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SUMMARY

Adenocarcinoma accounts for more than 40% of
lungmalignancy, andmicroscopic pathology evalua-
tion is indispensable for its diagnosis. However, how
histopathology findings relate to molecular abnor-
malities remains largely unknown. Here, we obtained
H&E-stained whole-slide histopathology images,
pathology reports, RNA sequencing, and proteomics
data of 538 lung adenocarcinoma patients from The
Cancer Genome Atlas and used these to identify
molecular pathways associated with histopathology
patterns. We report cell-cycle regulation and nucleo-
tide binding pathways underpinning tumor cell dedif-
ferentiation, and we predicted histology grade using
transcriptomics and proteomics signatures (area
under curve >0.80). We built an integrative histopa-
thology-transcriptomics model to generate better
prognostic predictions for stage I patients (p =
0.0182 ± 0.0021) compared with gene expression or
histopathology studies alone, and the results were
replicated in an independent cohort (p = 0.0220 ±
0.0070). These results motivate the integration of
histopathology and omics data to investigate molec-
ular mechanisms of pathology findings and enhance
clinical prognostic prediction.

INTRODUCTION

Lung cancer causesmore than 1.4 million deaths per year world-

wide, and adenocarcinoma is the most common subtype (Jemal

et al., 2011; Siegel et al., 2014). For decades, histopathology

evaluation has been the definitive diagnostic method for

lung cancer (Collins et al., 2007). However, the underlying

molecular mechanisms for histological patterns are not fully

understood (Gardiner et al., 2014; Zugazagoitia et al., 2014). In
620 Cell Systems 5, 620–627, December 27, 2017 ª 2017 Elsevier In
addition, whole-slide histopathology image scanning and high-

throughput omics technologies generate terabytes of personal

tumor profile per patient, but how to integrate these data to

advance precision cancer medicine remain to be explored (Yu

and Snyder, 2016).

Histopathology morphology has guided the diagnosis of lung

cancer and defined subtypes of lung malignancy (Travis et al.,

2011). To diagnose lung cancer, pathologists prepare micro-

scopic slides from tissue samples, stain them with H&E, which

non-specifically binds to nuclear acids and proteins, respectively

(Fischer et al., 2008). These slides are observed under light mi-

croscopy, and the cyto-architectural features define the specific

types and subtypes of lung tumors. Studies have shown that

certain pathology annotations, such as the level of tumor cell

dedifferentiation, are associated with survival outcomes (Har-

pole et al., 1995). However, this manual evaluation process

involves some level of subjectivity (Raab et al., 2005), and it is

difficult to integrate these visual findings with terabytes of omics

information. Thus, how these visual patterns associated with

their underlying biological processes remain largely unknown

(Zugazagoitia et al., 2014).

Computer vision algorithms have attained exceptionally good

performance for image classification (Danuser, 2011; Lawrence

et al., 1997). Previously, investigators have defined many types

of quantitative image features, including the size, perimeter,

shape, eccentricity, and texture patterns of the cell nuclei and

cytoplasm, to analyze pathology images objectively (Beck

et al., 2011; Yu et al., 2016b). A number of image features are

not easily identified by human evaluators, but they are signifi-

cantly associated with cancer patients’ diagnoses and progno-

ses (Beck et al., 2011). These results support the clinical utility

of quantifying the morphological changes of tumor cells with

an automated and objective algorithm.

Moreover, with the advent of the omics (including genomics,

transcriptomics, and proteomics) revolution, there is the poten-

tial for understanding the molecular biology of histological

phenotypes by integrating omics and morphological features

of the tumor cells (Haspel et al., 2010; Wall and Tonellato,

2012; Wilkerson et al., 2012; Yuan et al., 2012). Omics studies
c.
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have provided insights into the molecular mechanisms of many

cancer types (Dong et al., 2016; Snyder, 2016; Yu et al.,

2016a; Yu and Snyder, 2016; Zhang et al., 2016), and have char-

acterized the inter-individual differences in disease phenotypes

(Clinical Lung Cancer Genome Project [CLCGP] and Network

Genomic Medicine [NGM], 2013; Henry et al., 2016; Yu et al.,

2017). The systematic integration of histomorphological studies

and omics profiles is expected to provide further understandings

of tumor cell morphology and potentially more accurate stratifi-

cation of patients’ prognoses (Beck et al., 2011; Liu et al.,

2006; Yu and Snyder, 2016; Yuan et al., 2012).

Here we analyze lung adenocarcinoma samples and correlate

cell morphology features from histopathology images with

genomic, transcriptomic, or proteomic profiles to generate

hypotheses about the biological processes associated with

morphological changes and themolecular basis of cancer devel-

opment. In addition, the integration of histopathology features

and omics profiles improved the prediction accuracy of patient

prognosis, which contributes to personalizing cancer treatment

plans (Chin et al., 2011; Revannasiddaiah et al., 2014; Tang

et al., 2014).

RESULTS

Patient Characteristics
We analyzed data from a total of 538 lung adenocarcinoma pa-

tients previously collected by The Cancer Genome Atlas

(TCGA) project (Cancer Genome Atlas Research Network,

2014). These data included genetic variants identified by

whole-exome sequencing, tumor transcriptomics profiles char-

acterized by RNA sequencing, tumor proteomics information

quantified by reverse-phase protein array, and clinical variables

such as tumor stage and survival information. We also obtained

digital whole-slide histopathology images of the primary tumors

along with the accompanying pathology reports from the same

TCGA dataset. We divided the TCGA dataset into distinct

training and test sets for machine-learning approaches. To vali-

date our survival prediction methods, we acquired RNA

sequencing, histopathology annotations, and survival informa-

tion of an independent lung adenocarcinoma patient cohort

(n = 27) from the Mayo Clinic (Sun et al., 2014). Table S1 shows

the patient characteristics of all participants in the TCGA cohorts

under study. Table S2 shows the clinical profiles of stage I

patients in both TCGA and Mayo Clinic cohorts for survival

analysis. The tumor grade, stage I sub-classifications (stage IA

and IB), and survival outcomes of stage I adenocarcinoma pa-

tients in the two cohorts were not significantly different (p values

of 0.1833, 0.4362, and 0.3556, respectively).

We first processed the pathology images by applying an auto-

mated algorithm to convert thewhole-slide histopathology scans

into overlapping tiles, selected the regions of interest and dis-

carded blank background, segmented the cells, and extracted

quantitative features from the images, such as the size, shape,

intensity distribution, and texture features from the identified

tumor cells and tumor nuclei. Since there are tens to hundreds

of cells per image tile, we calculated summary statistics including

mean, median, percentiles, and standard deviations to capture

the distribution of each basic quantitative feature. We next iden-

tified pathology grade frompathology reports and collected gene
expression and protein expression data generated by RNA

sequencing and reverse-phase protein array, respectively. The

resulting histopathology and omics profiles served as the input

to our machine-learning tasks (Figure 1A).

Genes Involved in Cell-Cycle Regulation and Nucleotide
Binding Are Predictive of Histological Grade
With an aim of revealing the biological processes underlying

tumor differentiation, we first used machine-learning methods

to identify the correlations between pathology grade and global

gene/protein expression profiles (Figure 1B). To reduce the

impact from inter-rater variability on tumor grade, we divided

the patient cohort into a higher-grade group (with poorly

differentiated or moderately-to-poorly differentiated tumor) and

a lower-grade group (with well-differentiated or moderately

differentiated tumor) (Barletta et al., 2010), built transcriptomics

and proteomics signatures for pathology grade in the training

set (n = 300 for transcriptomics; n = 109 for proteomics), and

evaluated the prediction models with the held-out test set

(n = 128 for transcriptomics; n = 47 for proteomics).

We found that the gene expression profiles of 15 genes pre-

dicted the histopathology grade in the held-out test set, with an

area under the receiver operating characteristic curve (AUC) of

0.80± 0.0067 (Figure 2A). This predictionperformancewas signif-

icantly better than a random classifier (p < 0.001), and each of the

15 features was significantly associated with histopathology

grade (adjusted p < 0.01). The expression levels of the top genes

associated with tumor grade are summarized in Figure S1A. All

genes highly associated with tumor grade possessed signifi-

cantly more gene-gene interactions compared with a null model

consisting of random genes (p < 0.0001, Figures 2C and S2A).

(Please see the STAR Methods section for the statistical

methods.) KEGG pathway analysis showed that the differentially

expressed genes between the two grade groups are enriched in

cell-cycle, DNA replication, and p53 signaling pathways. Gene

ontology (GO) enrichment analysis also revealed that these genes

were highly enriched in mitosis, cell-cycle regulation, and nucle-

otide binding. Similarly, we identified a proteomics signature

that correlated with pathology grade. Our classifiers, using a total

of 15 proteins, attained AUCs approximately 0.81 ± 0.0071 in the

test set, demonstrating that these protein expression profiles

were indicative of pathology grade (Figure 2B). The abundance

levels of the proteins indicative of tumor differentiation levels

are outlined in Figure S1B. The prediction performance was

significantly better than expected by chance (p < 0.001). These

proteins have significant interactions among one another (p <

0.0001; Figures 2C and S2B). GO and KEGG analysis revealed

that proteins predictive of tumor grade are enriched in cancer

signaling pathways and regulation of cell development, pointing

to the regulatory mechanisms related to tumor cell differentiation

at the protein level. Taken together, our analyses suggest that

genes participating in the cell-cycle and cancer signaling path-

ways contribute to the levels of tumor cell dedifferentiation.

Correlation of Quantitative Histopathology Features
with TP53Mutation and Histological Sub-classifications
Next, we investigated the associations between quantitative

histopathology measurements and omics data, as well as previ-

ously established histological sub-classifications. To quantify
Cell Systems 5, 620–627, December 27, 2017 621
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Figure 1. A Summary of Methods

(A) Model for data integration of this study. We

processed the genomics, transcriptomics, and

proteomics profiles of the primary tumor of lung

adenocarcinoma patients and extracted quantita-

tive histopathology features with a fully automated

computational algorithm. The associations be-

tween functional omics and histopathology profiles

were then analyzed to better understand the

biology of this cancer. We further utilized both

elements to generate an improved clinical predic-

tion framework for lung adenocarcinoma patients.

(B) A flow diagram of the machine-learning

approach for classification. We divided the data-

sets into distinct training and test sets, extracted

genomic, transcriptomic, proteomic, and histopa-

thology features from the tumor samples, selected

the top features, built random forest models, and

used the untouched test set to evaluate the model

performance.
the histopathology changes, we previously developed an auto-

mated method to identify the tumor nucleus and cytoplasm

patterns. The extracted features were shown to associate with

patient diagnosis and prognosis (Yu et al., 2016b).

TP53 mutation in lung adenocarcinoma has been associated

with poorer prognosis (Ahrendt et al., 2003; Gu et al., 2016).

We correlated the TP53 mutation status with the established

quantitative morphological features. Our results showed that

TP53 mutation was significantly associated with the pixel inten-

sity distribution in the cytoplasm, as well as the texture features

in the tumor nuclei (adjusted Wilcoxson rank-sum test p < 0.05;

Table S3). Transcriptomic analysis showed that TP53 mutation

was correlated with dysregulation of genes participating in

the DNA replication, mismatch repair, and cell-cycle pathways

(hypergeometric test Benjamini-Hochberg adjusted p < 0.05;

Table S4).

We further associated quantitative histological features with

sub-classifications of lung adenocarcinoma patients. Previously,

researchers defined a few tumor sub-classifications associated

with the genomic and transcriptomic patterns of lung adenocar-

cinoma, including acinar predominant, papillary predominant,

and solid predominant tumors (Cancer Genome Atlas Research

Network, 2014). When correlating these sub-classifications with
622 Cell Systems 5, 620–627, December 27, 2017
quantitative histological features, a

texture feature of the tumor nucleus was

significantly different among the sub-

classifications, after correcting for multi-

ple tests (adjusted Wilcoxon rank-sum

test p = 0.0254; Table S5). Five image

features that quantified the radial distribu-

tion of pixels weremarginally significant in

their associations with these sub-classifi-

cations (adjusted Wilcoxon rank-sum test

p = 0.054), and clustering analysis identi-

fied some heterogeneity in patients with

the same sub-classification (Figure S3).

In addition, 68 quantitative image features

were associated with the purity of tumor
(Table S6). Despite the wide range of purity score in the TCGA

cohort, a least absolute shrinkage and selection operator

(LASSO) regression model with the quantitative image features

showed a moderate correlation between the histopathology-

estimated purity scores and those measured by sequencing

(Spearman’s correlation coefficient = 0.323; p < 0.0001).

IntegrativeModel for Survival Prediction in Patientswith
Stage I Lung Adenocarcinoma
Next, we explored the use of omics and histopathology data to

build regularized Cox proportional hazards models (Tibshirani,

1997) to predict patient survival. Patients with pathology stage

I generally have better survival outcomes than patients with

stage II or higher (log rank test p < 0.001; Figure 3A). However,

the survival outcomes of stage I patients are very diverse and

difficult to predict. After being diagnosed with stage I lung

adenocarcinoma, more than half of this patient population died

within 5 years, but there are approximately 15% of stage I

patients who survived 10 years or more after the initial diagnosis.

In addition, the clinical distinction between stage IA and stage IB

did not reliably distinguish patients with different survival

outcomes (p = 0.878; Figure 3B), and the differences in overall

survival among lung adenocarcinoma patients with stage II or
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Figure 2. Functional Omics Profiles Predicted the

Dedifferentiation Levels of Lung Adenocarcinoma

(A) The expression levels of 15 genes selected by infor-

mation gain ratio accurately predicted pathology grade,

with an area under the ROC curve (AUC) approximately

0.80 ± 0.0067.

(B) Fifteen proteomics features predicted histology grade

with good accuracy. A panel of protein markers predicted

pathology grade with an AUC 0.81 ± 0.0071.

(C) Dysregulated genes and proteins associatedwith tumor

grade were enriched in gene-gene/protein-protein in-

teractions. The observed numbers of gene-gene/protein-

protein interactions and the expected numbers were

shown for the transcriptomic and proteomic analyses.
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higher tumor was not statistically significant in our cohort (p =

0.139 among stage IIa, IIb, IIIa, IIIb, and IV; Figure S4A) either.

Furthermore, tumor grade alone did not significantly correlate

with stage I patient survival (p > 0.06; Figures 3C and S4B).

Previously, researchers have proposed gene expression pro-

files associated with survival outcomes in stage I lung adenocar-

cinoma patients (Bianchi et al., 2007). However, the reported

gene set together with known clinical variables could not reliably

distinguish the survival outcomes of stage I patients in either the

TCGA or the Mayo Clinic cohort (p = 0.1097 ± 0.0096 and p =

0.0560 ± 0.0108, respectively, adjusted for patient age; Figures

3D and 3E).

We built integrative models by employing gene expression,

histopathology grade, and patient age as input features of the

regularized Cox proportional hazards model. The integrative

model performed better than gene expression or histopathology

alone in prognostic prediction (p = 0.0182 ± 0.0021, adjusted for

patient age; Figure 3F) on cross-validation in the TCGA cohort.

We further replicated this integrative prediction method in the

Mayo Clinic cohort (p = 0.0220 ± 0.0070, adjusted for patient

age; Figure 3G), which confirmed the improved performance of

our integrative method. Since the Mayo Clinic cohort was not

involved in building the survival prediction method, these results

suggested the generalizability of our prognostic stratification

framework. These results indicated the efficacy of combining

the information from multiple sources and modalities in

improving cancer prognosis prediction.

DISCUSSION

Our results demonstrate promising biological applications and

prognostic uses of considering both omics and histopathology

features. We investigate the correlation of functional omics

profiles with pathology grade, revealing both genes and proteins

associated with tumor grade. Pathway analyses on these tran-

scriptomics and proteomics patterns suggested that the level

of cancer cell differentiation was related to mitosis and cell

division pathways. This finding is consistent with the observation

that higher-grade tumors generally have higher mitotic figures,

i.e., the number of cells undergoing mitosis observed by light mi-

croscopy, and more atypical mitosis (Kadota et al., 2012; Poleri

et al., 2003). The slight difference between the enrichments from

the gene- and the protein-level analyses might originate from the
Figure 3. Integrative Models with Gene Expression Profiles and Patho

Adenocarcinoma Patients

Red asterisks indicated censored data.

(A) Lung adenocarcinoma patient survival stratified by tumor stage. Stage I patie

individual differences in their survival outcomes.

(B) Survival outcomes of stage IA and stage IB lung adenocarcinoma patients. Th

prognoses in this cohort (p = 0.878).

(C) Stage I lung adenocarcinoma patient survival stratified by tumor grade. Grad

(D) A previously reported gene set could not distinguish longer-term survivors (n

TCGA stage I lung adenocarcinoma cohort (p = 0.1097 ± 0.0096).

(E) The same set of genes could not distinguish patient survival in the Mayo Clinic

longer-term survivors; 14 predicted shorter-term survivors).

(F) Integrating pathology with gene expression profiles better predicted patient sur

predicted longer-term survivors; 112 predicted-shorter-term survivors).

(G) The improved performance of the integrative survival prediction method is re

0.0070; 11 predicted longer-term survivors; 16 predicted shorter-term survivors)
fact that gene expression levels can be altered by post-tran-

scriptional modifications. Our methods can be used to identify

the molecular mechanisms driving other clinically important pa-

thology findings in other complex diseases.

There are several limitations of this work. One limitation is that

all patients are frommedical centers in the United States. Partic-

ipants in our cohorts came from 11 participating medical centers

across the country but are predominantly Caucasians. Results

from other studies have shown different genetic alterations in

lung adenocarcinoma in other ethnic groups (Koivunen et al.,

2008; Shi et al., 2014). Thus, it would be interesting to systemat-

ically analyze the functional omics and histopathology in patients

of other ethnicities. In addition, the Mayo Clinic dataset only con-

tains 27 patients, and all of them were never-smokers. Although

our integrative methods showed significant improvement in sur-

vival prediction in this cohort, the improvement over gene expres-

sion or histopathology only model was smaller than that in the

TCGA test set. Further validation with a larger cohort is needed.

In summary, this work systematically correlated histopatholo-

gy patterns with omics findings and developedmodels to predict

survival outcomes of lung adenocarcinoma patients. The devel-

oped algorithms are likely extensible to other tumor types or

complex diseases.
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R glmnet package Friedman et al., 2010

Simon et al., 2011

https://web.stanford.edu/�hastie/glmnet/glmnet_alpha.html

Lung cancer feature extraction methods Yu et al., 2016a, 2016b https://www.nature.com/articles/ncomms12474

Other

DNA-Seq, RNA-Seq, and proteomics data

of the TCGA cohort

TCGA Data Portal https://gdc.cancer.gov/

RNA-Seq data of the Mayo Clinic cohort Sun et al., 2014 https://bmcmedgenomics.biomedcentral.com/articles/

10.1186/1755-8794-7-32
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael

Snyder (mpsnyder@stanford.edu).

METHOD DETAILS

Extracting Genomic, Transcriptomic, Proteomic, Histopathology, and Clinical Features of Lung Adenocarcinoma
Patients
A high-quality data set for omics, histopathology, and clinical information of all 538 lung adenocarcinoma patients was obtained from

The Cancer Genome Atlas (TCGA) data portal (Cancer Genome Atlas Research Network, 2014). The omics data were processed

by standard bioinformatics pipelines (GATK(McKenna et al., 2010) for exome-sequencing, RSEM (Li and Dewey, 2011) for

RNA-sequencing, and ArrayPro for reversed phase protein array) by the TCGA consortium. Whole-slide histopathology images,

pathology reports, as well as clinical information were acquired for this patient cohort. To validate our clinical prediction method,

an independent cohort of stage I lung adenocarcinoma patients (n=27) from Mayo Clinic was identified from the Gene Expression

Omnibus (Sun et al., 2014). RNA-sequencing results and clinical variables were obtained and histopathology grade was manually

extracted from the associated pathology reports. This studywas retrospective and did not involve randomization or blinding. All sam-

ples with available data were included in the study.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlating Omics Profiles with Histopathology Annotations by Machine Learning Methods
Histopathology grade was manually extracted, due to their implications for patients’ survival outcomes and their presence in most

pathology reports (Barletta et al., 2010; Warth et al., 2012). To reduce the impact of inter-observer disagreement, pathology grades

were binarized into a higher-grade group (poorly differentiated or moderately-to-poorly differentiated) or a lower-grade group (well

differentiated or moderately differentiated) (Barletta et al., 2010). These group assignments led to relatively balanced groups, with at

least 40% of cases in each group.

Breiman’s random forest (Breiman, 2001; Liaw and Wiener, 2002) was used to correlate transcriptomics and proteomics profiles

with pathology grade. To reduce the risk of overfitting, the information gain ratio of each feature is calculated and only the top features

ranked by information gain ratio were selected and included in the model. Wilcoxon rank sum test, which does not rely on assump-

tions about the probability distributions of the variables, was performed to evaluate the expression difference of each of the selected

feature, and the Benjamini-Hochberg procedure was performed to adjust for multiple tests. Unlike conventional machine learning

methods that tend to select aminimal number of complementary features, this method ensured that the selected feature sets contain

the individual transcriptomics or proteomics patterns correlated with the histopathology annotation of interest, which could be used

for enrichment analysis.
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To evaluate the performance of the resulting classifiers, the data set was divided into distinct training and test sets, with 80%of the

cases in the training and 20% in the test set. There is no overlap between the training and test set. The top features were selected and

the models were finalized using the training set. To ensure the robustness of the machine learning framework, the random partition

process was repeated 20 times, generating distinct training and test sets each time with no overlaps between training and test data.

The machine learning models were built using the training data and evaluated on the test set. The distribution of the area under the

receiver operating characteristic curves (AUC) for the classifiers from repeated random partitions was reported.

To identify the biological pathways implicated in the selected lists of genes and proteins, we performed gene ontology (GO)

enrichment analysis, KEGG pathway analysis, and network analysis using the String Database Tool (Szklarczyk et al., 2015). To

estimate the enrichments in gene-gene interactions, the String Database Tool used a Poisson-Binomial variable tomodel the number

of edges connecting the genes, and calculated the P-value of observing the number of gene-gene interactions under the null

hypothesis that this gene set did not possess more gene-gene interactions than a random set (Franceschini et al., 2013). Significant

gene-gene interactions often indicated that the selected genes participated in related molecular pathways. The gene expression and

protein expression levels associated with tumor grade were visualized using heatmaps, and hierarchical clustering was employed to

group genes/proteins with similar expression patterns.

Genetic Aberrations, Tumor Purity and Their Correlations with Quantitative Histopathology
The associations between quantitative histopathology image features and TP53 mutation status were investigated due to the clinical

significance of TP53 mutation and the availability of patients with both TP53 mutation information and histopathology image data

(Cancer Genome Atlas Research Network, 2014). To extract the quantitative features from the whole slide histopathology images,

a fully automated computational framework was employed (Yu et al., 2016b). The framework employed the ‘‘IdentifyPrimaryObjects’’

and the ‘‘IdentifySecondaryObject’’ modules in CellProfiler to identify the lung tumor cells and tumor cell nuclei from the histopathol-

ogy slides, and used the ‘‘Measure Image Area Occupied’’, ‘‘Measure Correlation’’, Measure Granularity’’, ‘‘Measure Image Inten-

sity’’, ‘‘Measure Image Quality’’, ‘‘Measure Object Size Shape’’, ‘‘Measure Object Intensity’’, ‘‘Measure Object Radial Distribution’’,

‘‘Measure Object Neighbors’’, and ‘‘Measure Texture’’ modules to extract the size, shape, intensity distribution, and texture features

from the identified tumor cells (Carpenter et al., 2006). A total of 694 basic quantitative image features for the tumor cells were ex-

tracted using this bioinformatics framework (Data S1). Wilcoxon rank sum test with Benjamini-Hochberg procedure was employed to

identify the associations between the quantitative image features and TP53 mutation status.

Similar procedures were employed to characterize the correlations between quantitative histopathology image features and

adenocarcinoma sub-classifications as well as tumor purity estimates in the TCGA cohort (Cancer Genome Atlas Research

Network, 2014). When correlating with adenocarcinoma sub-classification, analysis of variance with Benjamini-Hochberg

procedure was used to account for the multiple classes. Tumor purity estimates were binarized into two groups, where samples

with absolute purity call less than 0.5 were categorized as the low purity group and those with absolute purity call greater than or

equal to 0.5 were defined as the high purity group. Wilcoxon rank sum test with Benjamini-Hochberg procedure was employed to

identify the associations between the quantitative image features and purity groups. A Least Absolute Shrinkage and Selection

Operator (LASSO) regression model was built using the quantitative image features, and the Spearman’s rank correlation coeffi-

cient, a non-parametric measure of rank correlation, was calculated to quantify the association between the predicted purity value

and the absolute purity call.

Prognostic Prediction
Survival stratification by tumor stage and grade were evaluated with the log-rank test, which is non-parametric. A set of reported

genes associated with stage I lung adenocarcinoma patient survival (Bianchi et al., 2007) were intersected with gene expression

levelsmeasured in the TCGAdata set. LASSO-Cox proportional hazardsmodels (Friedman et al., 2010; Simon et al., 2011; Tibshirani,

1997) were employed to handle right-censored survival information and avoid overfitting. The LASSO-Cox method used L1

regularization to push the coefficients of uninformative features to zero, which achieved the goal of feature selection while building

the survival model.

Current clinical stratification methods using tumor stage and grade as well as a previously-reported gene expression signature

(Bianchi et al., 2007) were used as the baseline for comparison. The survival stratifications among all stages as well as between stage

IA and stage IB were investigated. In order to better predict the diverse clinical prognoses of stage I adenocarcinoma patients,

integrative LASSO-Cox models were built using the previously reported gene expression signature (Bianchi et al., 2007), the pathol-

ogy grades, and patient age as inputs. The regularization parameters in the LASSO-Cox models were optimized through cross-

validation on the training set. After all parameters in the model were finalized, a survival index was calculated for each patient in

the training set, and the median survival index in the training set was used as a threshold for distinguishing longer-term survivors

from shorter-term survivors. Patients with missing pathology or omics data were discarded from the analysis. All models were

adjusted for patient age.

Evaluation of Prognostic Prediction Models
To evaluate the performance of our prediction models in the TCGA cohort, leave-one-out cross-validation was employed. The log-

rank test was used to determine the difference in survival outcomes between the predicted groups.
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To further validate the survival model, an independent cohort from Mayo Clinic (Sun et al., 2014) was obtained and the gene

expression and histopathology profiles of each patient in this cohort were analyzed. The same procedure described above was

used to stratify patients in this replication set into two survival groups. Again, the log-rank test was used to determine the survival

outcome difference between groups.

DATA AND SOFTWARE AVAILABILITY

The basic quantitative histopathology image features are provided in Data S1.
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