Space-Time Propagation: MIMO Channel Models and Key Challenges

Claude Oestges

Microwave Laboratory, Université catholique de Louvain, Belgium
Acknowledgments

Many thanks to

- Arogyaswami Paulraj ("Paul")
- Smart Antenna Research Group (Stanford University)
- Vinko Erceg (Zyray Wireless)
- Andy Molisch (COST 273, TU Lund)
- Bruno Clerckx and Danielle Vanhoenacker-Janvier (UCL)
- Belgian NSF
Multi-dimensional outline

- Motivation and introduction
- MIMO channel modeling
 - Physical channel models
 - Non physical models
- A few challenges
 - Use of multiple polarizations
 - Antenna correlations vs. cross-channel correlations
 - Key hole effect
Motivation

- **Why do we need channel models?**
 - Prediction models for network planning
 - Site-specific
 - Antenna-dependent
 - Excellent accuracy
 - Standard models for system design and testing of signal processing algorithms
 - Site- and antenna-independent
 - Reduced accuracy
Introduction

- MIMO channels

- The channel is represented by a $M_R \times M_T$ matrix H
 - Need for modeling both individual matrix elements and relationships (correlations) between elements
MIMO channel models

- **Physical channel models**
 - Ray-tracing
 - Physical-statistical methods
 - Geometry-based stochastic models
 - (Double-)directional channel models (D)DCM

- **Non physical channel models**
 - Channel covariance matrix (full model)
 - Simplified or specific models
Ray-tracing techniques

- **Model features**
 - Buildings are represented by blocks with given material characteristics
 - Path-loss, shadowing and multipaths are implicitly modelled together
 - Geometrical optics: each mechanism is ray-modelled using Fresnel theory and Uniform Theory of Diffraction (UTD)

\[
H_{ij}(\omega, T \rightarrow R) = \sum_m F_m(s, s') e^{-jks'} \cdot g_m^R \cdot Q_m \cdot g_m^E K_m(s, s') e^{-jks} + \ldots
\]

- antenna gain and polarisation
- complex dyadic coefficient
- spreading factor
Physical-statistical methods (I)

- Ray-tracing is highly site-specific
- More general model obtained by combining
 - A physical model, i.e. electromagnetic relationships between environmental and propagation variables
 - Statistical distributions of the environmental parameters

- Advantages
 - Wide parameter range validity (frequency, etc.)
 - Reduced computational cost thanks to pre-calculation
 - High statistical accuracy
Physical-statistical methods (II)

- The link between physical and environmental parameters is established by applying a ray-tracing tool in a canonical area.
Geometry-based models (I)

- **Original approach**
 - Locate point scatterers according to a certain PDF (one-ring, two-ring, elliptical, Von Mises, etc.)
 - Single scattering only (but can be extended)
 - No range dependency (large-scale variations ?)
 - No direct relationship with TDL models
 - Easy implementation
Geometry-based models (II)

- **Proposed approach**
 - Derive a **geometrical** distribution of scatterers in order to match a given uni-polarized power-delay profile at a reference (maximal) range
 - **Scale** the scatterer distribution to any (smaller) range
 - Integrate fixed and mobile channel **dynamics** (appearance and disappearance of scatterers)
 - Integrate **dual-polarization** modeling (from ray-tracing results)
 - Combine with directional **antenna** patterns
Geometrical interpretation

- **Local scattering ratio** = $\Sigma \star / [\Sigma \star + \Sigma \star]$
- determined by Tx and Rx angle-spreads
Multi-polarized channels

- For dual-polarized channels
 - The reflection coefficient is a matrix: Γ_{ij} is the reflection coefficient for incident wave polarized as the j^{th} Tx antenna and reflected wave polarized as the i^{th} Rx antenna

 $$\Rightarrow \text{Scattering XPD}$$

 (affecting scattered contribution only)

- Antennas are not ideal

 $$\Rightarrow \text{Antenna XPD}$$

 (affecting both LOS and scattered paths)
Scattering and antenna XPD

- Scattering XPD

- Antenna XPD \(= 10 \log_{10}(1/\chi_a^2) \)

\[V \propto E_{pol} + \chi_a \cdot E_{Xpol} \]
Dual-polarization modeling (I)

- **Scattered component**
 - For HV scheme, infer matrix reflection coefficient from electromagnetic and physical results
 \[
 \begin{bmatrix}
 \Gamma_{vv} & \Gamma_{vh} \\
 \Gamma_{hv} & \Gamma_{hh}
 \end{bmatrix}
 \]
 - Any orthogonal scheme is obtained by rotation of this matrix
 - Combine with antenna XPD matrix \(\mathbf{C} \Rightarrow \Omega = \mathbf{C} \cdot \Gamma \)
Dual-polarization modeling (II)

- **HV-scheme matrix reflection coefficient**
 - Γ_{ww}: lognormal squared-amplitude, uniform phase
 - $\Gamma_{hh} = \Gamma_{ww} \cdot \frac{\exp(-j\psi)}{\beta}$
 - Centered-Gaussian phase-shift with low variance
 - $\Gamma_{hv} = \Gamma_{ww} \cdot \frac{\exp(-j\phi)}{\chi}$
 - Scattering XPD (logN, ~ 15 dB)
 - $\Gamma_{vh} = \Gamma_{hh} \cdot \frac{\exp(-j\phi)}{\chi}$
 - Uniform phase shift
 - β, χ, ψ, ϕ: parameters

H vs. V gain imbalance (logN, ~ 8 dB)
Dominant (Ricean) component

- Mix of LOS and coherent scattering on the link axis
- LOS only affected by antenna XPD (matrix \mathbf{C})
- Scattered contribution derived as before (but accounting for a coherence constraint)

$$H_{c, \text{nm}} \propto \sqrt{1 - \alpha} \ C_{\text{nm}} + \sqrt{\alpha} \ \Omega'_{\text{nm}}$$

Shadow fading figure
- = ratio of scattered vs. total power in the coherent dominant component
Double-directional (DD) models (I)

- **Directional models**
 - Originally, SIMO or MISO

- **Example: COST 259**
 - Radio environment (TU, etc.)
 - Large-scale effects (dynamic behavior of clusters, shadowing, etc.)
 - Mixed geometrical-stochastic approach
 - Concept of far and local clusters
 - Visibility regions
 - Small-scale effects: fading (multipaths)
Double-directional (DD) models (II)

- DD channel models
 - Truly MIMO
 - Related to physical propagation mechanisms
 - Finite number of scatterers easy to implement
 - Finite energy assumption is implicit
 - Correlation between DoA, DoD and Doppler implicit
Double-directional (DD) models (III)

- Example: COST 273 (modeling in progress)
 - Mixed DD-non physical approach
 - Based on COST 259, but extended to multiple antennas at the MS ⇒ DoA and DoD joint distributions, DoA and DoD related by means of a coupling matrix
 - Parameterized model based on measurement data in different types of environments
MIMO channel models

- Physical channel models
 - Ray-tracing
 - Physical-statistical methods
 - Geometry-based stochastic models
 - (Double-)directional models

- Non physical channel models
 - Channel covariance matrix (full model)
 - Simplified or specific models
MIMO channel covariance matrix

- **General model (Rayleigh)**
 - \mathbf{R} is semi-positive definite
 - Usual simplification: $r_1 = r_2$, $t_1 = t_2$

 \[
 \text{vec}(\mathbf{H}) = \mathbf{R}^{1/2} \text{vec}(\mathbf{H}_w)
 \]

- **Correlations**
 - Antenna correlations (r and t) are well-known in MIMO studies (detrimental to capacity/performance)
 - **Cross-channel correlations** (e.g. s_1 and s_2 in 2 x 2 channels) are less used
Dual-polarized covariance matrix

- **Channel matrix in dual-polarization schemes**
 - Hadamard product of the space-related matrix H_s (unipolarized antennas) and the polarization-related matrix H_p (co-located antennas)
 - For HV/HV scheme:
 \[
 H_p \approx \begin{bmatrix}
 1 & \chi \beta e^{j\phi} \\
 \chi e^{j\phi} & \beta
 \end{bmatrix}
 \]
 - HV gain imbalance
 - Scattering XPD
 - Each correlation is the product of the usual space-related correlation (r, t, s_1 or s_2) and a polarization-related correlation ($\rho, \vartheta, \sigma_1$ or σ_2)
Kronecker model

- **Independence between DoAs and DoDs**
 - Example in 2 x 2 channels: $s_1 = rt$ and $s_2 = r^* t$
 - Rx and Tx correlation matrices (easy physical interpretation)

\[
H = R_{R}^{1/2} H_{w} R_{T}^{1/2}
\]

- **Validity**
 - Confirmed by some measurements (Yu et al., 2002)
 - Questioned by recent measurement results (Oezcelik et al., 2003)
Weichselberger model

- Joint correlation properties at Rx and Tx
 - DoA and DoD relationship is preserved
 - 3 components
 - Spatial eigenbasis of Rx and Tx correlation matrices U_{Rx} and U_{Tx}
 - Power coupling matrix Ω ($\tilde{\Omega}$ is the element-wise square root)

 \[H = U_R \left(\tilde{\Omega} \circ H_w \right) U_T^T \]

- Structure of Ω strongly related to the radio environment
 - If Ω is diagonal, each single DoD is linked to a single DoA
 - If Ω is of rank one, the model reduces to the Kronecker model
COST 273 model

- COST 273 model (continued)
 - The full COST 273 model should adequately combine a geometry-based model (DoAs and DoDs at each end) and a non physical model (direction-coupling matrix)
 - Capable of representing uniquely-coupled modes (single and multiple –scattering) and Kronecker-structured diffuse scattering modes
 - Model parameters
 - Number of ones in each row of the coupling matrix
 - Ratio of most powerful “1” w.r.t. the other “1s”
Ricean channels

- **Ricean fading**
 - Existence of a dominant component (often LOS)
 - K-factor (K) = ratio of dominant (fixed, coherent) component to fading component
 - Rayleigh channel is combined with Ricean matrix H_{Rice}

- **General model**
 \[
 H = \sqrt{\frac{K}{K+1}} H_{Rice} + \sqrt{\frac{1}{K+1}} H_{Ray}
 \]
 - Elements of H_{Rice} have unit power, but phase factors depending on array geometry and orientation
Keyhole effect

- **What is it?**
 - Correlation matrices at both link ends have high rank
 - Multipaths are forced to travel through a narrow keyhole, so the rank of the instantaneous channel matrix is low
 - Keyhole effect occurs very seldom (apparently …)

- **Gesbert model**
 \[
 H = H_R \cdot R_{Keyhole}^{1/2} H_T
 \]
 - Both \(H_T \) and \(H_R \) have low correlation matrix (\(\to \) i.i.d.)
 - The channel is double-Rayleigh distributed
Channel model and mutual information (in Rayleigh fading)

- Exact closed-form of mutual information?
- Upper-bound: inverse \(\log_2 \) and \(E \)

\[
\overline{C} \leq \log_2 \kappa = \log_2 E \left\{ \det \left[I_{M_R} + \gamma HH^H \right] \right\}
\]

- Application to 2 x 2 schemes

\[
\kappa = 1 + 4\gamma + \gamma^2 \left[1 + |s_1|^2 + 1 + |s_2|^2 - 2|t|^2 - 2|t|^2 \right]
\]

- Cross-channel correlations \(s_k \) play a symmetrical **beneficial** role on ergodic capacity (at least for 2 x M or M x 2 schemes)
- Generally not be true for outage capacity
Impact of cross-channel correlations (I)

- For equal average energy, **actual capacity is not always maximized by i.i.d. fading**

One-ring model
- Range-to-ring-radius ratio = 30
- Broadside arrays
- $d_R = 0.38 \lambda$
- $d_T = 30 \ d_R$
- SNR = 30 dB
Impact of cross-channel correlations (II)

- Kronecker model will under-estimate capacity

One-ring model
- Range-to-ring-radius ratio = 30
- Broadside arrays
- $d_R = 0.38 \lambda$
- $d_T = 30 \, d_R$
- SNR = 30 dB
Impact of cross-channel correlations (II)

- Kronecker model will under-estimate capacity

One-ring model (a.k.a. Jakes or Lee or Abdi et al. and used by Shiu et al.) has NO Kronecker structure (not at all !!!)

- $d_R = 0.38 \lambda$
- $d_T = 30 \ d_R$
- SNR = 30 dB
Diagonal channels

- Let us consider M x M channels with:
 - All antenna correlations = 0
 - Maximum number of cross-channel correlations = 1
 - Example of 4 x 4 channel

- For these channels, the ergodic mutual information is **exactly linear** in M

\[
\bar{C} = M \cdot \log_2 e \cdot \exp\left(\frac{1}{\gamma}\right) E_1\left(\frac{1}{\gamma}\right) > \bar{C}_{\text{iid}}(M)
\]
Summary (I)

- MIMO channel models are essential for system design and simulation
 - Physical models
 - Independent of antenna configuration
 - Fully physical models (ray-tracing, etc.)
 - Prohibitive computation time
 - Site-specific
 - Parameterized models (e.g. DD models)
 - Need to take into account different propagation methods
 - For parameterized models, derivation from measured data might not be straightforward (parameter estimation methods, etc.)
Summary (II)

• Non physical models
 • Directly obtained from measurements (including antennas)
 • Manipulate with extra care (can lead to artifacts)
 • Kronecker model is oversimplified (most geometry-based models have NO Kronecker structure)
 • Diagonal channels: better than i.i.d. ?
Summary (III)

Challenges

- Polarization modeling
 - Experimental validation required
 - Optimization of multi-polarized (larger than 2 x 2) systems
- Keyholes: where/when do they appear in real-world channels?
- What is an “ideal” MIMO channel?