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Abstract: This work introduces and evaluates an automated intra-retinal segmentation 
method for spectral-domain optical coherence (SD-OCT) retinal images. While quantitative 
assessment of retinal features in SD-OCT data is important, manual segmentation is 
extremely time-consuming and subjective. We address challenges that have hindered prior 
automated methods, including poor performance with diseased retinas relative to healthy 
retinas, and data smoothing that obscures image features such as small retinal drusen. Our 
novel segmentation approach is based on the iterative adaptation of a weighted median 
process, wherein a three-dimensional weighting function is defined according to image 
intensity and gradient properties, and a set of smoothness constraints and pre-defined rules are 
considered. We compared the segmentation results for 9 segmented outlines associated with 
intra-retinal boundaries to those drawn by hand by two retinal specialists and to those 
produced by an independent state-of-the-art automated software tool in a set of 42 clinical 
images (from 14 patients). These images were obtained with a Zeiss Cirrus SD-OCT system, 
including healthy, early or intermediate AMD, and advanced AMD eyes. As a qualitative 
evaluation of accuracy, a highly experienced third independent reader blindly rated the 
quality of the outlines produced by each method. The accuracy and image detail of our 
method was superior in healthy and early or intermediate AMD eyes (98.15% and 97.78% of 
results not needing substantial editing) to the automated method we compared against. While 
the performance was not as good in advanced AMD (68.89%), it was still better than the 
manual outlines or the comparison method (which failed in such cases). We also tested our 
method’s performance on images acquired with a different SD-OCT manufacturer, collected 
from a large publicly available data set (114 healthy and 255 AMD eyes), and compared the 
data quantitatively to reference standard markings of the internal limiting membrane and 
inner boundary of retinal pigment epithelium, producing a mean unsigned positioning error of 
6.04 ± 7.83µm (mean under 2 pixels). Our automated method should be applicable to data 
from different OCT manufacturers and offers detailed layer segmentations in healthy and 
AMD eyes. 
© 2017 Optical Society of America 
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1. Introduction 

Spectral-Domain Optical Coherence Tomography (SD-OCT) is extremely useful for imaging 
retinal structures and widely used in clinical practice. Until its relatively recent advent [1], the 
retina could be assessed only by observation of en face images, such as color fundus 
photographs, limited by superposition and masking of different retinal structures in the depth 
axis. The ability of SD-OCT to rapidly acquire three-dimensional (3D) retinal data, resolving 
structures in the depth axis, allows the direct visualization of its layered structure. Many new 
quantitative features extracted from SD-OCT data, such as the thickness of individual intra-
retinal layers [2], size, shape, and distribution of drusen (extracellular material accumulations 
that typically appear between the retinal pigment epithelium (RPE) and Bruch’s membrane) 
[3,4], cysts and fluid-filled regions [5], and macular [6], are currently used or investigated as 
biomarkers in retinal disease diagnosis [7–9]. 

The accurate and reliable segmentation of retinal layers in SD-OCT scans is a 
fundamental problem for the identification of new quantitative features that could be useful as 
disease biomarkers. Manual segmentation of structures in SD-OCT cubes is laborious and 
challenging, since each three-dimensional scan data consists of a large collection of planar B-
scans (typically hundreds of images); hence, there is a need for an automated segmentation 
algorithm. 

Much work has been done to date in developing segmentation algorithms of the retina 
multi-layered structure in SD-OCT images. A variety of them are built into commercial 
systems where details of their designs remain undisclosed [10], making replication in 
independent studies nearly impossible. Some of these commercial methods also require 
human interaction to initiate or refine the segmentation results [11–13], which can be time-
consuming. In addition, recent publications have reported substantial errors in their results 
[14–17]. A number of experimental algorithms have also been proposed by research groups, 
either in two-dimensional individual scans [18,19] or taking advantage of the three-
dimensional nature of the acquired data, considering a priori determined smoothness, 
continuity and layer interaction constraints. Much of current research in intra-retinal structure 
quantification often employs a segmentation method based in a graph-theory approach. A 
general graph-based approach for the segmentation of surfaces was proposed in [20], with 
applications to volumetric OCT data in [21–24] (implementation for segmentation of retinal 
boundaries available for download in reference [25]). Other current work takes advantage of 
machine learning techniques trained on manually labelled examples [26], possibly including 
graph-based refinements [27]. 

Although these and other automated or semi-automated segmentation methods have been 
applied to SD-OCT images [28–35], they have a number of limitations. First, most 
segmentation algorithms fail to produce acceptable results in complicated cases, such as 
severe retinal deformities [15–17,36] or in lower quality scans that are routinely found in 
clinical practice. Second, most methods were designed for use with SD-OCT images acquired 
by experimental systems or from a particular vendor. Third, available methods often produce 
outlines that smooth out important retinal pathologies. Such outlines are undesirable in 
conditions where accurate characterization can provide important disease biomarkers, such as 
for discerning individual small drusen and their volumetric and reflectivity properties in early 
AMD patients [3]. 
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In this work we present a novel segmentation method with application to SD-OCT data, 
based in the iterative adaptation of a weighted median process, wherein a three dimensional 
weighting function is defined considering image intensity and gradient properties. The 
framework also considers smoothness constraints and prior knowledge related to the 
appearance of retinal layers in SD-OCT data. Our method is sought to address the 
aforementioned challenges of prior algorithms, producing accurate delineations of the intra-
retinal layered structure in scans acquired during clinical practice and maintaining a stable 
behavior in disease cases while also producing accurate outlines that follow the particular 
pathologies of the disease, not smoothing out important details. This method was used 
previously for the segmentation of the retina in hydroxychloroquine toxicity [15] and post-
surgery in macular hole cases [6]. In these applications, the results of our methods were 
successful and superior to current commercial software by visual inspection, but details about 
the method and its evaluation have not yet been published. In this manuscript we provide a 
detailed description and implementation of the segmentation method and its quantitative and 
qualitative evaluation in healthy and AMD eyes of several severity grades. We compared its 
results on individual layer boundaries to manual segmentations drawn by two independent 
retinal specialists and to the Iowa Reference Algorithm OCT-Explorer (version 3.5) [25] in a 
sample set acquired during routine clinical practice of healthy, early, and advanced AMD 
eyes. We also evaluated its quantitative differences with a manually-corrected reference 
standard in a larger publicly available independent data set of healthy and AMD eyes, 
acquired in a separate institution and with an imaging system from a different vendor [37,38]. 

2. Material and methods 

We propose the automated three-dimensional segmentation of 10 retinal boundaries in SD-
OCT exams, with coordinate nomenclature, acronyms and example location of the segmented 
boundaries defined in Fig. 1. Since our method aims to identify a retinal boundary in the form 
of a surface, that is, the separation between two retinal layers, our nomenclature could not 
exactly follow the consensus established by Staurenghi et al. [39] in the form of zones. The 
nomenclature for these boundaries has been established in the following manner throughout 
the text: Each boundary was indicated by the common acronym used to identify one of its 
adjacent retinal layers and preceded by “i-” or “o-”, depending on whether such boundary 
indicates the innermost or the outermost limits of the layer, respectively. Our algorithm aimed 
to identify the following boundaries: Internal Limiting Membrane (ILM), inner boundary of 
the Retinal Nerve Fiber Layer (i-RNFL), outer boundary of the Retinal Nerve Fiber Layer (o-
RNFL), outer boundary of the Inner Plexiform Layer (o-IPL), outer boundary of the Inner 
Nuclear Layer (o-INL), outer boundary of the Outer Plexiform Layer (o-OPL), inner 
boundary of the Ellipsoid Zone (i-EZ), outer boundary of the Ellipsoid Zone (o-EZ), inner 
boundary of the Retinal Pigment Epithelium (i-RPE), and outer boundary of the Retinal 
Pigment Epithelium (o-RPE). The differentiation between ILM and i-RNFL was defined to 
resolve those cases with vitreous detachment, but for most cases, as the one in Fig. 1, both 
boundaries remain in the same location. A correspondence between this nomenclature and the 
one defined by Staurenghi et al. [39] is also indicated in Fig. 1, where each of the boundaries 
in this work is associated to the separation between two adjacent zones. 

The key elements of the method are shown in Fig. 2. We considered a pre-processing de-
noising step of non-local means (NL-means) filtering [40] (labeled as 1 in Fig. 2, radius of the 
search windows t = (14 µm axially, 82 µm horizontally), f = (6 µm axially, 35 µm 
horizontally) and filtering degree h = 0.008). While the most prominent noise in OCT images 
is multiplicative speckle noise, the raw images were first transformed using a logarithmic 
function, making an additive noise model like NL-means acceptable [41,42]. The choice of 
this filtering was made in order to obtain reasonable noise reduction while maintaining 
sufficient structure information and layer edges and also to minimize the computational cost. 
The window radius was smaller in the axial direction due to a higher axial resolution (more 
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pixels contained in small window sizes) and since we expect the retinal layers to extend in the 
horizontal direction. 

 

Fig. 1. a) Example SD-OCT cube, comprising 3-D data. b) Example B-scan (planar images at 
each vertical location) within the cube, formed by a series of line-scans at each horizontal 
location (A-scans). c) Detail showing the location of each retinal boundary segmented by our 
proposed algorithm. The figure also indicates the correspondence between the nomenclature 
used in this work and the interface between two zones that each boundary represents, as 
defined in [39]. 

The algorithm is based on an iterative process that updates the segmentation to closely 
follow the actual location of each boundary while maintaining a smooth behavior (steps 
labeled as 3 and 6 in Fig. 2). The core operation in the iterative process uses a 2D weighted 
median (WM) filter in a 3D context, adapted to be suitable for the segmentation of the 3D 
SD-OCT data, and a set of given parameters and constraints based on two facts of anatomical 
knowledge of the retinal layers: (1) the order of appearance of the layers in the axial direction 
(known anatomically) and (2) the known constraint that the layers do not cross each other. 

 

Fig. 2. Steps in segmentation: Input data: SD-OCT cube. De-noising: (1) Non-local (NL) 
means filtering. Segmentation algorithm: (2) Initial ILM estimation, (3) ILM iterative 
segmentation, (4) differentiation of RNFL and RPE complexes, (5) initial estimation of 
remaining retinal layers, (6) iterative segmentation. Output: Segmented SD-OCT cube. 

Initial estimations of the ILM boundary (labeled as 2 in Fig. 2), differentiations of the 
RNFL-complex and the RPE-complex (4), and the remaining nine boundaries (5), are 
determined to act as seed for the iterative process. While more accurate initial estimations 
result in faster convergence of the algorithm, we found that an erroneous (within certain 
limits) initialization would also converge in an acceptable solution. For simplicity in the 
description of our methods, in this section we describe the core of the segmentation algorithm 
(iterative segmentation), while the details on our approach determining the initial seed 
estimations are included in the appendices. Figure 3 shows an example three-dimensional 
rendering of the initial estimation of the retinal layer boundaries and the result after the 
iterative segmentation step, as well as the final segmentation results in a B-scan, and a 
transverse cut of the cube in the axial-vertical plane (called “transverse scan” here). An 
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additional example for the ILM is shown in Figs. 10 (in Appendix A). We can observe how 
the core iterative process refines regions of initial depth overestimation (Fig. 10(c)) as well as 
on regions of initial depth underestimation (Figs. 10(b) and 10(d)-(e)). 

 

Fig. 3. a) Rendering of the initial estimation of the 10 retinal boundaries. From top to bottom: 
Red: ILM. Green: i-RNFL. Dark blue: o-RNFL. Magenta: o-IPL. White: o-INL. Cyan: o-OPL. 
Green: i-EZ. Red: o-EZ. White: i-RPE. Yellow: o-RPE. b) Rendering of the retinal boundaries 
after refinement step. Axial differences between the layers are exaggerated for displaying 
purposes. c) On the left, example B-scan taken across the center of the fovea (top), and 
transverse scan across the center of the fovea (bottom). On the right, the same images are 
shown with the segmentation of the retinal boundaries after refinement step, as indicated by 
the legend displayed on the far right Note that the location of the segmented ILM boundary is 
not clearly visible in the B-scan and transverse scan since it has the same location as the i-
RNFL boundary. 

2.1. Iterative boundary segmentation based in weighted median filtering 

The WM filter is a nonlinear filtering option that was introduced as an improved version of 
the median filter [43] to add flexibility and reduce edge jitter, and streaking effects [44] by 
assigning a nonnegative weight controlling the filtering behavior to each position in the filter 
window. Here, it has been adapted for the iterative segmentation of the 3D SD-OCT data. 
Each retinal layer boundary is defined in the form of a surface ( , )B x y , describing the z 

coordinate location (axial depth) associated to the ( , )x y  coordinates (in the horizontal and 

vertical axes, respectively). The boundary at the k iteration, ( , )kB x y , is updated given the 

results from the last iteration 1(X, Y)kB −  (with (X,Y)  indicating the subspace defined by the 

cube horizontal-vertical extent) and a set of filtering parameters: 

 ( )( ) ( )argmin 1 1
          ( , ) , , , ; , ; , ; , ; ,

L L kk k k

n Lm L

B x y W x y z x y n m z x y n mθ β β θ− −

=− =−

= ⋅ −   

 ( ) ( ) ( )1 11 1, ; , ; ( , ) , ; , ; .
k kk kz x y n m B x n y m S x n y m S x yβ β β− −− −= + + − + + +  (1) 

with 0(X, Y)B  described by an initial estimation (see appendices). ( ), ,
kW x y z  is an iteration-

dependent weighting function and L indicates the window length of the WM filter. 
1( , ; )kS x y β −  is a smoothing function determined from the result at the 1k −  iteration and 

with a defined smoothing factor β , acting as an offset for the k iteration. The median is 

calculated on the differences between the boundary location at iteration k and 1( , ; )kS x y β −  to 

avoid the interference of overall retina inclination and curvature. This way, the axial index kz  
for the weighting function and magnitude is considered as a distance with respect to this 
offset at the neighboring positions but then translated to the offset at the position of interest 
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( , )x y . The algorithmic solution used in this work for the implementation of WM filter as an 

optimization is reported in reference [44]. The iterative process was chosen to end when the 
boundary is updated in less than 2 µm in the axial direction at all locations in the horizontal-
vertical plane (about the typical minimum pixel axial dimension in SD-OCT images). 

2.2. Weighting function definition 

The iteration-dependent weighting function ( ), ,
kW x y z  is defined in in the following 

manner: 

 ( ) ( ) ( ) ( )I
, , I , , , , , , ,

k kW x y z r x y z sgn x y z M x y z
Z

α ∂  = ⋅ ∇ ⋅ ⋅  ∂  
 (2) 

where ( ), ,x y zI  refers to the reflectivity recorded in a discrete voxel position. ( ), ,
kM x y z  

represents a masking volume in the 3D subspace determined by the cube extent, defined to 
indicate the anatomical constraints within the retinal boundaries. This masking volume is set 
independently for each boundary and iteration with a value of 1 for the voxels within defined 
upper and lower boundary limits in the axial direction and 0 otherwise (boundary-based upper 
and lower limits are described in Table 1). The parameter α  is set to indicate whether the 
boundary should present an increase in reflectivity (dark-to-light transition) in the axial 
direction, assigned with 1α = + , or a decrease in reflectivity (light-to-dark transition), 
assigned with 1α = − . ∇  indicates a three-dimensional gradient operator, computed here 

with a 3D Sobel operator kernel of 25µ extent. The axial derivative 
I

Z
∂
∂

 is computed using 

the same Sobel kernel, ( )sgn t  is the signum function, and ( )r v  is the ramp function, defined 

as: 

 ( ) , 0
,

0, 0

v if v
r v

if v
≥

=  <

  

  
 (3) 

The reasoning behind this choice of weighting function is that we want the filtering result to 
follow those points where the gradient is more prominent, within the limits allowed by the 
defined anatomical constraints. The larger the magnitude of the gradient, the larger is the 
weight and the higher the tendency towards such a particular depth. The signum and ramp 
function, together with the parameter α , allows selecting just the positive or negative 
gradients in the axial direction, as each layer boundary will present a particular derivative 
sign. 

2.3. Smoothing function definition 

The smoothing ( , ; )kS x y β  is introduced to reduce the staircase effect [45] when the WM 

filter is repeated a large iterative number of times (due to the nature of the median operation) 
and greatly improved the quality of the segmentation results. Its definition is based on a 
similar idea to the “flattening” usually done in SD-OCT segmentation algorithms 
[19,22,35,46], in which depth distances are considered with respect to estimations of the ILM 
or RPE layers, and not with respect to the axial axis origin at the top of the complete cube. A 
“flattening” step relative to the ILM layer usually helps the segmentation of inner retinal 
layers in healthy eyes, since they tend to follow a similar curvature. However, in eyes with 
severe abnormalities, the retinal layers can take curvatures very different from the ILM due 
to, for example, drusen, fluid accumulations, or RPE detachment. In this work, we considered 

( , ; )kS x y β  a smoothed version of the boundary ( , )kS x y , computed using a diffusion 
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regularization fitting operation with a smoothing factor of β . The fitting tools employed in 

this characterization are available online for download [47]. 

2.4. Choice of parameters and masking volumes 

The defined boundary dependencies and parameter values are specified in Table 1. These 
were set partly considering the boundary order of appearance in SD-OCT images, common to 
every eye, and partly heuristically through experimentation in a separate data set of eyes than 
those evaluated in this work. A mask indicating the approximated en face extent (location in 
the horizontal-vertical plane) of the foveal pit was also generated to resolve the possible 
intersection of inner retina boundaries at such locations and considered in the masking 

volumes ( )X,Y, Z
kM . The process we followed to obtain this approximation is described in 

Appendix D, although other approaches are possible. In Table 1, OFOV and IFOV indicate 
the regions outside and inside the estimated foveal pit mask, respectively. The window length 
in the filtering was 0.1mmL =   for all the segmented layers in both horizontal and vertical 
directions. The length of the smoothing factor was set to β = 6mm for the inner retina layers 
(ILM, i-RNFL, o-RNFL, o-IPL, o-INL, o-OPL) and β = 2mm for the outer retina layers (i-EZ, 
o-EX, i-RPE, o-RPE), as we observed larger variations in the axial direction for the later due 
to the presence of numerous abnormalities in eyes diagnosed with AMD, such as drusen and 
GA. As displayed in Fig. 2 and by the dependencies indicated in Table 1, the ILM boundary 
was determined independently from the rest of the boundaries, without cross-boundary 
dependencies, while the remaining 9 boundaries where updated in parallel in the iterative 
process and presented cross-boundary dependencies. 

Table 1. Segmentation parameters chosen. Boundaries are indicated with the same 

acronyms as throughout the text. Coordinates ( , )x y  for each boundary are not 

indicated for simplicity. 

Boundary 
Upper limit in ( )X, Y, Z

kM   

(numbers in µ) 

Lower limit in ( )X, Y, Z
kM  

 (numbers in µ) 

α  β(mm) 

ILMk ILMk-1-50 ILMk-1+50 +1 6 

i-RNFLk ILM k-1 o-RNFLk-1 +1 6 

o-RNFLk i-RNFLk-1 {
IFOV: min(i-RNFLk-1+20, o-IPLk-1-20) 

OFOV: min(o-RNFLk-1+40, o-IPLk-1-2) 
-1 6 

o-IPLk { 
OFOV: min(o-RNFLk-1+10,o-OPLk-1-40) 

IFOV: min(o-RNFLk-1, o-OPLk-1-40) 
{

OFOV: min(o-OPLk-1-10, i-EZ k-1 -20) 

IFOV: min(o-OPLk-1-20, i-EZ k-1 -20) 
-1 6 

o-INLk o-IPL k-1 {
OFOV: min(o-OPLk-1, i-EZ k-1 -10) 

IFOV: min(o-OPLk-1-20, i-EZ k-1 -10) 
+1 6 

o-OPLk { 
OFOV: o-IPLk-1+20 

IFOV: o-IPL k-1 
i-EZk-1 -1 6 

i-EZk o-INL k-1 min(o-OSk-1-2, o-RPEk-1-20) +1 2 

o-EZk i-EZ k-1 min(i-EZk-1+30,i-RPEk-1-2) -1 2 

i-RPEk min((i-EZ k-1+o-EZ k-1)/2, o-RPE k-1-20) o-RPEk-1 +1 2 

o-RPEk max(i-EZk-1, o-RPE k-1-40) o-RPEk-1+40 -1 2 

3. Experiments 

3.1. Data collection 

The research was approved by the institutional Human Subjects Committee and followed the 
tenets of the Declaration of Helsinki. We used two different SD-OCT data sets to evaluate our 
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segmentation method, both quantitatively and qualitatively, as indicated in Table 2: A first 
data set consisted of scans from eyes of different AMD severity and potential segmentation 
difficulty, and a larger independent data set was collected from independent previous work 
[38] in which reference standard markings were available. 

For the first data set (Data set 1), we evaluated our methods in 42 representative images 
collected from a set of 14 macular SD-OCT cubes (three B-scans per cube, chosen as the one 
located directly at the fovea center and the two at ± 0.5 mm from the fovea center), acquired 
using a Cirrus HD-OCT instrument (Carl Zeiss Meditec, Inc., Dublin, CA). The images were 
organized in three different groups, as indicated in Table 2: Twelve images presented 
clinically without known abnormalities (Group I), fifteen images presented with drusen were 
diagnosed with early to intermediate AMD (Group II), and the remaining fifteen images 
presented areas of intraretinal fluid accumulation and RPE detachment and were diagnosed 
with advanced exudative AMD (Group III). Diagnosis and classification in such groups were 
performed by a fellowship-trained vitreoretinal specialist with more than 9 years of clinical 
experience according to clinical practice standard. The SD-OCT data was randomly chosen 
from scans acquired during clinical practice from eyes in each of the three different groups 
(from patients under author TL care). We segmented the 3D SD-OCT cubes using our 
proposed method and obtained hand-drawn outlines made by two independent retinal 
specialists (a fourth-year resident and retina fellow) for each of the ten boundaries segmented 
by our method in the 42 images (with a total of 420 outlines by each reader, 378 of them 
evaluated), drawn directly in each B-scan using image processing software (Photoshop, 
Adobe Systems Inc.; Snagit 11, TechSmith Corporation). We also collected the segmentation 
results produced by the Iowa Reference Algorithm OCT-Explorer (version 3.5, Retinal Image 
Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IO) for comparison, a 
common research software tool, available for download [25]. 

Table 2. Distribution of exams and outlines collected in the evaluation data sets. 
“Automated” refers to the method introduced here, “Iowa” refers to the Iowa Reference 

Algorithm software. 

Dataset 

   Label 

Number of evaluated 
outlines / B-scans / 
eyes 

Outlines collected Description 

Dataset 1: 378 / 42 / 14 Automated outlines / 2 manual outlines 
/ Iowa outlines 

Data collected at Byers Eye 
Institute (Stanford University). 

  Group I 108 / 12 / 4 Automated outlines / 2 manual outlines 
/ Iowa outlines 

Scans from healthy patients 
with no abnormalities. 

  Group II 135 / 15 / 5 Automated outlines / 2 manual outlines 
/ Iowa outlines 

Drusen, early to intermediate 
AMD. 

  Group III 135 / 15 / 5 Automated outlines / 2 manual outlines 
/ Iowa outlines 

Intraretinal fluid accumulation 
advanced exudative AMD. 

Dataset 2: 73800 / 36900 / 369 Automated outlines / Manually 
corrected reference standard 

Data collected from Farsiu et 
al. [33]. 

   Healthy 22800 / 11400 / 114 Automated outlines / Manually 
corrected reference standard 

Scans from healthy elderly 
patients. 

   AMD 51000 / 25500 / 255 Automated outlines / Manually 
corrected reference standard 

Non-exudative AMD at 
different severity stages. 

 
As a larger second data set (Data set 2) we used the SD-OCT scans collected by Farisu et 

al. [38], which are available online for download [37]. This collection consists of a total of 
384 SD-OCT macular scans along with manually corrected reference standards for three 
retinal layer boundaries, semi-automatically drawn by their proposed segmentation algorithm 
[46] and later corrected manually by experienced graders (certified by the Duke Advanced 
Research in Spectral Domain OCT Imaging laboratory): The inner limiting membrane, the 
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inner boundary of the retinal pigment epithelium (site where most AMD related conditions 
are visible in SD-OCT), and the boundary of Bruch’s membrane, all outlined within a 5 mm 
diameter circle around the center of the fovea. 115 of the scans were collected from healthy 
elderly patients, and the remaining 269 scans were collected from patients presenting with 
non-exudative AMD at different severity stages. Upon review of the collected cases, we 
excluded 15 of these scans (1 from healthy eyes, 14 from AMD eyes) due to low signal 
strength, which made the visualization of the layer boundaries nearly impossible. No other 
exclusion criterion was considered. 

The Cirrus HD-OCT instrument employed to acquire the scans in Data set 1 produces 
image volumes with dimensions of 6 (horizontal) x 6 (vertical) x 2 (axial) –mm. The voxel 
dimensions in the horizontal, vertical, and axial directions were approximately 12, 47, and 2 -
µm respectively (512, 128, and 1024 voxels in each direction). The raw data produced by the 
SD-OCT instrument was imported into the vendor’s proprietary software for analysis and 
reconstruction (Cirrus Research Browser, version 6.2.0.3, Carl Zeiss Meditec, Inc.) and later 
exported to a format accessible by Matlab (The MathWorks Inc., Natick, MA), where 
subsequent data processing was implemented. The SD-OCT scans in Data set 2 were acquired 
using Bioptigen, Inc. (Research Triangle Park, NC) imaging systems at four different clinical 
sites [38]. Each SD-OCT cube in this second data set was formed of 1000 (horizontal) x 100 
(vertical) x 512 (axial) voxels covering dimensions of approximately 6.7 (horizontal) x 6.7 
(vertical) x 1.6 (axial) –mm. The voxel dimensions in the horizontal, vertical, and axial 
directions in this second data set were approximately 6.7, 67, and 3.1 -µm respectively. 

3.2. Quantitative comparison of boundary positioning between automated methods, 
manual markings and the semi-automated reference standard 

For Data set 1, we compared quantitatively the boundary positioning differences produced by 
our proposed automated method (Aut.), the Iowa Reference Algorithm (Iowa), and the 
manual outlines drawn by the two readers (Reader1 and Reader2) for nine retinal boundaries: 
i-RNFL, o-RNFL, o-IPL, o-INL, o-OPL, i-EZ, o-EZ, i-RPE and o-RPE—a total of 378 
boundary outlines for each method in 42 images—. The ILM boundary was excluded since its 
location coincided with the i-RNFL boundary for the cases evaluated, as explained later in the 
results section. Six comparisons were made for each boundary evaluated: Reader1-Reader2 
(Inter-reader agreement), Aut.-Reader1, Aut.-Reader2, Iowa-Reader1, Iowa-Reader2, Aut.-
Iowa. 

For Data set 2, our automated method results were compared to the outlines available in 
the manually corrected reference standard which corresponded to retinal boundaries outlined 
by the automated method: ILM and i-RPE, outlined in a total of 36900 images [37,38]. The 
Bruch’s membrane boundary, marked semi-automatically in the second data set was not 
evaluated since it was not outlined by the automated algorithm. One comparison was made 
for each boundary evaluated: Aut.-Reference Standard. 

The difference in the segmentation of a boundary by two different methods was quantified 
using the mean unsigned positioning error (MUE) of their axial location. For a particular 
boundary ( , )B x y , outlined by two different methods or readers 1( , )B x y  and 2 ( , )B x y , their 

MUE was defined by: 

 ( ) 1 21 1
1 2

( , ) ( , )
MUE , ,

I J

x y
B x y B x y

B B
I J

= =
−

=
⋅

 
 (4) 

where I is the number of total evaluated A-scans (discrete horizontal locations) and J is the 
number of evaluated B-scans (discrete vertical locations). For each of the 3 groups in data set 
1, the MUE collected for each of the 6 possible comparisons between the 4 segmentation 
methods evaluated were compared using analysis of variance (ANOVA) to test for 
statistically significant differences among the comparisons overall and pairwise between all 
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possible comparison pairs (multiple comparison). Differences were considered statistically 
significant if the resulting p-value was <0.01. 

3.3. Qualitative accuracy evaluation of automated methods and manual markings 

The quantitative comparison of automated methods and manual markings highlight 
measurable differences between them, but may not be a measure of a method’s accuracy, due 
to difficulty in acquiring a perfectly accurate gold standard. Thus, an independent reader 
evaluated qualitatively the segmentation results produced by our automated method, the Iowa 
Reference Standard, and those produced by the two readers in Data set 1. This reader (a 
vitreoretinal specialist with more than 9 years of clinical experience) was masked and shown 
378 sets of four images. The four images on each set displayed, in random blinded order, the 
same B-scan with the overlapped outline of a particular retinal boundary as segmented by our 
automated method, the Iowa Reference Standard, and each of the two readers, respectively. 
An unedited version of the B-scan (without markings) and the acronym of the retinal 
boundary that the 4 outlines aimed to identify was also displayed in each set (the acronym 
was included since only one boundary was shown at a time for each of the 4 segmentation 
versions). The masked reader assigned a score from 1 to 4 for each of the presented images 
within each set rating their accuracy, from most accurate to least accurate (failure to produce 
any result), with score meanings shown in Table 3. The accuracy scores collected for each of 
the 4 segmentation methods were compared using analysis of variance (ANOVA) to test for 
statistically significant differences among the groups overall and pairwise between all 
possible group pairs (multiple comparison). Differences were considered statistically 
significant if the resulting p-value was <0.01. 

Table 3. Meaning of accuracy rating scores assigned in qualitative evaluation, from 1 
(most accurate) to 4 (failure to produce any result). 

Accuracy rating score Meaning 
1 Perfect or nearly-perfect outline location. 
2 Good outline location, possibly needing minor corrections. 
3 Outline location has major problems or follows a boundary other than the one 

indicated. 
4 Method failed to produce and outline (segmentation method crashed). 

4. Results 

Upon review of the segmentation results, the automated segmentation method proposed here 
produced satisfactory results in all of the evaluated cases (Fig. 4, Fig. 5, Fig. 6, and Fig. 7 and 
Table 4 and Table 5). The Iowa Reference Standard software produced satisfactory results in 
the healthy cases where it was evaluated (Group I in the first data set evaluated), satisfactory 
although somewhat smoother results in the early to intermediate AMD cases (Group II), and 
it failed to produce results in any of the severe AMD cases (Group III), where the 
segmentation software crashed. As an example, Fig. 4 displays the results in a sample image 
from each group in Data set 1. An original B-scan without markings and the outlines 
produced by each method are shown. Since patients with vitreous detachment were not 
included in the analysis, the i-RNFL boundary location coincided with the ILM boundary 
location for the cases evaluated. Our method produced nearly identical locations for these two 
boundaries (as we can see in the B-scans shown in Fig. 3 and Fig. 4, where the location of the 
ILM boundary is practically completely masked by that of the i-RNFL boundary), while the 
manual readers drew the ILM boundary with a stable small offset inner to the i-RNFL 
boundary (as observed in Fig. 4). We therefore decided to not consider the ILM boundary in 
the quantitative and qualitative evaluation of the first data set, since the comparison would 
only represent a bias related to a reader’s ability to draw two layers in the same location. 

Figures 5 and 6 show example results from Data set 2 in an eye presenting with early 
AMD and an eye presenting advanced AMD, respectively. Both figures display the automated 
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segmentation and the independent semi-automatically drawn reference markings collected 
form Farsiu et al. [37,38]. 

 

Fig. 4. Example results in a sample SD-OCT B-scan from each group in Data set 1. The first, 
second and third rows show the results for a scan in group I (healthy), group II (early AMD), 
and group III (advanced AMD), respectively. First, second, third, fourth, and fifth columns: 
Original B-scan without outlines, with outlines resulting from our automated segmentation 
method, with outlines marked by the first and second reader, and with outlines resulting from 
the Iowa Reference Standard software, respectively (results for group III are not displayed 
since the Iowa software failed to produce any result). The labeling of each of the indicated 
boundaries is shown in in the legend in the top right. 

 

Fig. 5. Example results in an eye diagnosed with early AMD from Data set 2. First column: 
Original B-scan (top) and transverse scan (bottom) across the center of the fovea. Second 
column: Results produced by our automated method in the B-scan (top) and transverse scan 
(bottom). The labeling of the segmented boundaries is indicated by the legend in the right, 
from top to bottom. Note that the location of the ILM boundary (top red line) is not clearly 
visible because it has the same location as the i-RNFL boundary (top green line). Third 
column: Independent semi-automated outline locations of the ILM and i-RPE boundaries in the 
B-scan (top) and transverse scan (bottom). 
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Fig. 6. Example results in an eye diagnosed with advanced AMD from Data set 2. First 
column: Original B-scan (top) and transverse scan (bottom) across the center of the fovea. The 
yellow circles in the bottom image indicate regions where substantial differences between the 
automated method and reference standard were observed. Second column: Results produced by 
our automated method in the B-scan (top) and transverse scan (bottom). The labeling of the 
segmented boundaries is indicated by the legend in the right, from top to bottom. Note that the 
location of the ILM boundary (top red line) is not clearly visible because it has the same 
location as the i-RNFL boundary (top green line). Third column: Independent semi-automated 
reference standard of the ILM and i-RPE boundaries in the B-scan (top) and transverse scan 
(bottom). 

4.1. Quantitative comparison of boundary positioning between automated methods, 
manual markings and the semi-automated reference standard 

The axial MUE measurements between the boundary outlines evaluated in Data set 1 are 
summarized in Table 4. Comparisons involving the Iowa Reference Standard software were 
limited to scans in groups I and II since the software failed to produce any results for scans in 
group III. A comparison of axial MUE mean and std per group, considering all boundaries is 
also shown in Fig. 7(a). Overall, the 6 comparisons had statistically significant differences for 
Groups I and II (ANOVA p-value <0.01). The MUE values showed lower overall differences 
between our method and each of the two readers (about 10 and 7 pixels within the span of 
1024 pixels, respectively, shown in microns in Table 4 and Fig. 7(a)) than when comparing 
the two readers (about 11 pixels), and differences were even smaller when comparing our 
method to the Iowa software (about 4 pixels, considering only healthy and early or 
intermediate AMD cases). In a pairwise MUE comparison for groups I and II, MUE between 
our method and reader 2 was significantly different than between the two readers and between 
our method and reader 1, while MUE between our method and reader 1 was not significantly 
different than between the two readers. MUE between our method and the Iowa software was 
significantly smaller than the rest of the comparisons. Differences between the Iowa software 
and each independent reader were overall smaller but very comparable to our method 
considering the measured standard deviation. It is important to note that overall MUE values 
reported in Table 4 in comparisons with the Iowa software do not include those scans in 
group III, were higher mean and standard deviation MUE was observed for the rest of the 
comparisons. Significance was not found when comparing the MUE between our method and 
a reader to the MUE between the Iowa software and the same reader for Groups I and II. 
Similar results hold independently for each different group (healthy, intermediate, and 
advanced disease), with the exception of scans in Group III (advanced disease), where the 
comparison between automated method and the first reader yielded slightly higher differences 
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but still well within the inter-reader difference ranges, and where the Iowa software failed to 
produce results. The 3 comparisons included in Group III did not have statistically significant 
differences (ANOVA p-value = 0.38). Evaluating each boundary independently, we can 
observe that higher agreement between the two readers corresponded to lower differences 
between the automated method and both of the readers. Although these results do not 
guarantee accuracy in all boundaries outlined, it seems that the differences between the 
automated method and at least one of the manual readers are accentuated in those with reader 
disagreement (at least one reader marking deviates from the actual location). 

Table 4. Pairwise segmentation differences in terms of mean unsigned axial positioning 
error for the methods evaluated in Data set 1. The mean and std (in parentheses) values 
are shown in microns. *Comparisons involving the Iowa Reference Standard software 
were limited to scans in groups I and II since the software failed to produce any results 

for scans in group III. 

Boundary 
Axial MUE across groups (µm) in Dataset 1 

Inter-reader Aut.-Reader 1 Aut. - Reader 2 Iowa.-Reader 1 * Iowa.-Reader 2 * Aut.-Iowa * 

i-RNFL 5.80 (5.39) 6.41 (12.52) 6.57 (11.76) 6.23 (3.89) 5.99 (3.86) 7.44 (2.97) 

o-RNFL 8.51 (9.30) 12.06 (16.46) 10.28 (12.75) 15.03 (12.14) 12.97 (8.17) 8.06 (5.97) 

o-IPL 28.54 (17.72) 16 (16.92) 29.74 (17.6) 15.21 (11.72) 24.63 (11.78) 6.55 (5.14) 

o-INL 22.56 (13.08) 14.51 (17.22) 21.75 (13.49) 14.57 (12.96) 16.24 (9.37) 6.82 (5.45) 

o-OPL 12.78 (11.31) 17.88 (19.16) 13.06 (14.31) 20.67 (14.15) 13.27 (10.04) 8.87 (6.65) 

i-EZ 24.91 (15.23) 30.04 (17.36) 10.78 (14.03) 26.52 (12.07) 8.36 (8.33) 5.68 (3.73) 

o-EZ 25.27 (14.81) 23.15 (14.54) 11.58 (10.61) 19.38 (8.65) 12.78 (5.48) 6.22 (3.48) 

i-RPE 26.85 (13.72) 25.22 (14.08) 11.93 (12.04) 21.71 (7.62) 12.74 (6.92) 7 (4.52) 

o-RPE 41.30 (30.21) 37.53 (16.44) 17.08 (24.25) 35.58 (8.04) 14.85 (10.82) 7.66 (5.06) 

Average 21.84 (14.53) 20.31 (16.08) 14.75 (14.54) 19.43 (10.14) 13.54 (8.31) 7.15 (4.78) 

 

Fig. 7. Results per group in quantitative comparisons among methods. Color codes are 
indicated in the legend and the error bars indicate standard deviation. Comparisons in group III 
of Data set 1 involving the Iowa Reference Standard software are missing since the software 
failed to produce any results. a) Comparison of axial MUE mean and std per group among the 
methods evaluated in Data set 1 (Cirrus scans). b) Axial MUE mean and std per group between 
our automated method and manually corrected reference standard in the Data set 2 (Bioptigen 
scans). 

The axial MUE values between our segmentation method and the collected semi-
automated reference standard in Data set 2 are summarized in Table 5. The table shows the 
mean and std (in microns) values for the two boundaries where the reference standard is 
available, within healthy and AMD eyes. The average axial MUE values for both boundaries 
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within each group (healthy, AMD, or considering all the scans) are also displayed in Fig. 
7(b). The observed axial MUE had a mean of 6.04 microns across boundaries and scans 
evaluated. 

Table 5. Segmentation differences in terms of axial MUE between our automated method 
and the independent semi-automated reference standard (Aut.-Reference Standard) in 

Data set 2. The mean and std (in parentheses) values are shown in microns. 

Boundary 
Aut.-Reference Standard axial MUE (µm) in Data set 2 
Healthy patients AMD patients All scans 

ILM 3.47 (4.15) 6.43 (11.30) 5.51 (9.76) 
i-RPE 5.41 (3.77) 7.07 (5.66) 6.56 (5.20) 
Average 4.44 (4.07) 6.75 (8.93) 6.04 (7.83) 

4.2. Qualitative accuracy evaluation of automated methods and manual markings 

The qualitative accuracy scores assigned by an expert third reader to the manually drawn 
outlines, those produced by our automated method, and those produced by the Iowa 
Reference Standard software are shown in Fig. 8(a). The figure displays the mean and 
standard deviation values across boundaries per group and overall throughout groups (with 1-
4 range, with lower values indicating higher accuracy). Figure 8(b) displays the percentage of 
correct outlines for each method and group, averaged across boundaries. We considered the 
outline to be correct if the assigned visual score was 1 or 2, not needing any substantial 
editing according to the opinion of the third reader. The percentage of correct outlines for 
each particular boundary, group and method is also given in Table 6. Note that the Iowa 
Reference Standard software values for Group III are not shown since the software failed to 
produce results for such group (all 0%). Overall, the accuracy scores collected by the four 
methods had statistically significant differences (ANOVA p-value <0.01). In a pairwise 
comparison, our automated method (all groups in Fig. 8(a), score of 1.44 ± 0.7) provided 
statistically significant better accuracy than those produced by the two readers (2.32 ± 0.77, 
and 2.25 ± 0.74, for the first and second readers, respectively) and the Iowa software (2.69 ± 
1.15). The differences between the two manual readers were not statistically significant and 
the Iowa software had statistically significant worse scores than the other three methods 
(mainly caused by the errors reported in Group III). Our automated method also produced an 
overall rate of 87.57% visually correct outlines, a higher number than the manual markings or 
the independent software. Percentage of correct outlines was also higher by our method for 
each individual group evaluated. 
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Fig. 8. Comparison of visual accuracy between outlines determined by the first reader (dark 
blue), the second reader (cyan), our proposed automated method (yellow), and by the Iowa 
Reference Standard software (red). a) Mean visual accuracy scores per group and overall 
throughout groups. The error bars indicate standard deviation. b) Percentage of correct 
outlines, indicating no substantial editing (i.e. score of 1 or 2) needed according to the opinion 
of the third independent reader, per group and average across group. 

Table 6. Percentage of correct outlines (those receiving accuracy scores of 1 or 2 by an 
independent reader) from the first manual reader (R1) second manual reader (R2), our 
automated method (Aut.), and the Iowa Reference Standard software (Iowa) for each 

group and boundary. Values for the Iowa Reference Standard software in Group III are 
not shown since it failed to produce results in this group (all 0%). 

Boundary 

Percentage of correct outlines  

for Group I (%) 

Percentage of correct outlines  

for Group II (%) 

Percentage of correct 
outlines for Group III (%) 

R1 R2 Aut. Iowa R1 R2 Aut. Iowa R1 R2 Aut. 

i-RNFL 100 100 100 100 100 93.33 100 100 93.33 100 80 

o-RNFL 91.67 91.67 100 91.67 53.33 86.67 93.33 60 66.67 53.33 40 

o-IPL 66.67 8.33 100 83.33 60 0 100 80 40 6.67 66.67 

o-INL 66.67 8.33 100 75 66.67 0 100 93.33 73.33 20 86.67 

o-OPL 25 83.33 91.67 66.67 73.33 86.67 100 53.33 46.67 66.67 73.33 

i-EZ 0 58.33 100 100 20 66.67 93.33 86.67 60 73.33 73.33 

o-EZ 8.33 25 91.67 8.33 20 66.67 93.33 13.33 60 66.67 73.33 

i-RPE 0 50 100 83.33 13.33 66.67 100 60 53.33 40 66.67 

o-RPE 0 75 100 91.67 13.33 80 100 80 33.33 60 60 

Average 39.81 55.56 98.15 77.78 46.67 60.74 97.78 69.63 58.52 54.07 68.89 

5. Discussion and conclusions 

In this work we describe a new segmentation algorithm of intraretinal layers in SD-OCT 
images, which automatically outlines the location of ten retinal boundaries. The method is 
based on an iterative process and could potentially be applied to other segmentation tasks. 
Our approach is novel in terms of technical innovations and in terms of functional utility. In 
terms of technical innovation, our method uses three-dimensional gradient information to 
generate a weighting function defined in an iterative median filtering operation. This 
weighting function is recalculated at each iteration and for each boundary, following the 
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particular boundary evolution. The iterative median operation and choice of weighting 
function seeks a solution with continuity throughout regions of the SD-OCT scan, favoring 
neighboring regions with high gradient values, while also allowing certain abrupt variations 
that solve possible retinal abnormalities or scan misalignment. The 3D nature of the algorithm 
also helps resolve the location of boundary regions not easily seen in a singular B-scan. A set 
of pre-defined rules are also considered based on anatomical knowledge of the retinal layers 
to guarantee a stable solution. 

In terms of functional utility, our method produced accurate retinal layer outlines in the 
clinical images of healthy patients and patients diagnosed with early or intermediate AMD, 
and it preserved retinal details, tracing retinal abnormalities such as small drusen while 
guaranteeing stability in the segmentation. This is an advantage over other known methods, 
which typically produce results that miss subtle changes related to disease stage (such as 
accurate delineation of the RPE in regions containing drusen) to favor a stable solution or 
processing speed. A direct comparison to a widely used state-of-the-art research software 
package (Iowa Reference Algorithm OCT-Explorer version 3.5) revealed that our method 
produced results of better quality. The outlines produced by our method in the advanced 
disease cases were of good quality (although substantially lower than in healthy and early 
AMD patients), especially considering the difficulty of the task for these particular images, 
while the comparison software failed to produce any results (although this may be a limitation 
of the software version used in this work). Our method also shows promising results in its 
application to images acquired across different OCT manufactures, judging the results in a 
publicly available independent large data set of 114 healthy and 255 AMD eyes acquired with 
a different manufacturer. 

Overall, the axial location of nine boundaries in Data set 1 yielded smaller differences 
between our method and each of the two readers than observed between the two readers 
(Table 4 and Fig. 7(a)), and differences were even smaller when comparing our method to the 
Iowa software (considering only healthy and early or intermediate AMD cases). The high 
inter-reader differences highlight the segmentation difficulty of the images tested in Data set 
1 and also show the stability advantages of using an automated segmentation method. 
Generating multiple manual markings of retinal boundaries in SD-OCT scans is a difficult 
and time-consuming process wherein a reader’s judgment and skill plays an important role. 
While the two readers involved here had sufficient anatomical knowledge and experience, 
and there were no time constraints to draw the boundaries, each reader had a substantial 
amount of work to carry out—drawing a total of 420 outlines in 42 images from clinical 
studies of varying image quality, which could certainly explain the inter-reader variation we 
observed. Since these are no absolute gold standard markings, a quantitative comparison to 
the manual outlines drawn in data set 1 is not a reliable measure of accuracy (see possible 
errors produced in the delineations by the two readers in Fig. 4 and low number of correct 
outlines in Table 6). Therefore, we evaluated the accuracy of segmentations subjectively by 
using a third highly experienced independent reader who scored the quality of the 
segmentations. The boundaries produced by our automated method provided statistically 
significant better accuracy (p<0.01), as judged by this third reader, than those produced by the 
two readers and the Iowa software (Fig. 8(a)). The Iowa software produced results that 
seemed acceptable in the early and intermediate AMD eyes, but limited the ability to 
accurately follow slight differences, especially within the OS boundary. Moreover, the Iowa 
software failed to produce any result in any of the scans in the third group (severe AMD); it 
terminated in an error, while our method produced acceptable segmentation (with average 
ratings between “good” and “optimal”) considering the difficulty of the task. It should be 
noted that the Iowa software uses a limited set of images for training purposes, which may not 
be in agreement with the images used in this study and therefore compromising its results. 

The percentage of correct outlines segmented by our method was also stable across 
different boundaries (Table 6), in contrast to the results produced by the other options tested. 
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Our method also produced a higher percentage of correct outlines at each independent tested 
group. However, although the percentage of healthy and early to intermediate AMD cases 
showing accurate results was close to 100%, this number decreased substantially in the 
advanced disease cases. This fact indicates that such cases should be reviewed for correctness 
before deriving any conclusion from the results of its automated processing. It is important to 
note that the accuracy of our method in the early to intermediate AMD cases was superior 
across all boundaries to the automated method we compared against, especially in the outer 
retina boundaries, which may be a result of the limitations of the comparison software as 
mentioned above. When evaluating only the outlines in which both readers produced visually 
correct scores (110 outlines), the mean absolute differences between our method and the 
manual readers was 11.22 microns (11.73 std.) and 10.79 microns (10.13 std.) —about 6 
pixels, for readers 1 and 2, respectively, and the mean difference between the two readers was 
8.96 microns (5.79 std.) —about 5 pixels. These numbers show that for those outlines where 
both readers made accurate markings (representing the inherent variability of what is judged 
as an accurate marking by an expert) the differences between our method and the readers 
were within the ranges observed between the two readers. 

We believe that our segmentation method can be generalized to other data sets and other 
SD-OCT acquisition systems, as evaluated in the second larger independent data set (Data set 
2), collected from a separate institution [37]. The location of the automated segmentation 
seems accurate and resembles that of the reference standard (Figs. 5-6), with the only 
substantial differences observed in small regions of the ILM boundary (as shown in the 
transverse in Fig. 6, indicated by yellow circles). These differences were mostly due to the 
high misalignment between B-scans observed in Data set 2. Although our method 
automatically corrected this misalignment, a small number of scans still presented slight 
difficulties. 

The reference standard markings in Data set 2 are generated by the method proposed by 
Chiu et al. [19] followed by manual corrections made by an expert reader. Although such 
method can outline seven retinal boundaries, reference standard markings for only three of 
these boundaries were available for download. Therefore, the comparisons presented here 
were limited to the two boundaries produced by our method that were also outlined in the 
downloaded data (the ILM and i-RPE). When evaluated against manual markings, Chiu’s 
method has been reported to produce its highest differences in the o-OPL boundary with 5.3 
microns mean difference, while the rest of the boundaries had mean differences of less than 5 
microns. Importantly, in their evaluation, only normal eyes with high imaging quality were 
considered, and the bias found between their automated method and manual outlines was 
corrected before calculating their differences. Although our results are not directly 
comparable to the evaluation results of Chiu et al., the differences displayed in Table 5 
(average differences of 6.04 microns, with standard deviation of 7.83 microns, with highest 
differences observed for the i-RPE boundary in AMD patients, 7.07 microns) are within the 
ranges reported in their study. It is also important to note that larger differences observed in 
the first data set may be also an effect of the higher axial resolution of the Cirrus HD-OCT 
system over the Bioptigen system, as higher pixel dimensions may help two different readers 
or segmentation techniques to agree in the same pixel location. 

There are several limitations in our work. Segmentation accuracy is limited in extensive 
regions where a particular boundary is not visible due to lack of layer thickness, as we can 
observe for the o-RNFL boundary in the far-left region of the B-scan shown in Fig. 3(c). The 
boundary location in such regions gets estimated by interpolation using neighboring locations 
where gradients are most prominent. This interpolation produces adequate results in reduced 
isolated regions (such as obscure regions caused by blood vessels), but in more extensive 
regions the results may be sub-optimal. For SD-OCT scans of normal and AMD eyes, 
however, this behavior is only observed for part of the outer temporal region of the o-RNFL 
boundary, where there is no retinal nerve fiber layer thickness, also explaining the lower 
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accuracy observed for this particular boundary. Nevertheless, we found that the pre-defined 
set of smoothing parameters affecting this interpolation produced satisfactory results, though 
not perfect. 

Although the location of the ILM and inner boundary of the RPE (the site where of most 
common abnormalities related to AMD can be observed in SD-OCT) was evaluated in a large 
number of eyes in Data set 2 (369 3D cubes), the rest of the boundaries were only evaluated 
in Data set 1 (14 3D cubes). However, evaluation in Data set 1 considered 42 images and 378 
outlines for each evaluated method. Each of the two manual readers had to draw 378 
continuous outlines, while a third independent reader assigned independent scores for each of 
the 1512 outlines generated by the manual readers and the two independent methods tested in 
this work. Obtaining and judging manual outlines in SD-OCT 3D data is a difficult and time-
consuming process, and it is also noted as a limitation in previous work, where a similar or 
lower number of cubes were evaluated [22]. Comparison to the ILM and inner boundary of 
the RPE could be expanded by including the results obtained for 20 cubes using the method 
proposed by Chiu et al. [46], which are available for download alongside manual markings 
made by two readers [48]. Further work can also include comparison to a number of other 
retinal layer segmentation methods that are available for download [49–51]. 

Another limitation of this work is its high computer memory and time requirements for 
the iterative weighted median filtering process: The segmentation of 10 boundaries in a full-
resolution SD-OCT cube takes approximately 2 hours (performed on a personal computer 
with a 3.40GHz processor and 8GB RAM). While this would translate in approximately 6 
seconds per boundary per image (128 B-scans in a cube), the estimation of each boundary in 
each B-scan is dependent within the other boundaries and location in adjacent B-scans, which 
requires the processing of the whole cube data. The long processing time may be reduced by 
implementing our method in C/C + + , taking advantage of graphic processing unit 
computing, and not processing the SD-OCT data at full resolution. Previous segmentation 
methods have reported faster processing speeds by using optimized software and by using a 
more drastic internal smoothing function or processing lower resolution versions of the SD-
OCT scans, whose results can be later interpolated to the original resolution. A version of the 
method presented here operating at lower resolution versions of the collected scans 
(implemented in Matlab) was able to resolve the 10 retinal boundaries in approximately 10 
minutes. While our interest in the work presented herein is to resolve the location of the 
boundaries in a pixel-by-pixel basis using the actual resolution of the collected data, 
consideration of such speed-enhancing techniques may provide a viable solution in a setting 
where faster results are needed. Whether the smoother results maintain necessary accuracy 
would need to be investigated. The automated segmentation of a large number of SD-OCT 
scans can also be parallelized, enabling the processing a large number of scans in a shorter 
time than done serially. Our group is currently working in optimizing the processing speed of 
the presented method, and we will be providing online access to a segmentation tool for the 
research community. 

While the WM adaptation and its parameters were set partly based in common knowledge 
and partly heuristically through experimentation in a separate data set of eyes than those 
evaluated in this work, instead of from the result of an automated optimization or machine-
learning method, the results from our approach were satisfactory. Future work includes the 
adaptation of such parameters in a machine-learning approach where a set of images will be 
separated for training purposes. We hypothesize that using a machine learning approach to 
learn the behavior of retinal data and optimize such parameters could benefit the 
segmentation of complicated cases were our current approach had the most difficulties. 
However, machine learning methods often require large numbers of training data to be 
representative of retinal pathology heterogeneity, and considering the difficulties generating 
large annotated data sets there is no guarantee that a machine learning approach could be 

                                                                       Vol. 8, No. 3 | 1 Mar 2017 | BIOMEDICAL OPTICS EXPRESS 1945



easily adopted to optimize all parameters and to produce better results than the ones presented 
here. 

Our group has been investigating the correlation of quantitative SD-OCT measurements 
with prediction of progression in early and intermediate AMD patients [3]. A reliable 
automated segmentation approach, such as that presented herein, is crucial to enabling such 
work. Our work has also shown superior results to other state-of-the-art clinical software in 
eyes affected by hydroxychloroquine toxicity [15] and post-surgical macular hole eyes [6]. 
We plan to expand our segmentation method to SD-OCT scans acquired in the region 
surrounding the optic disc as well as to eyes presenting with other retinal pathologies, such as 
glaucoma and retinitis pigmentosa. Retinal segmentation of severely affected eyes from these 
and other retinal diseases can be more challenging, since some of the boundaries may be 
difficult to visualize, such the o-INL, o-OPL, i-EZ and o-EZ boundaries in severe retinitis 
pigmentosa. This fact may require establishing certain rules for those regions in which a 
boundary disappears, as well as revising our rules that guide automated segmentation (Table 
1), but we expect the core of our algorithm will remain otherwise similar. 

6. Appendix A. Initial ILM estimation 

An example of the process for the initial estimation of the ILM boundary is illustrated in Fig. 
9. The cube voxel values were normalized to take values between 0 and 1 (example B-scan 
shown in Fig. 9(a)). We then constructed a histogram of the voxel values throughout the 3D 
cube (blue line in Fig. 9(c)), considering only those with values over 0.1 in order to eliminate 
blacked-out voxels. The first peak of the histogram represents a large number of similarly low 
values, mainly corresponding to regions in the vitreous region and part of the choroid coat. 
We estimated the value distribution within this background region by mirroring the lower 
histogram values within the first peak (red line in Fig. 9(c)); voxels with values over a 
threshold at 2 standard deviations from the mean of this distribution (vertical green line in 
Fig. 9(c)) were considered as foreground region. This foreground region was processed with 
the morphological opening by an axial line of 40µm to further remove possible voxels in the 
vitreous region, since we expect the retinal structure to have at least this thickness. Fig. 9(d) 
displays the resulting foreground region in the example B-scan and its resulting histogram 
throughout the cube is shown in Fig. 9(f). The initial estimation of the ILM boundary is then 
formed A-scan by A-scan as the innermost positive gradient in the axial direction that belongs 
to this foreground region (masked gradient shown in Fig. 9(e)). Gradients were computed 
using a 3D Sobel operator kernel of 25µ extent (Fig. 9(b)). The location of the ILM in those 
A-scans without a positive gradient of these characteristics was determined by cubic 
interpolation using the estimation from nearby locations. The resulting ILM initial estimation 
for our example is shown in Figs. 10 (a)-10(e). This initial estimation, although quite 
successful in most SD-OCT cubes, presents erroneous localized positions (as observed in Fig. 
10), which are solved in the iterative WM process that forms the main core of the 
segmentation method. 
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Fig. 9. a) Example of de-noised B-scan in cube. b) Axial gradient in the B-scan. c) Histogram 
from values in SD-OCT cube (blue line), estimated distribution of background values (red line) 
and selected threshold (green line). d) Segmented foreground region. e) Masked gradient. f) 
Histogram of values in foreground region. 

 

Fig. 10. a) Rendering of example ILM initial estimation. b), c), d) B-scans and ILM initial 
estimation corresponding to the red, green, and blue lines indicated in the rendering shown in 
a), respectively. e) Transverse scan (transverse cut of the SD-OCT cube in the axial-vertical 
plane) across the center of the fovea, corresponding to the yellow line in the rendering shown 
in a). f) Rendering of example with refined ILM. g), h), i) B-scans and refined ILM 
corresponding to the red, green, and blue lines indicated in the rendering shown in f), 
respectively. e) Transverse scan across the center of the fovea, corresponding to the yellow line 
in the rendering shown in f). 

7. Appendix B. Differentiation between RNFL-complex and RPE-complex 

We estimate the extent of the RNFL-complex and the RPE-complex in order to facilitate the 
initial estimation of the remaining nine boundaries. We considered the higher 20% values of 
the voxels at higher depth than the estimated ILM to generate a foreground mask where the 
values of the vitreous region and choroid coat are mostly excluded. Lower intensity voxels in 
the darker region between the RNFL and RPE complexes (outer to the OPL but inner to the 
IS), and possible fluid acculturations and detachment in the retina are also mostly excluded, 
and can be roughly identified by finding the isolated background regions (red regions 
displayed in Fig. 11(a)) within the foreground mask. The identified locations are averaged 
axially and weighted by their inverted recorded intensity values (so that they tend to the 
darker areas), forming a rough initial estimation of the separation between the two complexes 
(blue line in Fig. 11(a)). This initial estimation then acts as seed in the iterative weighted 
median process, to obtain a surface that tends to follow the i-EZ location (blue line in Fig. 

f)
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11(b)), which for the layers considered in this work is taken as separation between those 
belonging to the RNFL complex, inner to such surface, or the RPE complex, outer to such 
surface. 

 

Fig. 11. a) Example B-scan with voxels in the darker regions between the RNFL and RPE 
complexes identified in red. The blue line indicates the weighted mean axial position of these 
regions. b) Example B-scan with blue line indicating the separation of layers belonging to the 
RNFL and RPE complexes as identified in this work. 

8. Appendix C. Initial estimation of intraretinal layer boundaries 

The regions belonging to the RNFL and RPE complexes were processed independently to 
select an initial depth estimation of the i-RNFL, o-RNFL, o-IPL, o-INL, and o-OPL 
boundaries in the case of the RNFL complex and the i-EZ, o-EZ, i-RPE, and o-RPE 
boundaries for the RPE complex. The gradient profile of each A-scan (computed using a 3D 
Sobel operator, as for the ILM initial estimation) was first smoothed using a Savitzky-Golay 
filter of third degree and window size equal to one fourth of the complex estimated axial 
thickness as a pre-processing step, so as to identify a maximum of four peaks in each 
complex. An example of this process is shown in Figure 12. 

The initial estimation of the five boundaries in the first complex group was identified by 
considering a maximum of four valleys in each A-scan smoothed gradient profile, selecting 
the ones with the lowest value (shown in green, dark blue, magenta, and cyan, respectively, in 
Figs. 12(a) and 12(c)). The location of the last, penultimate and antepenultimate valleys were 
assigned to the o-OPL, o-IPL, and o-RNFL, respectively. In the case that only two valleys 
were present, the o-IPL and o-RNFL were assigned the first valley location and the o-OPL 
was assigned the second, and all three layers were assigned the same value in case only one 
valley was present. The i-RNFL was given the location of the last peak found inner to the 
depth assigned to o-RNFL layer. If no such peak could be found, the location of the i-RNFL 
was set as the same as the refined ILM layer. The o-INL location was selected as the highest 
peak between the o-IPL and o-OPL locations. The boundary locations were interpolated by 
bilinear interpolation for those A-scans where no valleys were found. 

The initial estimation of the i-EZ boundary (shown in green in Fig. 12(a) and 12(c)) was 
obtained as the innermost location in the RPE complex differentiation. The initial estimation 
of the remaining three boundaries in the RPE complex (o-EZ, i-RPE, o-RPE) was identified 
by considering a maximum of two valleys in each A-scan smoothed gradient profile, selecting 
the ones with the lowest value (shown in red, white and yellow in Figs. 12(a) and 12(c), 
respectively). The location of the last and penultimate valleys was assigned as the o-RPE and 
o-EZ, respectively. In the case that only one valley was found, the o-EZ was assigned the 
same value as the initial i-EZ boundary estimation, and both o-RPE and o-EZ boundaries 
were assigned the same i-EZ location if no valleys were found. The i-RPE was given the 
location of the first (innermost) peak found between the values assigned to the o-EZ and o-
RPE. If no such peak was found, the i-RPE was set as the same as the i-EZ initial estimation. 

Figure 12(a) shows a B-scan taken across the fovea center with the results obtained from 
this initial boundary estimation. The figure shows that the initial estimation is far from 
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perfect, but it proved to be sufficient to act as seed of the iterative weighted median process 
that forms the main core of the method. A 3D rendering of this initial estimation in the whole 
SD-OCT cube is shown in Fig. 3(a). 

 

Fig. 12. a) B-scan with initial estimation of retinal layer boundaries. From top to bottom: Red: 
ILM. Green: i-RNFL. Dark blue: o-RNFL. Magenta: o-IPL. White: o-INL. Cyan: o-OPL. 
Green: i-EZ. Red: o-EZ. White: i-RPE. Yellow: o-RPE. The red vertical line indicates a region 
of the A-scan for which the gradient profile is shown in (b). (c) Shows the filtered gradient 
profile with the initial identification of each boundary. 

9. Appendix D. Topographic estimation of the foveal pit location within the SD-
OCT cube 

The topographic location of the foveal pit is estimated following a series of thresholding and 
morphological operations. We first applied a k-means classification algorithm [52] to the set 
of en face thickness measurements between the ILM and o-IPL boundaries, dividing the 
values in two different groups. Values under the identified threshold by the k-means 
algorithm and within 1mm to the center of the image were select as an initial mask. We then 
applied a morphological opening to this mask followed by a morphological dilation with a 
kernel consisting on a circle of 0.25 mm radius. An example of the results of this foveal pit 
identification process is displayed in Fig. 13. 

 

Fig. 13. Example result in the estimation of the foveal pit location (indicated in red). a) 
Rendering of the segmented ILM layer, with foveal pit location. b) B-scan across the center of 
the fovea (location indicated by the blue line in a), with estimated foveal pit location indicated 
in red. b) Transverse scan across the center of the fovea (location indicated by the green line in 
a), with estimated foveal pit location indicated in red. 
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