
This copy is for personal use only.  
To order printed copies, contact reprints@rsna.org

This copy is for personal use only.  
To order printed copies, contact reprints@rsna.orgORIGINAL RESEARCH • BREAST IMAGING

Neoadjuvant chemotherapy is used to treat locally 
advanced breast cancer with the goal of downstag-

ing tumors and increasing breast conservation rates (1). 
Pathologic complete response (pCR) after neoadjuvant 
chemotherapy has been demonstrated to be a favorable 
prognostic marker in terms of recurrence-free survival 
(RFS) in the Investigation of Serial Studies to Predict 
Your Therapeutic Response with Imaging and Molecular 
Analysis (I-SPY 1 TRIAL) (2). Tumor burden as mea-
sured with functional tumor volume at magnetic reso-
nance (MR) imaging early during neoadjuvant chemo-
therapy has also been shown to be associated with RFS 
in the I-SPY 1 TRIAL (3). Yet, the accuracy of predicting 
recurrence on an individualized basis is still limited (4), as 
breast cancer is known to be a heterogeneous disease with 

wide variations in outcomes and response to therapy. The 
identification of additional prognostic markers beyond 
current factors such as pCR and tumor volume would 
allow more refined patient stratification and potentially 
guide risk-adaptive personalized therapy (5).

Radiomics investigates a large number of computa-
tional image features and is a promising approach for 
identifying imaging markers (6–8). Some radiomic fea-
tures, such as tumor texture, may be useful for differen-
tiating malignant from benign tumors or for evaluating 
treatment response and outcome in breast cancer (9–16). 
Although texture features provide a measure of intratu-
moral heterogeneity to a certain extent, this character-
ization is incomplete because their calculation applies 
to the whole tumor. As such, this approach assumes that 
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Purpose: To characterize intratumoral spatial heterogeneity at perfusion magnetic resonance (MR) imaging and investigate intratu-
moral heterogeneity as a predictor of recurrence-free survival (RFS) in breast cancer.

Materials and Methods: In this retrospective study, a discovery cohort (n = 60) and a multicenter validation cohort (n = 186) were 
analyzed. Each tumor was divided into multiple spatially segregated, phenotypically consistent subregions on the basis of perfusion 
MR imaging parameters. The authors first defined a multiregional spatial interaction (MSI) matrix and then, based on this matrix, 
calculated 22 image features. A network strategy was used to integrate all image features and classify patients into different risk 
groups. The prognostic value of imaging-based stratification was evaluated in relation to clinical-pathologic factors with multivari-
able Cox regression.

Results: Three intratumoral subregions with high, intermediate, and low MR perfusion were identified and showed high consisten-
cy between the two cohorts. Patients in both cohorts were stratified according to network analysis of multiregional image features 
regarding RFS (log-rank test, P = .002 for both). Aggressive tumors were associated with a larger volume of the poorly perfused 
subregion as well as interaction between poorly and moderately perfused subregions and surrounding parenchyma. At multivari-
able analysis, the proposed MSI-based marker was independently associated with RFS (hazard ratio: 3.42; 95% confidence interval: 
1.55, 7.57; P = .002) adjusting for age, estrogen receptor (ER) status, progesterone receptor status, human epidermal growth factor 
receptor type 2 (HER2) status, tumor volume, and pathologic complete response (pCR). Furthermore, imaging helped stratify pa-
tients for RFS within the ER-positive and HER2-positive subgroups (log-rank test, P = .007 and .004) and among patients without 
pCR after neoadjuvant chemotherapy (log-rank test, P = .003).

Conclusion: Breast cancer consists of multiple spatially distinct subregions. Imaging heterogeneity is an independent prognostic fac-
tor beyond traditional risk predictors.
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the tumor is heterogeneous but well mixed, thus neglecting 
regional phenotypic variations within a tumor (17).

In our study, we aimed to discover intrinsic intratumoral 
subregions of breast cancer defined by multiparametric per-
fusion imaging maps and to investigate the reproducibil-
ity of these discovered subregions in another independent 
cohort. We used multiregional image features to character-
ize intratumoral spatial heterogeneity and investigate their 
association with RFS to determine whether imaging het-
erogeneity provides independent prognostic value beyond 
existing risk predictors.

Materials and Methods

Overview of Study Design and Patient Cohorts
This retrospective study was approved by the institutional review 
board and compliant with the Health Insurance Portability and 
Accountability Act. Our study was carried out in three steps, as 
shown in Figure E1 (online). First, we discovered spatially distinct 
intratumoral subregions of breast cancer on the basis of perfusion 
imaging parameters and validated their consistency in two inde-
pendent cohorts. Second, we characterized spatial heterogeneity by 
quantifying multiregional interactions from intratumoral subre-
gion maps and evaluated their reproducibility against uncertainty 
in tumor delineation. Third, we developed a network strategy to 
stratify patients into different groups on the basis of image features 
and assessed its clinical relevance in relation to clinical-pathologic 
and genomic factors for predicting RFS.

Two breast cohorts were analyzed, including 60 patients 
treated at the University of California, San Francisco, between 
1995 and 2002 for discovery purposes (cohort 1) and 186 pa-
tients from the I-SPY 1 TRIAL treated between 2002 and 2006 
(2) for validation purposes (cohort 2). Patient characteristics of 

these two cohorts are summarized in Table 1. Details of pa-
tient cohorts and imaging protocols are shown in Figure 1 and  
Appendix E1 (online).

Discovery and Validation of Intratumoral Subregions
After image harmonization and tumor delineation (details in 
Appendix E1 [online]), we developed a robust intratumor par-
titioning method to divide the tumor into multiple spatially 
segregated, phenotypically consistent subregions. As outlined in 
Figure 2a, this method consists of a two-stage clustering pro-
cess. First, at the individual level, each tumor is oversegmented 
into many small contiguous regions (ie, superpixels) that con-
tain similar voxels as defined by four kinetic maps at dynamic 
contrast material–enhanced (DCE) MR imaging: percentage en-
hancement, signal enhancement ratio, and wash-in and washout 
slopes (9,18,19), as detailed in Appendix E1 (online) and Figure 
E2 (online). Second, at the population level, all superpixels from 
the entire population are aggregated and consistently labeled 
by means of consensus cluster (Appendix E1 [online]), where 
similar superpixels within the same tumor are merged to form a 
subregion. In this way, the correspondence between tumor sub-
regions can be established across patients in a given population.

We independently applied the proposed tumor partitioning 
method in two breast cancer cohorts (cohorts 1 and 2) to vali-
date the consistency of the defined intratumoral subregions via 
the in-group proportion statistic (20), as detailed in Appendix 
E1 (online). We used the significance analysis of microarrays al-
gorithm (21) to identify perfusion imaging parameters that are 
associated with the revealed subregions in both cohorts.

Quantitative Image Features to Characterize 
Intratumoral Spatial Heterogeneity
On the basis of the discovered multiregion maps, we used 
the multiregional spatial interaction (MSI) matrix to 
characterize and quantify the intratumoral spatial hetero-
geneity. In detail, the neighbor of every tumor voxel was 
probed, where the resulting pair was added to the appro-
priate entry in the MSI matrix, as shown in Figure 2b. 
This process was repeated until all tumor voxels were it-
erated, and the spatial heterogeneity was summarized in 
the final MSI matrix. Of note, we included the breast pa-
renchyma as one distinct region to explicitly account for 
the spatial relationship between the tumor subregions and 
its surrounding tissue. Intuitively, the diagonal elements 
of the MSI matrix represent connected size for individual 
subregions, whereas the off-diagonal elements relate to the 
size of borders where different subregions meet. A total of 
22 features were extracted from the MSI matrix, includ-
ing 18 first-order and four second-order statistical features 
as explained in Figure 2c. Together, they quantify the de-
gree and spectrum of intratumoral spatial heterogeneity 
revealed by multiregional maps.

Network Analysis to Stratify Patients into  
Distinct Clusters
We developed a network-based strategy to explore the simi-
larity between patients and to discover patterns of breast can-

Abbreviations
DCE = dynamic contrast material enhanced, ER = estrogen receptor,  
HER2 = human epidermal growth factor receptor type 2, I-SPY 1 
TRIAL = Investigation of Serial Studies to Predict Your Therapeutic 
Response with Imaging and Molecular Analysis, MSI = multiregional 
spatial interaction, pCR = pathologic complete response, PR = proges-
terone receptor, RFS = recurrence-free survival

Summary
We discovered and validated three intratumoral subregions with dis-
tinct MR perfusion imaging parameters. In addition to clinical-patho-
logic and genomic factors, intratumoral spatial heterogeneity character-
ized by MR imaging was an independent predictor of recurrence-free 
survival in two breast cancer cohorts.

Implications for Patient Care
 n Intratumoral spatial heterogeneity at MR imaging delivers ad-

ditional prognostic value beyond current clinical-pathologic and 
biologic predictors in breast cancer, providing a proposed imaging 
marker for future therapy.

 n Intratumoral spatial heterogeneity at MR imaging could poten-
tially be used to stratify patients for risk-adaptive individualized 
therapy.

 n The proposed methodology to define and characterize intratumoral 
spatial heterogeneity will be applicable to other cancer types.
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microarray assay (Agendia, Amsterdam, 
the Netherlands) recurrence score and 
the 50-gene PAM50 assay (Nanostring 
Technologies, Seattle, Wash) subtypes 
in a subset of I-SPY 1 TRIAL patients 
(n = 128) with available microarray data 
in Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/, tracking 
number GSE22226). Next, we per-
formed subgroup analysis to determine 
whether the proposed imaging marker 
can enable further stratification of pa-
tients within certain clinically mean-
ingful subgroups. Finally, we compared 
our imaging marker with conventional 
whole-tumor texture features based on 

the gray-level co-occurrence matrix that have been widely used 
to measure tumor heterogeneity (25,26) as well as simple per-
fusion parameters derived from the intratumoral subregions.

Evaluation of Reproducibility with Respect to 
Variation in Tumor Segmentation
Our proposed computational pipeline is fully automatic once 
the tumor contour is delineated by radiologists. Given the un-
certainty in tumor delineation, we investigated the reproduc-
ibility of our results at various stages with respect to tumor 
contours (details in Appendix E1 [online]).

Statistical Analysis
We fit the Cox proportional hazard model between different 
risk predictors and RFS. Kaplan-Meier analysis and the log-
rank test were used to evaluate patient stratification into dif-
ferent risk groups. The hazard ratio was used to measure the 
degree of survival differences. For the I-SPY 1 TRIAL cohort, 
we censored the patients alive at 5 years to alleviate confound-
ing effects by comorbidities, as was done in the primary pub-
lication (2). All statistical tests were two-sided, with P , .05 
indicative of a statistically significant difference. All statistical 
analyses were performed in R (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Identification and Validation of Three  
Intratumoral Subregions
Patients from the two cohorts had similar distribution for 
ER, PR, and HER2 status, and the median follow-up time 
was 6.67 years for cohort 1 and 4.12 years for cohort 2 
(Table 1). We independently applied our proposed tumor 
partitioning method in cohorts 1 and 2 and determined the 
optimal number of intratumoral subregions. As shown in 
Figures E3, A (online), and E4, A (online), there are three 
distinct clusters (ie, subregions) in each cohort according to 
hierarchical clustering on consensus matrix. This was fur-
ther confirmed by cumulative distribution function curves 
in Figures E3, B and C (online), and E4, B and C (online). 
The three intratumoral subregions were highly consistent 

cer heterogeneity in a single-institution cohort (cohort 1). In 
detail, a fully connected graph was built to model the pair-
wise relations between patients based on the aforementioned 
22 image features (Fig 2c). The vertices correspond to indi-
vidual patients and the edges were weighted by the similar-
ity between connected patients. The similarity was measured 
with Euclidean distance in the space formed by 22 image fea-
tures and further smoothed by the radial basis kernel. Next, 
the patient similarity graph was analyzed with the spectral 
clustering method (22) to divide patients into distinct clus-
ters. Compared with traditional unsupervised clustering al-
gorithms, spectral clustering is known to be a robust method 
for discovering nonconvex and linearly nonseparable clusters 
(22), which is ideally suitable for handling heterogeneous 
breast cancer data in our study. Given network-based patient 
stratification in the discovery cohort, we propagated the pa-
tient cluster labels to the validation cohort (cohort 2) by us-
ing a robust label propagation algorithm (23), as detailed in 
Appendix E1 (online). No information about prognosis in 
cohort 2 was used during the propagation procedure to en-
sure further independent validation.

Clinical Relevance of Network-based Patient 
Stratification with Imaging and Multivariable 
Analysis Adjusting for Existing Risk Factors
We evaluated the imaging-based patient stratification in terms 
of its prognostic capacity for predicting RFS in the discovery 
cohort and then tested it in the independent I-SPY 1 TRIAL 
cohort. We investigated the relationships between the pro-
posed imaging marker and existing clinical-pathologic and 
genomic predictors of RFS and tested whether it provided in-
dependent prognostic value by using multivariable Cox regres-
sion analysis. According to the latest National Comprehensive 
Cancer Network guidelines of invasive breast cancer (24), risk 
factors include age, estrogen receptor (ER) status, progesterone 
receptor (PR) status, human epidermal growth factor recep-
tor type 2 (HER2) status, stage, pathologic grade, and lymph 
node metastasis. In addition, pCR was shown to be a strong 
predictor of RFS in the I-SPY 1 TRIAL cohort (2) and there-
fore was included in our analysis. Keeping significant covari-
ates, we further adjusted them for the 70-gene MammaPrint 

Figure 1: Flowchart shows number of patients with breast cancer in two study cohorts. 
DCE = dynamic contrast-enhanced, I-SPY 1 TRIAL = Investigation of Serial Studies to Predict 
Your Therapeutic Response with Imaging and Molecular Analysis, UCSF = University of Cali-
fornia, San Francisco.
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validation cohort into low- and high-risk groups by using a 
robust label propagation algorithm. Consistent with the dis-
covery cohort, a significant difference in RFS was observed 
between the two groups in the validation cohort (log-rank 
test, P = .002) (Fig 5, A).

across the two cohorts, with corre-
sponding in-group proportion values 
of 97.8%, 99.0%, and 98.6%, respec-
tively, for subregions 1, 2, and 3 (P 
, .001).

We then investigated what imag-
ing parameters are associated with the 
three intratumoral subregions and how 
they can be differentiated with kinetic 
features. Figure 3 shows the detailed 
distributions of the four perfusion 
parameters (signal enhancement ra-
tio, percentage enhancement, wash-in 
slope, and washout slope) in each of 
three subregions. The sorted perfusion 
maps derived from DCE MR imaging 
associated with each subregion in two 
cohorts are shown in Figure E5 (on-
line). From these results, we observed 
a consistent pattern in both cohorts 
where the four perfusion parameters 
all increased from subregion 1 to 3. 
We thus concluded that subregions 1, 
2, and 3 represent poorly, moderately, 
and highly perfused subregions in the 
tumor, respectively.

Network-based Patient 
Stratification according to 
Imaging Heterogeneity in Two 
Independent Cohorts
Once the intratumoral subregions 
were identified, we extracted 22 im-
age features to characterize tumor 
spatial heterogeneity and applied 
network analysis to stratify patients 
in the discovery cohort. Figure 4, A, 
shows the topological relationship of 
the patients in a sparse graph to facili-
tate visualization. We used a spectral 
clustering algorithm to divide patients 
into two groups, showing significant 
differences in RFS (log-rank test, P = 
.002) (Fig 4, B).

To test the prognostic value of im-
aging heterogeneity in an indepen-
dent cohort, we first trained a multi-
nomial model based on four perfusion 
parameters to classify each voxel into 
one of the three subregions. The de-
tails of this model, which had an over-
all accuracy of 0.975, are shown in 
Table E1 (online). Then, we applied this model to define 
intratumoral subregions in the validation cohort (cohort 
2). The same 22 image features were extracted to charac-
terize spatial heterogeneity. Finally, given the clustering re-
sults in the discovery cohort, we separated patients in the 

Table 1: Summary of Demographic and Clinical Data from the Two Study Co-
horts

Parameter
Discovery Set:  
Cohort 1 (n = 60)

Validation Set:  
Cohort 2 (n = 186)

Age (y)
 Median* 48.1 (29.7–72.4) 49.1 (26.7–68.8)
 Mean 6 standard deviation 48.0 6 9.9 48.4 6 9.1
Estrogen receptor
 Positive 28 (47) 103 (55)
 Negative 20 (33) 82 (44)
 Unknown 12 (20) 1 (1)
Progesterone receptor
 Positive 22 (37) 87 (47)
 Negative 26 (43) 98 (53)
 Unknown 12 (20) 1 (1)
Human epidermal growth factor receptor type 2
 Positive 14 (23) 56 (30)
 Negative 31 (52) 126 (68)
 Unknown 15 (25) 4 (2)
Histologic type
 Invasive ductal carcinoma 37 (62) …
 Invasive lobular carcinoma 11 (18) …
 Other 12 (20) …
Pathologic grade
 1 … 10 (5)
 2 … 57 (31)
 3 … 60 (32)
 Unknown … 59 (32)
Lymph node metastasis
 Yes 36 (60) …
 No 23 (38) …
 Unknown 1 (2) …
Follow-up (y)†

 Median* 6.67 (0.95–9.84) 4.12 (0.51–6.9)
 Mean 6 standard deviation 6.05 6 2.35 4.13 6 1.21
Recurrence
 Yes 22 (37) 51 (27)
 No 37 (62) 135 (73)
 Unknown 1 (2) 0
Pathologic complete response
 Yes ... 50 (27)
 No … 131 (70)
 Unknown … 5 (3)
Transcriptional data
 Available … 128 (69)
 Missing … 58 (31)

Note.—Unless otherwise indicated, data are numbers of patients, with percentages in paren-
theses.
* Numbers in parentheses are the range.
† Computed with subjects without recurrence.
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Independent Prognostic Value of Imaging beyond 
Traditional Risk Predictors
In multivariable analysis of the discovery cohort, our pro-
posed imaging heterogeneity-based patient stratification was 
the only variable associated with RFS (P = .022) after ad-
justing for clinical-pathologic factors such as age, ER status, 
PR status, HER2 status, histologic type, and lymph node 
metastasis (Table E3 [online]). Importantly, this result was 
validated in the I-SPY 1 TRIAL cohort, where our imaging 
marker showed independent prognostic value when adjust-
ing for age, ER status, PR status, HER2 status, tumor vol-
ume, and pCR (Table 2). We further adjusted with patho-
logic grade, PAM50 subtype, and MammaPrint score for a 
subset of patients in the I-SPY 1 TRIAL cohort (n = 121) 
with available information through Gene Expression Om-
nibus (tracking number GSE22226). The proposed imag-
ing marker remained as an independent predictor of RFS  
(P = .022) (Table E4 [online]).

In subgroup analysis, our proposed imaging marker fur-
ther stratified patients for RFS within ER-positive and HER2- 

Multiregional Imaging Phenotypes Are Associated 
with Aggressive Disease and Poor Prognosis and 
Outperform Whole Tumor–based Texture Analysis
On the basis of significance analysis of microarrays, several 
image features were differentially expressed between the low- 
and high-risk groups in terms of RFS (Table E2 [online]). In 
particular, tumors in the high-risk patient group were charac-
terized by larger volume of the poorly perfused intratumoral 
subregion, larger volume of interaction between poorly and 
moderately perfused subregions and surrounding parenchyma, 
and higher homogeneity and correlation of the MSI matrix. 
Figure 6 shows the detailed intratumor partition maps of two 
representative patients with similar clinical-pathologic factors, 
where the proposed pipeline correctly predicted their recur-
rence risk. These patterns were consistent in both discovery and 
validation cohorts (Table E2 [online]). In comparison, none of 
the whole tumor–based morphologic or texture features were 
prognostic of RFS; moreover, the simple kinetic measures of 
intratumoral subregions were not consistent predictors of RFS 
in both cohorts (Fig E6 [online]).

Figure 2: (a) Proposed two-stage intratumor partition framework. DCE = dynamic contrast-enhanced. (b) Illustration shows use of multiregional 
spatial interaction (MSI) matrix derived from intratumor partition maps. (c) Twenty-two quantitative imaging features were extracted from MSI ma-
trix to measure intratumoral spatial heterogeneity.
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subgroup, we observed a similar trend 
but no association, likely due to the 
small sample size (Fig E7, B [online]).

High Reproducibility between 
Manual and Automated Tumor 
Segmentation
A high correlation existed for 
manual and automated tumor  
contours, with R2= 0.98 and an aver-
age Dice coefficient of 0.87 (Fig E8 
[online]). With automated tumor con-
tours, the partitioning procedures iden-
tified three intratumoral subregions 
with similar perfusion characteristics 
(Figs E9, E10 [online]). There was 
good agreement between the original 
and recalculated MSI-based features, 
with a mean intraclass correlation co-
efficient of 0.85 (Fig E11, A [online]). 
Compared with the original stratifi-
cation, the predicted cluster labels of 
only four patients were inconsistent,  
as shown in Figure E11, B (online). 
Results of the x2 test further con-
firmed the high dependency for two 
alternative ways of patient strati-
fication (P = 2.3E-10). Further-
more, the Kaplan-Meier plot of RFS 
based on automated tumor contours  
(Fig E11, C [online]) had an excellent 
agreement to that based on manual 
contours (Fig 4, B).

Discussion
In this study, we showed that multire-
gional image features extracted from 
baseline DCE MR images can be used 
to characterize intratumoral spatial het-
erogeneity and detect aggressive disease 
in breast cancer. In two independent 
cohorts, multiregional image features 
stratified a network-based clustering of  
patients associated with RFS. Importantly, 
the imaging-based stratification provided 
additional prognostic value beyond tra-
ditional clinical-pathologic and genomic 
factors such as ER, PR, and HER2 sta-
tus. The primary finding of the I-SPY 1 
TRIAL is that pCR is an independent 

prognostic factor in patients with locally advanced breast cancer 
treated with neoadjuvant chemotherapy (2). Herein, we showed 
that those patients without pCR in the I-SPY 1 TRIAL cohort 
could be further divided into groups with different prognoses 
by means of our imaging analyses, with a similar trend for those 
with pCR. Taken together, these data suggest that imaging-based 

Figure 3: Box-and-whisker plots show distribution of four perfusion imaging parameters for 
three intratumoral subregions for, A–D, cohort 1 and, E–H, cohort 2. PE = percentage enhance-
ment, SER = signal enhancement ratio, WIS = wash-in slope, WOS = washout slope. P values 
were obtained with Student t test. ∗ = P , .05, ∗∗ = P , .001, ∗∗∗ = P , .0001.

positive breast cancer (log-rank test, P = .007 and .004, re-
spectively) (Fig 5, B, C) but did not show an association for the 
ER-negative, PR-negative, HER2-negative, or triple-nega-
tive subgroups (Fig E7, A [online]). For patients without pCR  
(n = 131), our imaging marker was strongly prognostic 
of RFS (log-rank test, P = .003) (Fig 5, D). For the pCR 
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multiregional spatial interaction matrix. In contrast, tradi-
tional studies investigate aggregate image features from the 
entire tumor as a whole and may not fully capture the ex-
tent of intratumoral heterogeneity. This might explain the 
fact that texture gray-level co-occurrence matrix-based fea-
tures calculated from the whole tumor did not consistently 
enable prediction of RFS in our study. Another distinction 
from traditional radiomic studies is that they typically re-
quire feature selection and then construct a model based on 
selected informative features. In contrast, the proposed net-
work stratification approach uses all relevant information to 
make a prediction by analyzing the pair-wise similarity pat-
tern between patients. This approach may be less prone to the 
risk of overfitting as well as more robust to small training size. 
These technical advances contributed to the reproducible re-
sults demonstrated in our study.

One limitation of our study is the use of a particular im-
aging protocol for DCE MR imaging that is not universal in 
clinical practice. Technical factors such as field strength, repeti-
tion time, echo time, and flip angle may influence the results 
despite efforts to normalize imaging. Therefore, additional 
studies are needed to confirm and validate our findings. An-
other limitation is the small size of the pCR subgroup in the 
validation cohort. Finally, adjuvant therapies for patients in the 
discovery cohort were not documented, and our study largely 
preceded the use of trastuzumab for HER2-positive breast can-
cer. Whether our findings still hold in the current era of mo-
lecularly targeted therapies remains to be investigated.

In our study, we focused on clinically used diagnostic DCE 
MR imaging. Future work could incorporate state-of-the-art 
DCE MR imaging techniques with higher temporal and spatial 
resolution, or additional modalities such as diffusion and meta-
bolic imaging (38–40), in defining intratumoral subregions. 
This might lead to the discovery of more granular imaging 

heterogeneity can provide complementary prognostic informa-
tion to existing risk predictors.

To identify prognostic imaging markers in breast cancer, Hyl-
ton et al (3) defined functional tumor volume through aggre-
gating tumor voxels with percentage enhancement greater than 
0.7, and they found that only change in this functional tumor 
volume from baseline to during neoadjuvant chemotherapy was 
associated with RFS in the I-SPY 1 TRIAL cohort, while the 
functional tumor volume at baseline alone was not. In our study, 
we discovered three intratumoral subregions with poor, moder-
ate, and marked perfusion at DCE MR imaging and showed 
that spatial tumor heterogeneity characterized by multiregional 
image features at baseline could be used to stratify patients for 
RFS in two independent cohorts. Our data support that imag-
ing heterogeneity could provide additional value to traditional 
volume-based imaging metrics (27).

It has been recognized that tumors demonstrate regional vari-
ations in genotypes and phenotypes owing to clonal evolution 
(28,29). Image-based intratumoral partitioning could reveal ag-
gressive subregions that are important for determining prognosis 
and treatment response (17,30–34). In this work, we found that 
tumors in the high-recurrence risk group had a larger volume of 
the poorly perfused subregion as well as a larger volume of inter-
action between poorly and moderately perfused subregions and 
surrounding parenchyma. These imaging patterns of aggressive 
tumors could be driven by a hypoxic microenvironment within 
the tumor and at the invasive margin. Our finding is consistent 
with the well-established role of hypoxia in breast cancer pro-
gression, metastasis, and patient outcomes (35–37).

There are several key features that differentiate our work 
from previous radiomic studies. First and foremost, we ex-
plicitly account for spatial heterogeneity by dividing the tu-
mor into multiple subregions and analyzing each subregion 
separately as well as their mutual relationships through a 

Figure 4: A, Sparse graph with seven neighbors shows 60 patients in discovery cohort after proposed network analysis. 
Two clusters were identified, with 21 patients in one cluster labeled in red and remaining 39 patients in another cluster labeled 
in green. Each vertex represents an individual patient, and its size is proportional to tumor volume. B, Kaplan-Meier curves of 
recurrence-free survival stratified according to the two patient clusters. Coloring is consistent with patient cluster in A.
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independent predictor of RFS. We envision that the proposed 
methodology to define and characterize intratumoral spatial het-
erogeneity will be applicable to other cancer types.
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habitats and refined measurement of spatial heterogeneity. 
Combining intratumoral with peritumoral imaging character-
istics may help improve prediction of pCR and RFS (41,42). 
In addition, multiple serial images (3,27,43) could help deter-
mine whether the longitudinal change of intratumoral imaging 
heterogeneity might better correlate with treatment response 
or disease progression. It may be of interest for future studies to 
combine imaging with pathologic or molecular data to under-
stand the underlying biologic basis of the tumor heterogeneity 
captured by multiregional image features (44,45).

In summary, we discovered and validated three intratumoral 
subregions with distinct perfusion characteristics in breast can-
cer. In addition to clinical-pathologic and genomic factors, 
imaging heterogeneity defined by multiregional features is an 

Figure 5: Kaplan-Meier curves of recurrence-free survival in validation cohort. Patients are stratified according to propagated patient cluster 
labels in discovery cohort (Fig 3, A). Plots are for, A, entire validation cohort (Investigation of Serial Studies to Predict Your Therapeutic Response 
with Imaging and Molecular Analysis), B, estrogen receptor–positive subgroup, C, human epidermal growth factor receptor type 2–positive 
subgroup, and, D, subgroup showing no pathologic complete response. HR = hazard ratio.
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Figure 6: Intratumor partition maps in two breast cancer patients. The proposed analysis pipeline accurately 
predicted their recurrence risk. High-perfusion subregion is in red, with intermediate perfusion in green and low 
perfusion in blue. ER = estrogen receptor, HER2 = human epidermal growth factor receptor type 2, LN = lymph 
node, MSI = multiregional spatial interaction.

Table 2: Univariable and Multivariable Analyses of the Proposed Imaging Biomarker and Clinical Risk Factors for 
Predicting Recurrence-free Survival in the Validation Cohort

Predictor

Univariable Analysis Multivariable Analysis*

HR 95% CI P Value HR 95% CI P Value
Imaging biomarker† 2.89 1.44, 5.79 .003‡ 3.42 1.55, 7.57 .002‡

Age 0.88 0.67, 1.17 .384 0.79 0.58, 1.07 .121
ER 0.59 0.34, 1.05 .072 0.44 0.18, 1.09 .075
PR 0.76 0.43, 1.36 .359 1.45 0.58, 3.63 .428
HER2 1.47 0.82, 2.65 .200 2.39 1.26, 4.51 .007‡

Tumor volume 1.09 0.87, 1.37 0456 0.99 0.74, 1.32 .942
pCR§ 0.49 0.20, 1.00 .050‡ 0.34 0.15, 0.79 .012‡

Note.—CI = confidence interval, ER = estrogen receptor, HER2 = human epidermal growth factor receptor type 2, HR = hazard ratio, 
pCR = pathologic complete response, PR = progesterone receptor.
* Nine patients were excluded because values were missing from some variables.
† Defined by propagation of patient labels from the discovery cohort; low-risk group was coded as 0, high-risk group as 1.
‡ P , .05.
§ Pathologic complete response was coded as 1, everything else as 0.
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