Precoding and Interpolation for Spatial Multiplexing MIMO-OFDM with Limited Feedback

Prof. Robert W. Heath Jr.
Joint work with Prof. David Love* and Dr. Jihoon Choi**

Wireless Networking and Communications Group (WNCG)
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
July 30, 2004
* Purdue University ** Samsung Electronics
Outline

- Introduction - Closed-loop MIMO communication
- Quantized precoding for spatial multiplexing
- Precoding and interpolation for MIMO-OFDM
- Simulation results
- Conclusions and ongoing work
Introduction

- Closed loop vs. open loop MIMO
 - Increased throughput
 - Intelligently share resources among multiple users
 - Simplify decoding algorithms
 - More easily obtain diversity

- Main challenge
 - Ensuring the transmitter is informed about the channel
Linear Precoding w/ Spatial Mux

- Transmit $M < M_t$ streams
 - Transmit precoder F determined based on H
 - Linear receiver applied to effective channel HF
 \[\hat{s} = \text{decision}(Gy) \]
 - Transmitter must be informed about H (or F)

\[y = HF s + v \]
Background

- Prior work on precoding
 - MMSE precoding [Sampath et. al.][Scaglione et. al]
 - ML based precoding [Berder et. al]
 - Precoding for MIMO-OFDM [Zhou et. al.]
- Antenna subset selection (like precoding)
 - Early work [Gore et. al.][Molisch et. al.]
 - With linear receivers [Heath et. al.][Narasimhan]
- Limited feedback precoding
 - Quantized precoding [Love & Heath]
 - Multi-mode antenna selection [Heath & Love]
Precoding in MIMO-OFDM w/ SM

Per tone model: \[y(k) = H(k)F(k)s(k) + v(k) \]
Problem Summary

- Precoding in MIMO-OFDM requires $\{F(n)\}^{N-1}_{n=0}$
 - Feedback requirements \propto Number of subcarriers

- How can we limit the feedback for each matrix?
 - Leverage limited feedback precoding [Love & Heath 2003]

- How can we reduce the number of vectors fed back?
 - Exploit correlation between precoding matrices
 - Send back fraction of vectors and use “smart” interpolation
Limited Feedback Precoding

Consider unitary precoders
\\[F(k)^H F(k) = \frac{1}{M} I_M \]

Restrict \(F(k) \) to lie in finite codebook

\[F = \{ F_1, F_2, \ldots, F_C \} \]
Selection of Codewords

- Choose based on desired performance metric
 - Example: Mean squared error
 \[MSE(F(k), H(k)) = \frac{E_s}{M_s} \{ I_{M_s} + \frac{E_s}{M_s N_0} F^H(k) H^H(k) H(k) F(k) \}^{-1} \]
 - Example: Mutual information
 \[C(F(k), H(k)) = \log_2 \det \left[I_{M_s} + \frac{E_s}{M_s N_0} F^H(k) H^H(k) H(k) F(k) \right] \]
- Quantized precoder requires finite search
 \[F(k) = \arg \min_{F_i \in \mathcal{F}} \det (MSE(F_i, H(k))) \quad F(k) = \arg \min_{F_i \in \mathcal{F}} \text{tr} (MSE(F_i, H(k))) \]
 \[F(k) = \arg \max_{F_i \in \mathcal{F}} C(F_i, H(k)) \]
Selection of Codebook

- Use Grassmannian precoding [Love & Heath]
 - Codebooks are optimal packings in $G(M_t, M)$
 - Distance measure depends on precoding criteria
 - Projection 2-norm for MMSE w/ trace
 - Fubini-Study distance for capacity, MMSE w/ determinant
 - Minimizes bound on avg distor. in Rayleigh channels

$$\mathcal{F} = \{F_1, F_2, \ldots, F_C\}$$

Set of subspaces

Codebooks available at
http://www.ece.utexas.edu/~rheath/research/mimo/lf/
Reducing Feedback w/ Clustering

- Exploit coherence bandwidth of channel
 - Use every K^{th} precoding matrix
 - Use same precoding matrix per cluster (ex $K=5$)

- Disadvantages
 - Performance degradation at cluster boundary
Interpolation of Precoding Mtxs

- Subsampling & interpolation

![Diagram showing interpolation of precoding matrices with subcarriers and feedback points labeled as $F(0)$, $F(K)$, $F(2K)$, etc.]

- Interpolate(?) precoding matrices
Interpolation Challenges 1/2

- Problem: Must respect orthogonality constraints
 - Recall columns of $F(k)$ should be orthogonal

$$F(k)^H F(k) = \frac{1}{M} I_M$$

\Rightarrow Noneuclidean Interpolation

- Proposed solution: (inspired by SLERP [Watson ‘83])
 - Simple 1st order linear interpolation

$$Z(lK + k) = (1 - c_k)F(lK + 1) + c_kF((l + 1)K + 1)$$

$$\hat{F}(lK + k; \theta) = Z(lK + k)\{Z^H (lK + k)Z(lK + k)\}^{-\frac{1}{2}}$$

Enforces orthogonal column constraint

$$c_k = (k - 1)/K$$
Interpolation Challenges 2/2

- **Problem:** Nonuniqueness of precoders
 - Performance invariant to right x by orthogonal matrix
 - Example: \(\text{MSE}(F(k), H(k)) = \text{MSE}(F(k)Q, H(k)) \)
 - Nonuniqueness results in interpolation problems

- **Proposed solution:** “derotated interpolation”

\[
Z(lK + k) = (1 - c_k)F(lK + 1) + c_kF((l + 1)K + 1)Q_l
\]

\(Q_l \) is a M x M unitary matrix
Derotation Optimization

- Optimize rotation over a finite set
 \[Q = \{ Q_1, Q_2, \ldots, Q_{2^P} \} \]
 - Enables limited feedback implementation
 - Use a “uniform” set of unitary matrices

- Example: MMSE with trace solves

\[
Q_l = \arg \min_{\tilde{Q} \in Q} \max_{k=0\ldots K-1} \text{tr} \left(MSE \left(\hat{F}(lK + k; \tilde{Q}) \right) \right)
\]
Proposed Interpolation Algorithm

- Step 1: Quantize \(\{ F(lK) \}_{l=0}^{\lceil N/K \rceil - 1} \)
- Step 2: Optimize \(\{ Q_l \}_{l=0}^{\lceil N/K \rceil - 1} \)

- Feedback bits required
 - Precoding matrices \(\lceil N/K \rceil \log_2 |\mathcal{F}| \)
 - Derotation matrices \(\lceil N/K \rceil \log_2 |\mathcal{Q}| \)
IEEE 802.11n Example Calculation

- Parameters
 - 4 TX antennas
 - 2 RX antennas
 - 2 streams
 - 64 tones
 - K=8 (take every 8th precoding mtx)

- Use 6-bit codebook [Love & Heath]

- Use 2-bit codebook \(\left\{ \pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \pm \begin{bmatrix} 0 & j \\ j & 0 \end{bmatrix} \right\} \)

- Feedback required 8*6 + 8*2 = 64 bits
Quantized Beamforming/Interpolation

4TX, 2RX, 1 streams
N=64, P=2, K=8, L=6
Rayleigh channel
MMSE receiver
No coding
6 bit precoder codebook F
2 bits per phase

Feedback per channel
Ideal: $6N=384$ bits quantization
Selection diversity: $2N=128$ bits
Proposed: $6N/K+2N/K=64$ bits
Clustered: $6N/K=48$ bits
Orthogonal STBC = 0 bits
Quantized Beamforming/Interpolation

4TX, 2RX, 1 streams
N=64, P=2, K=8, L=6
Rayleigh channel
MMSE receiver
Rate 1/2 CC w/ interleaving
6 bit precoder codebook F
2 bits per phase

Feedback per channel
Ideal: 6N=384 bits quantization
Selection diversity: 2N=128 bit
Proposed: 6N/K+2N/K=\textbf{64 bits}
Clustered: 6N/K = 48 bits
Orthogonal STBC = 0 bits
Quantized Precoding/Interpolation

4TX, 2RX, 2 streams
N=64, P=2, K=8, L=6
Rayleigh channel
MMSE receiver
No coding
6 bit precoder codebook F
2 bit rotation codebook Q

Feedback per channel
384 bits quantization
166 bits antenna selection
64 bits proposed
48 bits clustered
Mutual Information Comparison

4TX, 2RX, 2 streams
N=64, P=2, K=8, L=6
Rayleigh channel
MMSE receiver
No coding
6 bit precoder codebook \(F \)
2 bit rotation codebook \(Q \)

Feedback per channel
384 bits quantization
166 bits antenna selection
64 bits proposed
48 bits clustered
Conclusions

- Limited feedback precoding for MIMO-OFDM
 - Quantize and decimate precoders
 - Use smart interpolation to fill in gaps
 - Provides good diversity and capacity performance

- On-going work
 - Performance in correlated channels
 - Performance with coding and interleaving
 - Better clustering techniques
 - Extensions to multi-mode precoding
Further Reading

Overview

Narrowband Limited Feedback Techniques

Limited Feedback for MIMO-OFDM