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A Probabilistic Model to Support

Radiologists’ Classification Decisions
in Mammography Practice

Jiaming Zeng, Francisco Gimenez, Elizabeth S. Burnside ,

Daniel L. Rubin*, and Ross Shachter*

We developed a probabilistic model to support the classification decisions made by radiologists in mammography
practice. Using the feature observations and Breast Imaging Reporting and Data System (BI-RADS) classifications
from radiologists examining diagnostic and screening mammograms, we modeled their decisions to understand their
judgments. Our model could help improve the decisions made by radiologists using their own feature observations
and classifications while maintaining their observed sensitivities. Based on 112,433 mammographic cases from 36,111
patients and 13 radiologists at 2 separate institutions with a 1.1% prevalence of malignancy, we trained a probabilis-
tic Bayesian network (BN) to estimate the malignancy probabilities of lesions. For each radiologist, we learned an
observed probabilistic threshold within the model. We compared the sensitivity and specificity of each radiologist
against the BN model using either their observed threshold or the standard 2% threshold recommended by BI-
RADS. We found significant variability among the radiologists’ observed thresholds. By applying the observed
thresholds, the BN model showed a 0.01% (1 case) increase in false negatives and a 28.9% (3612 cases) reduction in
false positives. When using the standard 2% BI-RADS-recommended threshold, there was a 26.7% (47 cases)
increase in false negatives and a 47.3% (5911 cases) reduction in false positives. Our results show that we can signifi-
cantly reduce screening mammography false positives with a minimal increase in false negatives. We find that learn-
ing radiologists’ observed thresholds provides valuable information regarding the conservativeness of clinical practice
and allows us to quantify the variability in sensitivity across and within institutions. Our model could provide sup-
port to radiologists to improve their performance and consistency within mammography practice.
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The American Cancer Society recommends annual screen-
ing mammography for women older than 45 y to detect
breast cancer early, when it is most treatable.1–3 However,
the U.S. Preventive Services Task Force recommends less
aggressive screening based on literature that asserts that
the harms of early and frequent screening outweigh the
benefits.4,5 While a reduction in screening is one possible
solution to addressing the issue of false-positive detections,
it risks missing cancer at an early stage. An alternative
solution is to help radiologists reduce their false-positive
interpretations of mammography.
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Like all screening tests, mammography balances sensi-
tivity against specificity, or equivalently, balances false
negative against false positive findings. These tradeoffs
are determined by a radiologist’s personal subjective
threshold. A conservative radiologist might practice at a
higher sensitivity and corresponding lower specificity,
decreasing false-negative findings while increasing false-
positive findings. Such subjectivity results in variability
in mammography practice, which is a well-known and
unsolved challenge.6–9

Computer-aided diagnosis (CADx) systems could
potentially diminish subjectivity in the interpretation of
mammography using quantitative methods and an objec-
tive operating point, a particular value of sensitivity and
corresponding specificity on the receiver-operating char-
acteristic curve of the system. Moreover, by adjusting
that operating point, it is possible to modify performance
in CADx systems, a task that is much more challenging
in unassisted human readers. A variety of CADx systems
have been developed for mammography.10–17 While
many have been shown to improve the performance of
radiologists as well as to reduce their intrareader varia-
bility in controlled settings, they show less improvement
in real-world settings. CADx systems seeking to reduce
false negatives will trade sensitivity for specificity and
subsequently increase false positives, in a manner similar
to radiologists. The difference between such systems and
radiologists is that the operating point in CADx systems
can be explicitly set to maximize the system’s perfor-
mance. In probabilistic CADx systems, a probabilistic
threshold solely determines the operating point. This
threshold can be interpreted as the minimum probability
of cancer that a lesion must exhibit before it is deemed a
positive finding (i.e., recalled).

While most radiologists strive for a fixed operating
point, the holistic and qualitative nature of mammogra-
phy interpretation makes it difficult to quantify their
probabilistic thresholds. The Breast Imaging Reporting
and Data System (BI-RADS) designates a probability of
malignancy greater than 2% to be a positive result.18,19

Unfortunately, there has been no way to measure what
threshold radiologists are actually using and thereby
understand how conservatively they are practicing.

We propose a methodology to measure a radiologist’s
effective probabilistic threshold for declaring a positive
finding. Furthermore, we show that it is possible to help
radiologists increase their specificity without decreasing
sensitivity. This strategy allows for a reduction in false-
positive findings with a minimal increase in false-negative
findings and could improve the effectiveness of screening
mammography.

Methods

Data Set

For our study, we used a total of 112,433 mammography
reports, with 1214 malignant cases, a 1.1% prevalence,
collected from 13 radiologists across 2 teaching hospitals,
8 radiologists at Institution I and 5 radiologists at
Institution II. The reports included both diagnostic and
screening mammograms. We included prospectively
interpreted consecutive screening and diagnostic mam-
mograms as recorded in our structured reporting soft-
ware (PenRad Technologies, Buffalo, MN) at Institution
I from October 3, 2005, to July 30, 2010, and at
Institution II from April 5, 1999, to February 9, 2004.
We obtained Institutional Review Board approval for
this research.

We defined a mammography case as the patient’s risk
factors, the radiologist’s observations, and the pathologi-
cal ground truth. Each case included features such as
patient demographic risk factors (e.g., age, personal his-
tory), BI-RADS observations (e.g., mass size, mass stabi-
lity), and the radiologist’s BI-RADS assessment
category. The BI-RADS assessment categories were split
into 6 levels: 1, 2, or 3 indicated a negative assessment
(no immediate follow-up), while 0, 4, or 5 indicated a
positive assessment (follow-up imaging or biopsy recom-
mended).18,19 Using this, we treated each radiologist’s
classification decision on malignancy as a binary out-
come of positive or negative.

Pathological ground truth of malignancy was deter-
mined through biopsy results or at least 1 y of clinical
follow-up. For patients who were not biopsied or did not
develop cancer within a year of the mammogram, patho-
logical ground truth was determined by matching them
to state cancer registries.

By comparing the radiologist’s BI-RADS–based deci-
sions to the pathological ground truth, we recognized
each case as either false positive, false negative, true posi-
tive, or true negative. A summary of the data set is shown
in Table 1.

Probabilistic Model

Building on the mammography Bayesian network (BN)
model described by Burnside et al.,20 we trained a BN to
estimate a lesion’s probability of malignancy based on
the features identified by the radiologists. A BN models
the joint distribution of many random variables to effi-
ciently update the probability of a malignant case given
a radiologist’s observation of BI-RADS features, BI-
RADS assessment category, and patient risk factors.21
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Using the data set described, we learned both the struc-
ture and the parameters of the BN. The structure was
learned using Tree-Augmented Nave Bayes.22,23 We esti-
mated the conditional probability table parameters using
gradient descent. Both the BN structure and parameters
were estimated by an iterative 10-fold cross-validated
model within the training data. All model learning and
classification was done in Norsys Netica 5.14.24

We estimated the posterior probability of malignancy
for each case by using an iterative 10-fold model. The
data were stratified into 10 folds by the radiologist and
number of malignant cases. For each fold, we used the
other 9 folds as the training set to build a probabilistic
model for diagnosis and the fold itself as the test set to
measure the probability that a finding was malignant.
We then estimated each radiologist’s operating point
using these posterior probabilities of malignancy (see the
next section). The operating point was characterized by a
probability in the BN model, which we call the observed
threshold.

Observed Threshold Selection

Finding a radiologist’s operating point is challenging
because radiologists have different beliefs about the
probability of malignancy. Instead, we learn a radiolo-
gist’s observed threshold by setting the BN model to be
as specific as possible given that it is at least as sensitive
as the radiologist. In other words, the observed threshold
minimizes the false positive rate while matching the radi-
ologist’s false negative rate in bootstrapped samples.

To match a radiologist’s sensitivity, we calculated the
probability of malignancy for each of the radiologist’s

cases and found the largest probabilistic threshold with
at least as much sensitivity as the radiologist. For most
of our radiologists, this threshold led to an increase in
specificity. For each radiologist, we repeated the process
5001 times over bootstrapped samples of the radiologist’s
cases. The median threshold from these samples was
selected as the observed threshold. While this bootstrap-
ping provides robust estimates of the observed thresh-
olds, it can fail to match the number of false negatives
exactly, sometimes yielding 1 more or 1 less false nega-
tive. Across all radiologists, there was a net increase of 1
false negative. In Figure 1, the box plot shows the spread
of the thresholds for the bootstrapped samples, with out-
liers shown as black dots. We note that there was fairly
high variability in our sampled thresholds across radiolo-
gists. This can be interpreted as interreader variability
and lack of consistency of practice. Moreover, most of
the radiologists deviated substantially from the 2% BI-
RADS recommended threshold. The learned observed
threshold values are also shown in Table 2.

Statistical Analysis

Using the BN model, we also implemented the 2% BI-
RADS-recommended threshold and examine its results.
In the Results section, we compare the classification
decisions by each radiologist with the BN model using
either the radiologist’s observed threshold or the 2% BI-
RADS–recommended threshold.

We compared the performance of these 3 classifica-
tions via sensitivity and specificity. We used McNemar’s
test of proportions to evaluate the statistical significance
between each radiologist and each of the BN thresholds

Table 1 Our study includes 112,433 diagnostic and screening mammography cases with separate analysis for each of the 13
radiologists at 2 institutions

Radiologist ID Institution No. of Cases Malignant Benign False Negative False Positive Prevalence (%)

1 I 1759 35 1724 4 225 2.0
2 I 8185 123 8062 10 988 1.5
3 I 11,415 151 11,264 25 1160 1.3
4 I 6144 32 6112 5 686 0.5
5 I 4126 69 4057 14 475 1.7
6 I 15,908 199 15,709 27 1369 1.3
7 I 8217 110 8107 10 992 1.3
8 I 3736 74 3662 10 629 2.0
9 II 23,497 174 23,323 32 2678 0.7
10 II 16,604 148 16,456 19 1840 0.9
11 II 3077 26 3051 3 313 0.8
12 II 3634 30 3604 4 420 0.8
13 II 6131 43 6088 13 701 0.7
Total — 112,433 1214 111,219 176 12,476 1.1
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for all of the radiologist’s cases. Significance was deter-
mined at a 95% confidence level (P \ 0.05). In addition,
we used the two one-sided test to establish the noninfer-
iority margin for sensitivity for each pair of methods.
That margin was calculated to be 1.96 times the standard
deviation of interreader sensitivity, corresponding to the
95% confidence interval across all radiologists. The con-
fidence interval for each pair of proportions was calcu-
lated using the Agresti and Min method.25

All statistics were estimated by R 3.1.0.26 Binary pro-
portions testing was done using the DTComPair package
version 1.03.27 Bootstrapping was performed by the boot
package version 1.3-11.28

Results

We compared and analyzed the performance of the 3
methods for classifying mammograms as positive or neg-
ative: 1) each radiologist’s BI-RADS assessment, 2) clas-
sification using the radiologist’s observed threshold on

the probabilities estimated by our BN model, and 3) clas-
sification using the 2% BI-RADS threshold on those
probabilities.

Comparison of Sensitivity and Specificity

We compared the difference in sensitivity and specificity
between each radiologist and the BN model with either
that radiologist’s observed threshold or the 2% BI-RADS
recommended threshold in Figure 2. The methods were
considered noninferior to each other with respect to sensi-
tivity if the 95% confidence interval of the difference in
sensitivity, indicated by the whisker lines, was completely
within the equivalence bounds across radiologists, indi-
cated by the dashed red lines. Those equivalence bounds
correspond to the 95% confidence interval of sensitivity,
based on the variability among the radiologists.

In Figure 2, we compare the performance of each radi-
ologist and our methods on the same cases in terms of
sensitivity and specificity.

� Observed thresholds: The sensitivity performance
between radiologists and the BN model with
observed thresholds was within the equivalence
bounds and noninferior for all but 1 radiologist. The
difference in specificity was statistically significant
for 9 radiologists, with 6 increasing and 3 decreasing
under the BN model. The remaining 4 radiologists
showed no significant difference in specificity.

� 2% BI-RADS–recommended threshold: The sensi-
tivity performance between radiologists and the
model’s 2% BI-RADS threshold was within the
equivalence bounds for 4 radiologists, and the BN
model was noninferior for 6 of the 13 radiologists.

Figure 1 Observed thresholds of radiologists learned from
bootstrapped samples. The observed thresholds presented in
Table 2 are estimated by the median of the corresponding
sampled thresholds. The red line shows the 2% Breast Imaging
Reporting and Data System–recommended threshold. The
radiologists from Institution I practice at a more conservative
level than the 2% threshold, while most from Institution II
have a less conservative practice. The black dots show outliers
among the sampled thresholds.

Table 2 Observed thresholds for each radiologist learned from
bootstrapped samples using the probabilistic Bayesian network
model

Radiologist ID Institution Observed Threshold (%)

1 I 1.7
2 I 0.7
3 I 1.0
4 I 1.8
5 I 1.1
6 I 1.1
7 I 1.0
8 I 0.6
9 II 2.8
10 II 3.0
11 II 3.1
12 II 0.7
13 II 2.8

Zeng et al. 211



With respect to specificity, the 2% threshold BN
model showed statistically significant improvement
for all radiologists.

Comparison of False-Negative and
False-Positive Counts

In Figure 3, we compare the false-negative and false-
positive counts for each radiologist with those from the

model with either the observed thresholds or the 2% BI-
RADS–recommended threshold. We then evaluate the
impact of these different thresholds.

The observed thresholds were designed to match each
radiologist’s sensitivity, so the false-negative counts for
each radiologist were within one of the BN models, as
seen in Figure 3. For 9 of the 13 radiologists, there was a
decrease in false-positive counts for each, with no net
increase in false-negative counts.

Figure 2 Comparison of sensitivity and specificity between each radiologist and the Bayesian network (BN) model using either
the radiologist’s observed thresholds or the 2% Breast Imaging Reporting and Data System–recommended threshold. The
observed threshold comparison is shown in the top graphs and the 2% threshold comparison in the bottom graphs, while the

difference in sensitivity is shown on the left and the difference in specificity on the right. In each chart, the heavy black vertical
line represents no change in performance, and positive numbers indicate improved performance using the BN model. In each
chart, the lines with whiskers show the 95% confidence interval for the comparison for each radiologist. The dashed red lines in
the charts on the left indicate the 95% confidence interval for variation in sensitivity across all of the radiologists.
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Using the 2% BI-RADS–recommended threshold,
there was a reduction in the false-negative counts for 4

radiologists and an increase for the other 9 radiologists.

The false-positive counts decreased for all radiologists.
Overall, with the observed thresholds, the BN model

showed a net increase of 1 false negative (0.01%) and a

net decrease of 3612 false positives (28.9%) relative to

the radiologists’ assessments. With the 2% BI-RADS–

recommended threshold, the BN model showed a

net increase of 47 false negatives (26.7%) and a net

decrease of 5911 false positives (47.3%) relative to the

radiologists.

Discussion

There are three main contributions of our study: 1) train-
ing a probabilistic model to predict malignancy given the
mammography imaging observations, 2) discovering a
radiologist’s effective probabilistic threshold, and 3)
exploring how we can help radiologists improve their per-
formance. Our paper differs from earlier work in that we
did not try to predict malignancy or the BI-RADS assess-
ment category. Instead, we use the BI-RADS descriptors
and assessment category to help revise the clinical deci-
sion. We believe our technique is novel, clinically impor-
tant, and fills an important gap in the literature.

Figure 3 Comparison of the counts of false negatives (top graphs) and false positives (bottom graph) in the classification

decisions made by radiologists and by the Bayesian network model using either the observed threshold or the Breast Imaging
Reporting and Data System 2% threshold for each radiologist’s cases.
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We demonstrated that we can use a probabilistic
model based on the features identified and classifications
assessed by radiologists to estimate the operating point a
radiologist effectively uses for mammography classifica-
tion. Without a probabilistic model, radiologists make
holistic qualitative assessments, resulting in variability
across practices. With our learned probabilistic BN
model, we characterized each radiologist by an observed
threshold that matches their sensitivity. The observed
thresholds allow us to quantify previously unidentified
sources of variability in practice and significantly reduce
false positives with a single additional false negative
overall. When we enforced the standard 2% BI-RADS–
recommended threshold in our BN model, we saw a sig-
nificant reduction in the number of false-positive find-
ings. Our results suggest that a decision support system
using our BN model could help some radiologists more
effectively evaluate screening mammograms.

Moreover, our approach enables mammography
assessments to be more consistent and could signifi-
cantly improve diagnostic accuracy. In BI-RADS, radi-
ologists determine the risk of malignancy by reporting
1 of 7 assessment categories. While each category
should indicate a quantitative estimate of malignancy,
they are often used as a qualitative assessment of the
radiologist’s suspicion in practice. Even if radiologists
tried to adhere to quantitative assessments of malig-
nancy, it is well established that practitioners make
errors in estimating probability,20,29 and this is one
possible reason that numerous studies have found sig-
nificant variability in the effectiveness of mammogra-
phy.7,30,31 Our results show that using a learned BN
model for estimating the probability of malignancy can
significantly reduce the rate of false positives by some
radiologists and thus boost their positive predictive
value and the quality of practice.

While our results are promising, there are limitations
to our work. First, because our study was developed
based on a structured reporting system, our BN will not
perform as reliably with missing information that may
occur in narrative reports that are not guided by a struc-
tured reporting system. Many radiology reports do not
use all of the BI-RADS descriptors. Moreover, radiolo-
gists often omit features that would not change their
classification decisions. Thus, many reports have missing
BI-RADS descriptors, resulting in inaccurate malignancy
probability estimates from the BN model. Finally, our
method is able to learn a radiologist’s observed threshold
from their reports on cases in which we know the patho-
logical ground truth.

Furthermore, the BI-RADS descriptors for mammo-
graphy, although comprehensive, may not sufficiently
describe all relevant cancer lesion characteristics. In
addition, our studies are from the era of analog mammo-
graphy, a technology that has been largely replaced by
digital mammography or tomosynthesis. New descrip-
tors are defined over time by the mammography commu-
nity, and BI-RADS is continually evolving.32 A decision
support system based on our method would need to be
updated as the descriptors change. However, the benefits
of using a quantitative image-based method to estimate
malignancy probability and reduce false positives should
persist.

A BN trained with the radiologist’s BI-RADS assess-
ment category produces better results than one without
it. Even when the assessment is not included, the model
can help radiologists reduce false positives. This indicates
that radiologists are incorporating additional informa-
tion not documented in the radiology reports (e.g., sali-
ent nonimage descriptors) when determining their final
assessment.33 In summary, we show that a collaborative
decision support system for mammographic classifica-
tion has the potential to aid radiologists in refining and
adhering to an optimal threshold. We believe such mod-
els would be strengthened by augmenting radiologist-
extracted features with quantitative data from image
processing and other sources.

Conclusion

With further validation, demonstration of generalizabil-
ity, and refinement of the human-computer interaction,
our system has the potential to provide decision support
to improve radiologists’ classification decisions. In addi-
tion, our model could be used retrospectively to measure
compliance with clinical threshold targets and standards.
For both potential real-world applications, our results
suggest notable reductions in false positives with a mini-
mal increase in false negatives. Although there may be
many challenges in implementation, introducing these
methods into clinical practice could improve the quality
of care in mammography screening while reducing prac-
tice variability.
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