learning and self-learning.

On the other hand, the method has limitations as well. Some false
positives and small holes are present in the segmentation results be-
cause we just used the axial data of A-scans as samples and failed to
consider the spatial information of SD-OCT cubes. Another limitation is
that we simply used the probability map from offline learning to obtain
candidate labels, which could result in inaccurate self-learning models.
As shown in Fig. 10, there is high similarity between the lesion region
and the normal region, and the lesion region is too small to obtain
enough features, so it is difficult to extract lesion features. Both the

training and testing phases of the model were based on column data
without considering the impact of patient independence. In the future,
we plan to construct a 3D network to extract the spatial features and to
consider the independence of different patients to improve the seg-
mentation results further.

5. Conclusion

This paper presented an automatic algorithm for GA segmentation
in SD-OCT images to quantify measurements of the extent and location
of GA. The method uses axial data as samples to overcome the limita-
tion of layer segmentation. Then, a two-stage deep learning model in-
cluding offline-learning and self-learning was designed for the lesion
segmentation. Quantitative experimental results showed that the algo-
rithm has good consistency with different experts in manual segmen-
tation. The algorithm could provide relatively reliable assistance for
predicting the future expansion of GA.
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Fig. 9. Comparison of the segmentation result overlaid projection images in dataset 2.

Table 4
Quantitative results (mean ± standard deviation) of the segmentations and
ground truth on dataset 2.

Method OR (%) AAD (mm2) AAD (%) CC

Chen's method 65.88 ± 18.38 0.951 ± 1.28 19.68 ± 22.75 0.970
Niu's method 70.00 ± 15.63 1.215 ± 1.58 22.96 ± 21.74 0.979
Ji's method 81.66 ± 10.93 0.34 ± 0.27 8.30 ± 9.09 0.995
SSAE 68.97 ± 18.10 1.84 ± 1.09 36.71 ± 28.78 0.9757
AlexNet 75.79 ± 15.71 0.95 ± 0.84 21.67 ± 22.03 0.9839
VGG 74.72 ± 15.72 1.14 ± 0.79 24.66 ± 23.18 0.9867
Our proposed

method
84.55 ± 12.02 0.48 ± 0.46 11.09 ± 13.64 0.9953

Table 5
Quantitative results (mean ± standard deviation) of the segmentations and ground truth on dataset 2 without including training data.

Method OR (%) AAD (mm2) AAD (%) CC

SSAE 68.88 ± 18.05 1.69 ± 1.03 30.76 ± 28.75 0.9736
AlexNet 75.7 ± 15.63 0.88 ± 0.79 21.73 ± 22.0 0.9826
VGG 74.62 ± 15.66 1.04 ± 0.74 24.7 ± 23.18 0.9856
Our proposed method 84.48 ± 11.98 0.4418 ± 0.4334 11.09 ± 13.61 0.9948
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