translational vision science & technology

tvst

DOI: 10.1167/tvst.6.1.12

Individual Drusen Segmentation and Repeatability and
Reproducibility of Their Automated Quantification in
Optical Coherence Tomography Images

Luis de Sisternes'*”, Gowtham Jonna3, Margaret A. Greven?, Qiang Chen’, Theodore
Leng® and Daniel L. Rubin'"?

! Department of Radiology, Stanford University, Stanford, CA, USA

2 Department Medicine (Biomedical Informatics), Stanford University, Stanford, CA, USA

3 Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA

* Department of Ophthalmology, Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, USA
> School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

* Currently at Carl Zeiss Meditec, Inc., Dublin, CA, USA

Correspondence: Theodore Leng,
MD, MS, Byers Eye Institute at
Stanford, 2452 Watson Court, Palo
Alto, CA 94303. e-mail: tedleng@
stanford.edu

Daniel L. Rubin, MD, MS, Richard M.
Lucas Center, 1201 Welch Road,
Stanford, CA 94305. e-mail: dlrubin@
stanford.edu

Received: 18 July 2016
Accepted: 29 December 2016
Published: 28 February 2017

Keywords: AMD; drusen; segmen-
tation; SC-OCT

Citation: de Sisternes L, Jonna G,
Greven MA, Chen Q, Leng T, Rubin
DL. Individual drusen segmentation
and repeatability and reproducibility
of their automated quantification in
optical coherence tomography im-
ages. Trans Vis Sci Tech. 2017;6(1):
12, doi:10.1167/tvst.6.1.12
Copyright 2017 The Authors

Introduction

Purpose: To introduce a novel method to segment individual drusen in spectral-domain
optical coherence tomography (SD-OCT), and evaluate its accuracy, and repeatability/
reproducibility of drusen quantifications extracted from the segmentation results.

Methods: Our method uses a smooth interpolation of the retinal pigment epithelium
(RPE) outer boundary, fitted to candidate locations in proximity to Bruch’s Membrane, to
identify regions of substantial lifting in the inner-RPE or inner-segment boundaries, and
then separates and evaluates individual druse independently. The study included 192
eyes from 129 patients. Accuracy of drusen segmentations was evaluated measuring the
overlap ratio (OR) with manual markings, also comparing the results to a previously
proposed method. Repeatability and reproducibility across scanning protocols of
automated drusen quantifications were investigated in repeated SD-OCT volume pairs
and compared with those measured by a commercial tool (Cirrus HD-OCT).

Results: Our segmentation method produced higher accuracy than a previously
proposed method, showing similar differences to manual markings (0.72 = 0.09 OR)
as the measured intra- and interreader variability (0.78 = 0.09 and 0.77 = 0.09,
respectively). The automated quantifications displayed high repeatability and
reproducibility, showing a more stable behavior across scanning protocols in drusen
area and volume measurements than the commercial software. Measurements of
drusen slope and mean intensity showed significant differences across protocols.

Conclusion: Automated drusen outlines produced by our method show promising
accurate results that seem relatively stable in repeated scans using the same or
different scanning protocols.

Translational Relevance: The proposed method represents a viable tool to measure
and track drusen measurements in early or intermediate age-related macular
degeneration patients.

panied with noticeable vision loss, and always
preceding advanced nonexudative or exudative forms,
when visual changes are noticeable and often irre-

Age-related macular degeneration (AMD) is the
most common cause of severe vision impairment
among patients over 50-years old in the developed
world." AMD appears most commonly in early and
intermediate nonexudative stages, often not accom-

versible. The progression from early or intermediate
AMD to an advanced form of the disease (AMD
progression) is critical to identify as early as possible.
Many patients are unaware of subtle visual changes
that are indicators of AMD progression, and prompt
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Figure 1.

Left: SD-OCT cube, with indications of the axial, horizontal, and vertical directions, and B-scan and A-scan nomenclature. Right:

Detail B-scan where location of drusen is indicated with yellow arrows.

intervention with pharmacologic treatments can
greatly improve visual outcomes.” Early and interme-
diate AMD are normally characterized by the
presence of extracellular material that accumulates
between Bruch’s membrane and the retinal pigment
epithelium (RPE) known as drusen, whose presence
and properties are the most widely used risk
discriminator determining future AMD progres-
sion,”© among recent discoveries in genetic,” behav-
ioral, environmental, and other phenotypic
characterizations. Drusen can present numerous
distinctive properties,” and their quantitative charac-
teristics and evolution over time can potentially be a
powerful biomarker and indicator of AMD progres-
sion that should be investigated in depth.’

There is positive correlation in the number, size,
and extent of drusen seen in color fundus photo-
graphs (CFP) with risk of AMD progression.”®
However, drusen can sometimes be difficult to
identify in the photographs, and their quantification
by visual inspection is prone to errors and reader
variability. Spectral-domain optical coherence tomog-
raphy (SD-OCT),'” an in-vivo imaging method
capable of resolving cross-sectional retinal substruc-
tures, has potential value in better characterizing RPE
deformities. SD-OCT can visualize and quantify the
changes seen at different stages of AMD,'' because
the RPE, the site of many of those pathological
changes, is well visualized using this imaging tech-
nique. Drusen normally appear in SD-OCT images as
“bumps” in an otherwise smoothly curved RPE layer
(as seen on Figure 1, with drusen locations indicated
by yellow arrows), enabling their identification and
quantification. Among other research groups, our
group has recently proposed the observation of a
number of drusen SD-OCT quantitative imaging
features as predictors for AMD progression.”

In order to quantitatively characterize drusen via

SD-OCT, their presence, location, and extent within
the images must first be determined. A single SD-
OCT volume typically contains from 100 to 200 two-
dimensional (2D) high-resolution images (B-scans),
which makes manual annotation of drusen boundar-
ies a very time-consuming task, with considerable
inter- and intrareader differences.'>'* Consequently,
most research in the quantification of SD-OCT
features involves an automated or semiautomated
segmentation approach, where the process can be less
time-consuming, more reproducible, and parallelized.
Many automated or semiautomated retinal layer
segmentation methods'> ** and a few methods aimed
to the segmentation of drusen regions™ " have been
proposed previously. Recently, commercial SD-OCT
instruments have also incorporated automated soft-
ware methods to characterize drusen volumes and
areas.”’ However, drusen descriptors still rely in the
characterization of RPE lifting properties across the
entire macula region rather than the detection and
identification of individual drusen (or clusters of
them), not permitting the extraction of a number of
features from individual drusen that may be signifi-
cant in AMD progression, such as the number of
drusen, individual drusen volume, and area, distribu-
tion, or reflectivity properties.” Apart from accuracy
requirements, it is also important to assess the
repeatability and reproducibility of the quantitative
features that may be extracted to characterize drusen
from the resulting outlines.

Our group recently proposed a rather simplistic
but accurate algorithm for the segmentation of drusen
regions based in a 2D identification of the RPE
layer.'"* In this paper, we expand and improve our
work in drusen segmentation by employing the results
from a three-dimensional (3D) retinal layer segmen-
tation algorithm'® and the identification of individual
drusen. We evaluate the accuracy of the method by
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Figure 2. Diagram of the drusen segmentation method.

comparison to manual markings. We also asses
repeatability and reproducibility of a set of quantita-
tive drusen features related to AMD progression” that
are extracted by using our proposed method and
drusen area and volume that are automatically
generated by a commercial system, comparing them
between repeated measurements obtained during a
single visit in several patients.

Automated Drusen Segmentation

Our drusen segmentation algorithm follows a
similar idea introduced by our group in a previous
publication,'* but expanding and improving the
method using recent work in retinal layer segmenta-
tion and a fully 3D approach. The algorithm main
steps are illustrated in Figure 2, which include the
segmentation of the RPE inner and outer boundaries
(IRPE and oRPE, repectively) and the boundary
delimiting the inner segment location (IS), using an
automated segmentation method.'® An initial seg-
mentation of drusen is generated based in the main
idea of fitting the segmented iRPE and IS boundaries
to a surface that would preserve the typical curvature
of the healthy RPE complex while eliminating the
curvatures produced by drusen. Because drusen can
be typically observed as small “bumps” in the RPE
complex normal curvature, finding the regions
between the segmented boundaries and their fitted
versions produces the initial drusen segmentation. We
analyze the curvature in both iRPE and IS boundaries
to improve the sensitivity in drusen detection and
minimize the influence of possible errors in boundary
segmentation, as the iRPE boundary may be difficult
to identify in some SD-OCT scans where the cone

inner and outer segments (COST) and RPE cannot be
discriminated accurately. A series of refinement steps
follow to identify the extent of each individual druse
and eliminate regions falsely detected as drusen. These
main steps are further described in the following
subsections.

Identification of iRPE, oRPE, and IS Boundaries

We employed our recently proposed 3D retinal
layer segmentation algorithm to automatically outline
the iRPE, oRPE, and IS boundaries.'® The algorithm
consists of a two-step process: (1) initial estimation of
the retinal layers axial location based on intensity and
gradient statistics of the images, and (2) refinement of
this estimation though an iterative process. The
iterative refinement employs a weighted median
(WM) filter, which was formulated and adapted to
the particular case of retinal layer segmentation in
SD-OCT cubes, together with the consideration of
anatomical constraints common to every eye and their
expected smooth behavior. The resulting outlines
obtained from this method in the images employed
here were reviewed to verify their correctness. An
example of the segmentation results of such bound-
aries is shown in Figure 3A.

Initial Drusen Segmentation

We followed the same independent process for the
initial segmentation of drusen using the resulting
iRPE and IS boundaries (Fig. 2). The main idea
behind drusen identification is fitting a surface that
follows each boundary outermost locations (with
higher axial value) and smoothes out the presence of
the “bumps” that indicate drusen. Drusen can then be
initially identified as the regions located between the
segmented boundary and this fitted surface. The steps
for obtaining a fitted surface of these characteristics
are indicated in Figure 2 and examples of resulting
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Figure 3. Steps in initial drusen segmentation. (A) Segmented surfaces in example B-scan (top) and 3D surface view (bottom, where
axial distance between boundaries is exaggerated for displaying purposes). (B) Result from candidate location selection and fitting of the
iRPE and IS boundaries in example B-scan (top) and 3D surface view (bottom). (C) Generated topographic drusen height map and the
result after filtering. (D) Results from initial drusen segmentation (in magenta) in example B-scan (top), in 3D surface view (middle) and in
topographic view (bottom). Yellow markings in all images correspond to the location of the B-scans shown on top.

surfaces are illustrated in Figure 3B. Our method first
selects a set of candidate locations from each
boundary, selected as those that are most likely not
affected by drusen and following a normal healthy
RPE curvature, and then fits a thin-plate spline
surface®” (tps) to these candidate locations.
Candidate locations are those following a convex

shape with respect to the normal RPE curvature
expected in healthy eyes. In order to account for this
expected normal curvature, candidate selection was
preceded by a “flattening” step, using a smooth
version of the oRPE boundary as offset (generated by
using a diffusion regularization fitting operation, with
fitting tools available online for download).3 * That is,
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the axial location of the both iRPE and IS boundaries
are remapped according to its location respect to a
“baseline RPE” location, which is common to both
surfaces (RPE flattening step in Fig. 2). The candidate
locations are then selected independently for the iRPE
and IS boundaries as those following a convex shape
in each B-scan, which selection can be done with the
following process:

Step 1: A location set is created by ordering the
“flattened” boundary locations in decreasing
depth.

Candidate locations are selected one by one
in order from the location set. As a new
candidate is selected, all remaining locations
with horizontal position falling between the
intervals formed by candidates already se-
lected are deleted from the location set.

Step 3: Repeat Step 2 until the location set is empty.

Step 2:

The selected candidate locations are remapped to
their original axial position by inverting the “flatten-
ing” step. Two different tps surfaces are then fitted to
the candidate locations, for those selected from the
iRPE and IS boundaries, respectively (example shown
in Fig. 3B). A topographic map of drusen height is
then formed by the difference between the segmented
iRPE and IS boundaries and their corresponding
fitted surfaces, selecting the maximum between the
two. As drusen height is expected to present a smooth
undulatory behavior throughout the span of the SD-
OCT scan, the topographic drusen height map is
smoothed using a 2D fourth degree polynomial
Savitzky-Golay filter of 0.25-mm window length.**
This choice of filtering reduces possible noise expected
in the segmentation results by limiting the appearance
to only one drusen in a span of 0.0156 mm®. An
example of the topographic drusen height maps
before and after this filtering operation is shown in
Figure 3C.

The initial drusen segmentation is then formed by
considering drusen height in the resulting topographic
map with respect the baseline RPE. Regions present-
ing an axial height of less than 15 um are eliminated
from the segmentation. The remaining regions having
a maximum drusen height under 20 pm are also
eliminated. The reasoning behind this threshold value
is that we are expected to find a large number of low
separation locations due to fitting differences (noise)
and not caused by the presence of drusen. Consider-
ing the typical thickness of the RPE layer and the
resolution of the SD-OCT system, we observed than
while limiting our methods to detect drusen locations

of at least 15 um of height, the results using this
constraints were satisfactory. An example of the
resulting initial drusen segmentation can be observed
in Figure 3D.

Individual Druse Identification and
Refinement

A series of refinement steps follow to separate
individual drusen and further eliminate possible
falsely detected regions in the segmentation results.
These steps are illustrated in the example shown in
Figure 4 and are as follows:

1. Individual drusen regions are first identified using
the Watershed transform™ of the topographic
drusen height map. This process separates the
initial regions (shown in Fig. 4A) into those
characterized by pronounced local increases of
height (separation shown in Fig. 4B), a character-
istic to expect in individual drusen.

2. The topographic locations in the ridges or borders
resulting after the watershed operation are added
to the nearest identified individual region. Those
resulting individual regions with a maximum
height under 20 um (minimum druse peak height
considered in this work), are then further analyzed
pixel by pixel, with each pixel either being
eliminated from the segmentation or added to a
neighboring region that follows this height requi-
site: a pixel gets added to the neighboring region of
weighted centroid (weighted by the height map) at
minimum distance, as long as the pixel is within
the neighboring region’s maximum extent (major
axis). If no neighboring regions of such character-
istics can be found, the pixel location is removed
from the segmentation. The reasoning behind this
process is to further analyze individual regions
with a height peak lower than the given threshold
(20 pm), adding part of their pixels to neighboring
regions and removing those that are not within the
extent of neighboring regions. The result of this
process can be seen in Figure 4C.

3. The resulting individual regions are further pro-
cessed by a morphological opening operation with
a disk of diameter equal to the region’s minor axis
in order to smooth the edges of each individual
druse in a topographic view. Results after this
process can be observed in Figure 4D.

An example of the final results produced after this
individual drusen characterization and refinement is
shown in Figure 4E. Comparing Figure 4A and
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A) Initial segmentation
Topographic view

Refined segmentation

Topographic view

E)

Figure 4.

Individual druse identification and refinement in example scan. The green and yellow lines shown in the topographic views

indicate the location of the B-scans, outlined in green and yellow, respectively. (A) Initial drusen segmentation (magenta outline) in
topographic height view (the blue square indicates the detail location shown below) and in two example B-scans. (B-D) Topographic
height view after the watershed transform, further processing of individual regions of low height, and morphological opening of
individual regions, respectively. The different colors indicate different individual drusen regions. (E) Refined drusen segmentation
(magenta outline) in topographic height view (the blue square indicates the detail location shown below) and in two example B-scans.

Figure 4E we can observe how the initial regions,
containing a conglomerate of drusen, are separated
into individual regions outlining each of the individ-
ually detected drusen.

Drusen Quantification

In previous work we developed methods to extract
a series of quantitative features from the drusen

segmentations in SD-OCT scans that have shown
utility as predictors of AMD progression.” These
features include characteristics of drusen shape and
geometry, total drusen area, 3D volume of drusen,
number of drusen in cube, mean area and volume per
detected drusen, maximum drusen height, extent of
retinal area affected by drusen, drusen density in
affected area, drusen slope, drusen reflectivity, and
texture properties in the region delimited by drusen
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(mean and standard deviation [SD] of reflectivity
inside drusen). This set of features was extracted from
the segmentations obtained by our automated method
to study their repeatability and reproducibility. The
complete list of extracted features characterizing is
enumerated in Table 2. For a detailed description of
each feature we refer to the previous work.’

Image Datasets and Collected Analysis

We obtained three datasets to evaluate our
automated drusen segmentations and quantifications.
The first two datasets (Datasets A and B) were used to
evaluate the accuracy of the drusen segmentations;
they are the same as those used in previous drusen
segmentation work.'* The third dataset (Dataset C),
was used to study the repeatability and reproducibil-
ity of drusen quantifications derived from our
segmentations, and it contains repeated scans from
a separate set of eyes. All eyes included in the three
datasets presented drusen of several characteristics
(including both sub-RPE cuticular drusen and sub-
retinal deposits above the RPE, also known as
pseudodrusen) and were diagnosed with early or
intermediate nonneovascular AMD. Eyes presenting
pigment epithelial detachments (PED) were excluded
from the study. The study was conducted in
accordance with the ethical standards stated in the
1964 Declaration of Helsinki. All subjects underwent
complete eye examinations, including visual acuity
tests, CFPs, and SD-OCT imaging, and nonneovas-
cular AMD diagnosis was established by an experi-
enced ophthalmologist. All eyes were designated as
having either dry AMD belonging to the Age-Related
Eye Disease Study (AREDS) categories 2 or 3,
presenting a combination of multiple small drusen
and few intermediate drusen or a combination of
extensive intermediate drusen and at least one large
drusen. Eyes with significant media opacity resulting
in poor OCT image quality or evidence of geographic
atrophy or chorodial neovascularization were exclud-
ed from the study.

All SD-OCT scans included in the study were
collected using the same instrument model (Cirrus HD-
OCT; Carl Zeiss Meditec, Inc., Dublin, CA). Scans were
acquired using the Cirrus system 512 X 128 macular cube
protocol or the 200 X 200 macular cube protocol,
producing 1024 X 512 X 128 volumetric data (128 B-
scans with 512 A-scan per B-scan and 1024 equally
spaced axial lines per A-scan; SD-OCT nomenclature is
displayed in the example shown in Fig. 1) or 1024 X 200
X 200 volumetric data (200 B-scans with 200 A-scan per
B-scan and 1024 equally spaced axial lines per A-scan),

respectively. Both protocols corresponded toa 2 X 6 X 6
mm. region around the fovea center. The analysis of each
dataset varied as follows:

Dataset A: Included four SD-OCT volumetric data-
sets from four different eyes in three
patients acquired using the 512 X 128
scan protocol. Drusen in each B-scan in
the dataset (a total of 512 B-scans) was
manually segmented by two different
experts to analyze interobserver agree-
ment. To assess intraobserver variation,
each expert also segmented each image
twice in two different sessions at least 2
months apart. Only four cubes were
considered in this dataset because of the
enormity of the task of creating manual
markings. Each expert created drusen
outlines in each of the 128 B-scan images
in each cube. Automated segmentations
produced by the method presented here
and from our previous method'* were
generated for comparison.

Included 143 SD-OCT volumetric image
datasets from 143 eyes in 99 patients
acquired using the 512 X 128 scan
protocol. Manual drusen segmentations
were drawn by a third expert on one B-
scan in each of the 143 eyes, selecting the
most representative B-scan for each cube
as the one that contained the largest
drusen. While the automated method
produces 3D drusen segmentation
throughout the SD-OCT cube, only one
B-scan for each cube was manually
segmented and considered in this dataset,
with the goal of evaluating the method
over a large number of different eyes,
while keeping the time intensive task of
drawing drusen outlines within practical
limits. Automated segmentations pro-
duced by the method presented here and
by our previous method'* were generated
for comparison.

Included 45 repeated SD-OCT volumet-
ric dataset pairs from 45 eyes in 27
patients using a 512 X 128 scan protocol.
For 23 of these scan pairs, we also
collected repeated scan pairs during the
same clinic visit using the 200 X 200 scan
protocol. Repeated SD-OCT data from
the same subjects were collected within 5-

Dataset B:

Dataset C:
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minute intervals in the same visit using
identical instrument and settings. The set
of drusen quantitative features were
extracted from the segmentation results
generated by our method in all the
datasets (136 in total). We also collected
drusen area and volume both in a 3-mm
radius circle and in a 5-mm radius circle
from the center of the fovea (four
features) as measured by the commercial
software in the acquisition system (Cirrus
HD-OCT Review Software, version
7.0.1.290) for all the SD-OCT data.
These same four features were also
computed as produced by our segmenta-
tion method for comparison. Repeatabil-
ity of the extracted features was assessed
by comparison of the values between the
repeated scans of the same eyes using the
same scanning pattern. Reproducibility
was computed by comparing the feature
values as obtained from the same eyes
using different scanning protocols.

Evaluation of Accuracy

We considered the absolute drusen area difference
(ADAD) and the OR as metrics to quantify the
segmentation differences between two segmentation
results (either by two different readers, at different
sessions or automatic versus manual segmentation).
ADAD quantifies the absolute differences in drusen
area measured at each segmented B-scan, and was
measured both in microns and in percentages relative
to the mean area of the two outlines compared. OR,
computed on each B-scan, was defined in the same
way as the Jaccard index, and it quantifies the ratio of
area between the intersecting region of two outlines
and their union, taking values between 0 (indicating
no pixels in common between two outlines) and 1
(indicating that two outlines are exactly the same).
The correlation of drusen area measurements in each
B-scan produced by two segmentation results was also
analyzed by computing Pearson’s correlation coeftfi-
cients,® and the significance of their differences was
tested using the paired Mann-Whitney U test, which is
the nonparametric counterpart of the paired sample z-
test.”” The justification of using this nonparametric
test over a paired sample 7-test was that we could not
assume the data (drusen areas segmented in B-scans)
follow a normal distribution, and we might expect
large tails in their distribution.

A diagram summarizing the evaluations undertak-
en is shown in Figure 5A. Intra- and interreader
variability were first analyzed by comparing the above
metrics from the outlines generated by the same
reader at two different sessions and from the two
readers, respectively, in Dataset A. Intrareader
variability was analyzed for both manual readers
independently. When comparing outlines from the
two different readers (inter-reader), we considered
both segmentations produced at the two sessions for
each reader. Comparison between manual markings
and the automated segmentations from our method
and the previous approach'* was made using both
Dataset A and Dataset B independently with the
metrics above. For Dataset A, automated results were
compared with the average segmentation between
readers and sessions, averaging their outline place-
ment in each A-scan.

Evaluation of Repeatability and
Reproducibility

We assessed the repeatability and reproducibility
of the drusen features extracted from our automated
segmentation method and those collected from the
Cirrus software by computing a coefficient of
repeatability (CR) from the results produced in the
repeated SD-OCT scans in Dataset C. CR was
measured as the percentage difference observed in a
feature value between two repeated scans with respect
to its average in the repeated scans. Statistical
significance of the differences in the extracted features
between repeated scans was also assessed using the U
test. Resulting P values were corrected using a
multiple hypothesis testing by estimating the false-
positive discovery rate g-values.*® Differences having
a ¢g-value less than 0.05 were considered statistically
significant. A diagram for the comparisons evaluated
is shown in Figure 5B.

Repeatability for the 512 X 128 and 200 X 200
scanning protocols was evaluated by analyzing
differences in repeated scans collected using the same
protocol. Reproducibility across scanning protocols
was evaluated by analyzing the differences in repeated
scans obtained using the two different protocols,
employing the average feature value obtained from
the repeated SD-OCT scan pairs at each protocol.
The set of eyes where reproducibility was analyzed
included those eyes with scans using both protocols,
which corresponded to the same set of eyes where
repeatability for the 200 X 200 protocol was analyzed.
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Figure 5.

(A) Diagrams of comparisons between manual and automated segmentation to study the accuracy of our methods. (B)

Diagram of comparison between repeated scans to study the repeatability and reproducibility of drusen features extracted from the

automated drusen segmentation.

Evaluation of Accuracy

Table 1 shows the agreement in inter-reader and
intra-reader segmented drusen area in terms of
correlation coefficients, U test P values, ADAD,
and OR for Dataset A. The interreader differences
were slightly higher for the first expert, but reader
agreement was relatively high overall, showing very
high correlation values (0.96-0.98) and consistent OR
(0.77-0.79). No statistically significant differences
were observed when comparing drusen area measure-
ments within or between readers. Table 1 also

summarizes the agreement between the average reader
segmentations and both automated segmentations
produced by an earlier method (Aut. Chen)'* and the
method presented here (Aut. Seg., in boldface) in
Dataset A and Dataset B. For the smaller dataset
(Dataset A), the correlation coefficient between
automated methods and manual reader segmenta-
tions was very high for both methods, being higher
for our improved method (0.99) and similar to those
observed within-experts and between-experts. ADAD
and overlap ratio values between automated and
manual segmentations were also very similar to those
within and between readers, with differences within
the measured SDs. Average overlap ratios in Dataset
A showed a slightly lower value for our method than
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Table 1. Evaluation of Drusen Segmentation Accuracy
# Eyes / B-Scans U-test, ADAD, pm ADAD, %, OR,
Methods Compared Evaluated CcC P Value Mean (SD) Mean (SD) Mean (SD)
Dataset A
Intrareader 1 4/512 0.97 0.845 9.25 (5.93) 18.42 (14.1) 0.77 (0.09)
Intrareader 2 4/512 0.98 0.062 6.14 (6.03) 11.36 (12.4) 0.79 (0.09)
Interreader 8/1024 0.96 0.083 8.11 (7.52) 14.94 (13.45) 0.77 (0.09)
Aut. Chen - Avg. R. 4/512 0.96 0.776 7.89 (6.46) 16.05 (13.8) 0.74 (0.09)
Aut. Seg. - Avg. R. 4/512 0.99 0.108 6.16 (5.74) 11 (9.51) 0.72 (0.09)
Dataset B
Aut. Chen - Avg. R. 143/143 092 < 0.01 23.38 (12.45) 37.78 (21.39) 0.62 (0.11)
Aut. Seg. - Avg. R. 143/143 0.95 0.112  13.82 (13.06) 19.13 (14.94) 0.68 (0.1)

Aut. Chen: Indicates drusen outlines generated using a previous method.'* Avg. R: Indicates drusen outlines generated

by averaging the manual readers and sessions. Aut. Seg

segmentation method. cc: Pearson’s correlation coefficients.

for the previous method (0.72 vs. 0.74), although this
difference was very small when compared with the
observed SD (0.09 in both cases). For the larger
dataset (Dataset B), the differences found between
automated and manual segmentations were in the
same ranges as observed in Dataset A for our
improved segmentation method and quite higher for
the previous method (ADD% of 19.13 = 14.94 vs.
37.78 £ 21.39). While the P values indicate that
statistical differences could not be claimed for the
previous method in the first dataset, they were
significant in the second dataset. On the other hand,
such differences were not significant for either dataset
when evaluating our improved segmentation method.
These results suggest that the discrepancies observed
between the hand-drawn segmentations are compara-
ble to those observed between the automated method
presented here and manual readers. Our method also
shows improvements over the previous method in the
larger dataset.

Evaluation of Repeatability and
Reproducibility

Table 2 summarizes the repeatability and repro-
ducibility evaluation of drusen features extracted
using the drusen segmentations obtained by our
method (additional Bland-Altman plots for each of
the features and comparisons are shown in Figs. 7 and
8 of the Appendix). All features showed relatively low
average percentage differences (CR) between repeated
scans using the same scanning protocol (in the range
of 2.54%—13.2% and 2.15%—16.89% for the 512 X 128
and 200 X 200 protocols) and when comparing
between protocols (1.56%—-13.81%). Although still

Indicates drusen outlines generated using our improved

showing low CR values, the only statistical differences
were observed between mean drusen slope and mean
reflectivity inside drusen regions (which measures the
mean normalized intensity recorded in SD-OCT
scans) across different scanning protocols. These
results seem to be due to the differences observed
when evaluating drusen shape at different protocols (a
larger number of B-scans should allow a more
detailed characterization in the vertical axis) and the
intrinsic differences observed in intensity values
between the two different protocols.

Table 3 summarizes a comparison of repeatability
and reproducibility of drusen area and volume
computed using the drusen segmentations obtained
by our method (Aut. Features) and from commercial
software (Cirrus features) (additional Bland-Altman
plots for each of the features and comparisons are
shown in Fig. 9 of the Appendix). Overall, the
quantifications using our method were more repeat-
able than the ones generated by the commercial
software when the 512 X 128 scanning protocol was
used. It is important to note that the commercial
software produced maximum and minimum CR of
200 and 0, respectively, when using this protocol.
This seems to be an effect of a limitation in the
commercial software when identifying drusen re-
gions at lower vertical resolutions (128 B-scans in
this case), estimating a drusen area and volume of 0
for some scans that contained small drusen. An
example of this effect, shown in Figure 6, displaying
the repeated scans with highest differences as
measured by our method. The ability of our method
to recognize small drusen can be observed in the
higher average area and volume measurements.

10

TVST | 2017 | Vol. 6 | No. 1 | Article 12



translational vision science & technology

de Sisternes et al.

Table 2. Repeatability and Reproducibility of Quantitative Drusen Features Generated by Our Improved

Segmentation Method

Repeatability 512 X 128 (N = 45)

Feature Values

Drusen Feature Analyzed Mean (SD) Mean (SD) Range g-Value
Number of drusen in cube 103.79 (57.11) 11.13 (10.62) 0-48.33 0.99
Mean volume per drusen (mm?>/drusen) 0.004 (0.001) 8.16 (5.75) 0.26-21.16 0.99
Drusen aggregate volume (mm?) 0.373 (0.214) 9.43 (10.93) 0.66-43.26 0.99
Mean area per drusen (mm?) 0.049 (0.013) 7.38 (4.89) 0.09-17.56 0.99
Drusen aggregate area (mm?) 5.038 (2.693) 9.41 (11.53) 0.01-47.1 0.99
Drusen density in projection image 0.301 (0.126) 15.75 (16.72) 0.29-79.75 0.99
Extent of drusen affected area (mm? 16.77 (6.11) 13.2 (15.72) 0.29-66.4 0.99
Maximum drusen height (mm) 0.145 (0.031) 6.64 (7.8 0-35.62 0.99
Mean drusen slope 0.581 (0.065) 4.04 (3.13) 0.03-12.75 0.99
Mean reflectivity inside drusen region 0.383 (0.035) 5.56 (4.9 0.42-23.67 0.99
SD reflectivity inside drusen region 0.114 (0.006) 254 (25 0.02-9.73 0.99
Table 2. Continued
Repeatability 200 X 200 (N = 23)
Feature Values  CR % mean (SD) Maximum, Minimum
Drusen Feature Analyzed Mean (SD) Mean (SD) Range g-value
Number of drusen in cube 131.87 (44.29) 16.89 (15.13) 1.29-50 1
Mean volume per drusen (mm?>/drusen) 0.004 (0.001) 11.66 (8.49) 0.48-29.17 1
Drusen aggregate volume (mm?) 0.497 (0.172) 7.07 (8.51) 0.36-33.13 1
Mean area per drusen (mm?) 0.050 (0.007) 10.07 (6.85) 0.31-25.72 1
Drusen aggregate area (mm? 6.424 (2.073) 8.39 (10.35) 0.02-35.41 1
Drusen density in projection image 0.328 (0.076) 16.26 (11.93) 0.85-42.32 1
Extent of drusen affected area (mm? 19.708 (4.742) 16.61 (14.14) 0.73-50.19 1
Maximum drusen height (mm) 0.170 (0.029) 3.07 (2.97) 0-11.61 1
Mean drusen slope 0.498 (0.043) 473 (2.72) 0.47-9.33 1
Mean reflectivity inside drusen region 0.336 (0.028) 3.74 (2.88) 0.34-9.75 1
SD reflectivity inside drusen region 0.114 (0.007) 2.15 (1.5) 0.32-5.99 1
Table 2. Continued
Reproducibility (N = 23)
CR % mean (SD) Maximum, Minimum
Drusen Feature Analyzed Mean (SD) Range g-Value
Number of drusen in cube 13.81 (13.2) 0-47.21 0.3
Mean volume per drusen (mm?/drusen) 9.91 (7.71) 0.47-25.88 0.75
Drusen aggregate volume (mm?) 8.82 (5.08) 0.6-18.91 0.55
Mean area per drusen (mm?) 8.18 (5.94) 0.2-23.44 0.20
Drusen aggregate area (mm?) 7.94 (5.88) 0.21-22.7 0.66
Drusen density in projection image 8.78 (6.16) 0.23-26.22 0.20
Extent of drusen affected area (mm?) 13.75 (12.25) 1.83-48.68 0.12
Maximum drusen height (mm) 7.41 (8.23) 0-29.21 0.12
Mean drusen slope 6.98 (3.26) 0.13-13.3 0.002
Mean reflectivity inside drusen region 7.09 (3.29) 1.27-11.81 0.002
SD reflectivity inside drusen region 1.56 (1.26) 0.01-4.46 0.66
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First 512x128 scan
Cirrus drusen map Aut. en face map

Second 512x128 scan
Cirrus drusen map ~ Aut. en face map

First 200x200 scan
Cirrus drusen map Aut. en face map

Second 200x200 map
Cirrus drusen map ‘Aut. en face map

Featice First measurement Second measurement First measurement Second measurement Repeatability Repeatability Reproducibilit
512x128 512x128 200x200 200x200 512x128 200x200 P Y
Aut. Features
Area at 3mm (mm?) 2.84 2.89 3.50 2.90 1.74 18.75 11.05
Area at Smm (mm?) 4.65 4.87 5.68 5.29 4.62 7.11 14.15
Volume at 3mm (mm?) 0.181 0.184 0.229 0.191 1.64 18.10 14.01
Volume at Smm (mm?) 0.291 0.304 0.359 0.335 4.37 6.92 15.36
Cirrus Features
Area at 3mm (mm?) 0.9 0 0.8 0.8 200 0 56
Area at Smm (mm?) 0.9 0 0.9 0.8 200 11.76 65.54
Volume at 3mm (mm?) 0.03 0 0.03 0.02 200 40 50
Volume at Smm (mm?®) 0.03 0 0.03 0.03 200 0 66.67

Figure 6.

Example of repeatability and reproducibility analysis for a single eye where differences in area at 5-mm across protocols using

our method were the highest. Results for the repeated scans at 512 X 128 and 200 X 200 protocols are shown. The Cirrus maps display
drusen elevation maps as produced by Cirrus software. The Aut. en face maps represent topographic projection maps of the RPE
complex, where outlines of the drusen segmentation results produced by our method are superimposed. The table summarizes the area
and volume measurements for each scan, repeatability and reproducibility (in CR%) generated by Cirrus and by our method.

Measurements had greater repeatability for both
methods when employing the 200 X 200 protocol
than with the 512 X 128 protocol, especially for the
commercial software: our segmentation method had
small differences (mean CR between 6.57%—8.06%),
and the commercial software presented an excellent
repeatability (mean CR between 2.15%—4.15%).
When evaluating reproducibility across protocols,
our method had greater reproducibility (mean CR
6.21%-9.47%) than the commercial software
(14.13%-14.66%).

Discussion

It has been previously shown that cumulative
drusen area and volume measured in SD-OCT images
may be potential disease biomarkers of AMD status
and progression, and reproducibility of such quanti-
fications has been partly studied.’’*”*" As retinal
drusen can also be categorized into different types
according to their shape, predominant internal
reflectivity, homogeneity, and presence of overlying
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Table 3.

Repeatability and Reproducibility of Drusen Area and Volume Measurements Generated Using our

Improved Segmentation Method (Aut. Features) and That Produced by Commercial Software (Cirrus Features)

Repeatability 512 X 128 (N = 45)

Feature Values,

CR %

Drusen Feature Analyzed Mean (SD) Mean (SD) Range g-Value
Aut. Features
Area at 3 mm (mm?) 2.778 (1.2727) 9.61 (13.55) 0.07-70.89 0.99
Area at 5 mm (mm?) 44287 (2.358) 9.75 (12.73) 0-59.23 0.99
Volume at 3 mm (mm?>) 0.212 (0.108) 9.55 (13.01) 0.31-70.99 0.99
Volume at 5 mm (mm?>) 0.329 (0.188) 9.63 (11.93) 0.27-54.31 0.99
Cirrus Features
Area at 3 mm (mm?) 1.232 (1.024) 18.9 (44.4) 0-200 0.99
Area at 5 mm (mm?) 1.831 (1.524) 30.46 (59.85) 0-200 0.99
Volume at 3 mm (mm?>) 0.081 (0.100) 19.62 (47.1) 0-200 0.99
Volume at 5 mm (mm?>) 0.119 (0.169) 22.68 (47.73) 0-200 0.99

Table 3. Continued

Repeatability 200 X 200 (N = 23) Reproducibility (N = 23)
Feature Values, CR % CR %
Drusen Feature Analyzed Mean (SD)  Mean (SD) Range g-Value Mean (SD) Range g-Value
Aut. Features
Area at 3 mm (mmz) 3.727 (0.636) 2 (7.58) 0.03-34.92 1 6.33 (3.95) 0.16-13.63 0.66
Area at 5 mm (mmz) 5.893 (1.808) 8. 06 (9.68) 0.12-35.32 1 6.21 (4.08) 0.36-14.19 0.75
Volume at 3 mm (mm3) 0.316 (0.080) 6.57 (7.46) 0.22-34.96 1 9.47 (5.23) 0.81-18.51 0.49
Volume at 5 mm (mm3) 0.465 (0.156) 6.98 (7.93) 0.04-34.54 1 7.48 (4.3) 0.32-16.44 0.54
Cirrus Features
Area at 3 mm (mmz) 1.791 (0.760) 2.15 (3.09) 0-10.53 1 14.13 (41.54) 0-200 0.75
Area at 5 mm (mm?) 2.474 (1.305) 3.66 (4.29) 0-11.76 1 14.19 (41.68) 0-200 0.75
Volume at 3 mm (mm3) 0.109 (0.074) 4.15 (8.86) 0-40 1 14.55 (41.44) 0-200 0.75
Volume at 5 mm (mm3) 0.142 (0.098) 3.33 (4.5) 0-11.76 1 14.66 (41.88) 0-200 0.75

hyperreflective foci,® characterization of individual
drusen properties is of interest and can increase the
prediction accuracy when analyzing AMD progres-
sion risk.” For example, the imaging phenotype of an
eye with a small number of large drusen should be
different from that of an eye with a combination of
multiple small and medium drusen, although both
may have similar values in total drusen area and
volume. However, individual drusen are not routinely
measured on SD-OCT because doing this by hand is
extremely time consuming. While and few automated
methods have been proposed for the segmentation of
drusen regions, to our knowledge, a method to
accurately differentiate and quantify each individual
druse in SD-OCT scans has not yet been described.
We have described a method for the automatic
segmentation of drusen regions including differentia-

tion of each individual druse. Additionally, we believe
or method may be superior in the differentiation of
small drusen by addressing several unsolved challeng-
es emerging from the prior work: (1) possible errors
and inaccuracies in the RPE segmentation that
smooth out drusen, (2) identification of drusen in
regions where the inner and outer segments (IS/OS)
have similar reflectivity as RPE, and (3) identification
of drusen in regions where the COST line, IS/OS and
RPE are difficult to differentiate from each other. Our
method, which uses an accurate segmentation of the
RPE and IS/OS boundaries, seems more sensitive in
estimating small drusen than those using smoother
estimation of the RPE layer, overcoming these
challenges to some degree. The iRPE and IS
boundaries can be differentiated in regions of low
contrast by using a 3D segmentation approach.
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Identifying drusen presence in both iRPE and IS
boundaries further increases the segmentation sensi-
tivity in regions with possible inaccuracies in the RPE
segmentation.

In order to evaluate our method accuracy estimat-
ing drusen regions, we compared with hand-drawn
segmentations as the gold standard. Because hand-
drawn drusen segmentations are reader-dependent
and not perfect as a gold standard, we initially
characterized the segmentation differences produced
by two experts and at two different sessions on 512 B-
scans obtained from four different eyes. Such
characterization gave us a reference to compare with
when evaluating the segmentations produced by our
automated method. Expert variability was similar
both within the same expert at different sessions and
between the two experts (Table 1), with differences
likely due to the fact that the boundaries of RPE
layers are obscured by noise and the difficulty in
creating a large number of manual outlines. The
segmentations produced by our automated method
showed substantial agreement with the average of the
manual segmentations and comparable to the results
obtained from different readers. Automated segmen-
tation using a previously proposed method also
produced comparable results in this limited dataset
(Dataset A). We also evaluated our method’s
accuracy in a larger patient dataset (143 drusen-
present B-scans obtained from 143 different eyes) in
which we obtained manual segmentations from a
third expert. We observed that differences between
our automated method and the manual segmentations
were slightly higher for this dataset, but still relatively
low and within the limits established by the measured
reader agreement. However, the previous method
presented much larger differences with the manual
segmentations for this larger dataset, and these
differences were statistically significant (P < 0.05).
Although this might be due to the segmenting
approach of a reader (e.g., the reader constantly
overestimating or underestimating drusen borders), it
appears that our improved segmentation method
produces more accurate and stable segmentations
than the previous approach.

We evaluated the repeatability and reproducibility
of a set of features extracted from segmented drusen
using our method. We chose these features for this
evaluation because they were previously shown to be
promising as biomarkers for predicting AMD pro-
gression. Overall, the repeatability of the measure-
ments was high at both the 512 X 128 and 200 X 200
scanning protocols. When evaluating the reproduc-

ibility across the two protocols, the percentage
differences in the features were low overall, indicating
high reproducibility. However, the differences across
protocols for average drusen slope and mean refe-
lectivity inside the drusen regions were significant.
Although these measurements seemed repeatable
using the same protocol, the observed differences
across protocols may be due to intrinsic properties
resulting from the scanning pattern. Differences in
drusen slope may be derived from A-scan and B-scan
density differences between protocols, with higher
values in the 512 X 128 protocol due to its lower B-
scan density. While small drusen may be present in
several B-scans using the higher density protocol, they
may be present in only one B-scan using a lower scan
density, which causes an overestimation of drusen
slope in the vertical axis. Differences in mean intensity
inside drusen regions may correspond to expected
intrinsic acquisition differences among protocols and/
or an effect of the low variability observed among the
cases employed in this study (of less than 10%, see
Table 2). It is possible that a larger dataset with
drusen of a larger range of reflectivity properties may
produce differences among protocols that are not
significant. Nevertheless, it is important to note that
although these two features seem repeatable using the
same scanning protocol, they do not seem inter-
changeable across protocols a priori.

When comparing the repeatability of drusen area
and volume features generated by our method to
those produced by the Cirrus system, our methods
presented higher repeatability than Cirrus in the 512 X
128 protocol. On the other hand, the Cirrus system
presented excellent repeatability using the 200 X 200
protocol, with our methods also presenting high
repeatability. Our method also showed higher repro-
ducibility across protocols than the Cirrus system.
Repeatability in Cirrus measurements has been
previously analyzed for both protocols in prior
publications, showing differences in similar ranges
for the 200 X 200 protocol (7.5%-8.3%)"' and even
higher differences for the 512 X 128 protocol (14%-—
136%).% Repeatability using manual outlines in the
512 X 128 protocol has also been reported as an
average of 16.64% and 7.82% for area and volume
measurements,”” respectively, which is within the
ranges observed for the automated quantifications
produced by our method. The lower repeatability of
Cirrus measurements in the 512 X 128 protocol and its
lower reproducibility across protocols may be due to
a lower sensitivity in Cirrus measurements when using
a scan pattern of lower vertical resolution. This effect
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has also been shown previously, were higher values
were reported for measurements derived from manual
segmentations than those from Cirrus automated
analysis,””*” and explains the intervals of maximum
and minimum differences (200% and 0%, respectively,
in Table 3) observed for Cirrus repeatability at the
512 X 128 resolution and for its reproducibility across
protocols. While small drusen may be detected in one
scan, they may be completely missed in a repeated
scan (values of 0 area and volume), leading to such
ranges. We observed that the native Cirrus software
failed to detect any drusen in 6 of the 90 scans
evaluated with the 512 X 128 scan pattern and in none
of those evaluated with the 200 X 200 scan pattern.
Although details about the Cirrus drusen segmenta-
tion remain undisclosed, this behavior seems to be
linked to a trade-off maximizing specificity and the
consequent reduction of sensitivity in the 512 X 128
pattern, and could be relative to the software version
employed in this analysis (Cirrus HD-OCT Review
Software, version 7.0.1.290). On the other hand, our
method seems more sensitive when outlining drusen
regions, which can be observed in higher drusen area
and volume average values. An example with these
characteristics, where differences in drusen area at 5
mm between protocols were also the highest for our
method, is shown in Figure 6. Nevertheless, Cirrus
automated drusen analysis has shown superior
accuracy than its main commercial competitors,*’
and its ability detecting small drusen may be
improved in software versions later than the one
available to us in our work.

Our work has several limitations. Accuracy of the
segmented outlines was compared with manual
markings, in which experts invariably disagree on
how they draw the margins of these lesions. Although
intrareader and interreader segmentation variance
was observed, which limited the quality of the
comparisons, this variability between experts also
emphasizes the utility of an automatic segmentation
method, which would provide reproducible results. A
second limitation is the reduced number of repeated
SD-OCT scans acquired for the repeatability and
reproducibility of drusen quantifications. Although
all of the extracted features showed no statistically
significant differences in repeated scans from the same
protocol and most of them showed no significant
differences in repeated scans across protocols, it is
possible that a larger dataset may reveal such
differences. On the other hand, the inclusion of a
larger number of eyes with drusen of more variable
characteristics may increase feature variability across

cases and reduce the importance of differences found
across repeated scans.

In conclusion, our improved drusen segmentation
method shows promising accuracy in automatically
segmenting drusen regions, with the added value of
being able to distinguish individual drusen in SD-
OCT scans. The quantitative properties derived from
the segmentations produced by our method show high
repeatability in scans acquired using the two proto-
cols tested. Such properties also show high reproduc-
ibility across protocols, with the exception of drusen
slope and mean intensity, which show small, but
significant differences between protocols that may be
derived from the intrinsic properties of the different
acquisition patterns.
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Appendix

REPEATABILITY 512X128

de Sisternes et al.

REPEATABILITY 200X200

REPRODUCIBILITY

Figure 7. Bland-Altman plots for features investigated in Table 2 (continued in Fig. 8). Left, middle, and right columns correspond to
differences measured in the 512 X 128 pattern, 200 X 200 pattern and across patterns, respectively.
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Figure 8. Bland-Altman plots for features investigated in Table 3 (continued from Fig. 7). Left, middle, and right columns correspond to
differences measured in the 512 X 128 pattern, 200 X 200 pattern and across patterns, respectively.
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Figure 9. Bland-Altman plots for features investigated in Table 3. Left, middle, and right columns correspond to differences measured in
the 512 X 128 pattern, 200 X 200 pattern and across patterns, respectively.
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