Rate region frontiers for n–user interference channel with interference as noise

Mohamad Charafeddine, Aydin Sezgin, Arogyaswami Paulraj

Stanford University

Sept 28th, 2007/ Allerton
Introduction: the big picture

Treating the interference as additive noise, what rates could be achieved?
Introduction: why the interference channel?

- Transmitter nodes are closer to each other.
- System performance is more interference-limited.

Cellular

n-nodes ad hoc network
Outline

| 1 | Introduction |

Rate region frontiers for n–user interference chan. Stanford University
Outline

1. Introduction

2. n–user Achievable Rate Region
Outline

1. Introduction

2. n–user Achievable Rate Region

3. Characteristics of 2-user Rate Region Frontiers
Outline

1. Introduction
2. n-user Achievable Rate Region
3. Characteristics of 2-user Rate Region Frontiers
4. Conclusion
Introduction: literature review

- The capacity region of a 2-user interference channel has been an open problem for about 30 years [Sato77,78].
- Information-theoretic bounds through achievable rate regions have been proposed, most famously with the Han-Kobayashi approach [HK81].
- The capacity of the Gaussian interference channel under strong interference has been found in [Sato 81].
- Recent results on the 2-user interference channel to within one bit of capacity have been shown in [EtkinTse07].

- Our work treats the n-user case with interference as noise + dimension orthogonalization introduced at a certain point.

- **Cases when interference is treated as noise:**
 - low complexity transceivers
 - low power, low cost
 - mostly assumed in cellular and ad hoc networks
Introduction: assumptions and objectives

Assumptions:
- no cooperation at the transmit nor at the receive side
- SISO flat channel

Objectives:
- Characterize the achievable rate region when treating interference as noise for the n-user case
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>(n)-user Achievable Rate Region</td>
</tr>
<tr>
<td></td>
<td>- 2-user Interference Channel Frontiers</td>
</tr>
<tr>
<td></td>
<td>- 3-user Interference Channel Frontiers</td>
</tr>
<tr>
<td></td>
<td>- (n)-user Interference Channel Frontiers</td>
</tr>
<tr>
<td>3</td>
<td>Characteristics of 2-user Rate Region Frontiers</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
2-user Interference Channel

System setup

\[a = \frac{g_{1,1}}{\sigma_n^2}, \quad b = \frac{g_{1,2}}{\sigma_n^2}, \quad d = \frac{g_{2,1}}{\sigma_n^2}, \quad c = \frac{g_{2,2}}{\sigma_n^2}. \]

- No assumptions on \(a, b, c \) or \(d \)
- \(P_i \leq P_{\text{max}}, \ i = 1, 2 \)

Achievable rates:

\[
C_1(P_1, P_2) = \log_2 \left(1 + \frac{aP_1}{1+bP_2} \right),
\]
\[
C_2(P_1, P_2) = \log_2 \left(1 + \frac{cP_2}{1+dP_1} \right).
\]
Set $C_1 = R$, then $C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{aP_1}{1 + bP_2} \right)$.

Establish a relation between P_1 & P_2 such as constant rate $C_1 = R$

$P_1 = \frac{1}{a} (1 + bP_2)(2^R - 1)$. → Express $C_2(P_1, P_2)$ in function of P_2 only

$$C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a} (1 + bP_2)(2^R - 1)} \right).$$
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1+bP_2)(2^R-1)} \right) \]
monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a *unique* \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a *unique* \(P_1^* \) that achieves \(C_1 = R \).
- \(\Rightarrow \) for a unique rate tuple, there is a unique power tuple.

Introduce the *Potential Line* notation \(\Phi(\cdot, P_{\max}) \) to denote \(P_1 \) sweeps its full range and \(P_2 \) is held at \(P_{\max} \).

Based on uniqueness property, potential lines along a certain dimension are non-touching.

i.e. \(\Phi(\cdot, P_2) \) & \(\Phi(\cdot, P_2') \) do not intersect if \(P_2 \neq P_2' \)
Rate region frontier formulation

Rate region frontier formulated as:

\[\arg \max_{P_2} C_2(P_2) \]

subject to

\[C_1(P_1, P_2) = R \]

\[P_i \leq P_{\text{max}} \quad i = 1, 2. \]

\(R \) is swept over the full range of \(C_1 \), i.e.

\[0 \leq R \leq C_1(P_{\text{max}}, 0) \]

\[0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}}) \]

\[C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0) \]

Rate region frontiers for \(n \)-user interference channel.
Rate region frontier formulation: \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}}) \)

As \(C_2(P_2) \) is monotonically increasing in \(P_2 \), then \(P_2 = P_{\text{max}} \) is attainable for any of the range \(R \leq C_1(P_{\text{max}}, P_{\text{max}}) \).

Therefore for \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}}) \):
\[
\arg \max_{P_2} C_2(P_2) = P_{\text{max}}.
\]

Hence expressing \(C_2 \) in function of \(C_1 = R \) with \(P_2 = P_{\text{max}} \), we obtain the log-defined frontier equation \(\Phi(:, P_{\text{max}}) \), denoted \(\mathcal{F}_2 \):
\[
C_2(C_1) = \log_2 \left(1 + \frac{c P_{\text{max}}}{1 + \frac{d}{a}(1 + b P_{\text{max}})(2^{C_1} - 1)} \right).
\]
2-user Channel

Rate region formulation: \((2)\) \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\)

By symmetry of previous result, for a constant \(C_2 = \tilde{R}\), we find that the frontier for that range of \(C_1\) and \(\tilde{R}\) is achieved when \(P_1 = P_{\text{max}}\).

- Therefore for \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\), the values of \(C_1\) at the frontier are: \(C_1(P_{\text{max}}, P_2) = \log_2 \left(1 + \frac{aP_{\text{max}}}{1 + bP_2} \right) = R\). Then, \(P_2 = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1 \right)\). \(\rightarrow\) \(\arg\max_{P_2} C_2(P_2) = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1 \right)\).

- Hence we obtain a log-defined frontier equation \(\Phi(P_{\text{max}}, :)\), \(\mathcal{F}_1\):

\[
C_2(C_1) = \log_2 \left(1 + \frac{c}{b} \frac{aP_{\text{max}} - (2^{C_1} - 1)}{(2^{C_1} - 1)(1 + dP_{\text{max}})} \right)
\]
Rate region formulation: Summary

The rate region for the 2-user interference channel is:

\[\mathcal{F} = \text{Convex Hull}\{\mathcal{F}_1 \cup \mathcal{F}_2\} \]
Outline

1. Introduction
2. \(n \)-user Achievable Rate Region
 - 2-user Interference Channel Frontiers
 - 3-user Interference Channel Frontiers
 - \(n \)-user Interference Channel Frontiers
3. Characteristics of 2-user Rate Region Frontiers
4. Conclusion
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- $P_3 = 0$ the same results of 2-user case apply. The frontier is the red potential line $\Phi(:, P_{\text{max}}, 0)$ denoted Φ_{AB}
- when P_3 increases, how is the effect traced in the rate region?
3-user channel: Effect of increasing P_3 from 0 to P_{max}

For C_1 & C_2, P_3 dimension effect is lumped as additional noise

Potential lines $\Phi(\cdot, P_{\text{max}}, P_3)$ are monotonically increasing with P_3 in the C_3 dimension, forming a surface frontier $\mathcal{F}_2 = \Phi(\cdot, P_{\text{max}}, \cdot)$

By symmetry, we obtain the rate region frontier for the 3-user case:

$$\mathcal{F} = \text{Convex Hull}\{\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3\}$$

with $\mathcal{F}_1 = \Phi(P_{\text{max}}, \cdot, \cdot)$, $\mathcal{F}_2 = \Phi(\cdot, P_{\text{max}}, \cdot)$, and $\mathcal{F}_3 = \Phi(\cdot, \cdot, P_{\text{max}})$.

Outline

1. Introduction

2. n-user Achievable Rate Region
 - 2-user Interference Channel Frontiers
 - 3-user Interference Channel Frontiers
 - n-user Interference Channel Frontiers

3. Characteristics of 2-user Rate Region Frontiers

4. Conclusion
n-user generalization

- The additional power effect of P_n can be lumped into the noise term of the other $(n - 1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.
- The frontier on C_n is monotonically increasing in P_n.
- Invoking symmetry we can generalize over all rate ranges.

Theorem

The achievable rate region frontier for the n–user interference channel is:

$$
\mathcal{F} = \text{Convex Hull}\{\bigcup_{i=1}^{n} \mathcal{F}_i\}
$$

where \mathcal{F}_i is a hyper-surface of $n - 1$ dimensions, characterized by holding the i^{th} transmit power at the maximum power P_{\max}.

Remark: Results also hold for different thermal noise levels, or different maximum power levels.
Outline

1. Introduction
2. \(n \)-user Achievable Rate Region
3. Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel
4. Conclusion
Recall the frontiers equation for the 2-user case:

- $\Phi(\cdot, P_{max}), \mathcal{F}_2$:
 \[
 C_2(C_1) = \log_2 \left(1 + \frac{c P_{max}}{1 + \frac{d}{a}(1 + b P_{max})(2^{c_1} - 1)} \right).
 \]

- $\Phi(P_{max}, \cdot), \mathcal{F}_1$:
 \[
 C_2(C_1) = \log_2 \left(1 + \frac{\frac{c}{b} \left(a P_{max} - (2^{c_1} - 1) \right)}{(2^{c_1} - 1)(1 + d P_{max})} \right).
 \]

- When would the frontiers be convex or concave?
- Can they be neither, i.e. exhibiting a non-stationary inflection point?
Convexity or Concavity of the Frontiers

We focus on one frontier by symmetry, \mathcal{F}_2, we study its second derivative.

We introduce a quantity Q_1 defined as:

$$Q_1 = \Re\left(\sqrt{(a - \theta)(a - \theta + acP_{\text{max}})}\right) - \theta$$

where $\theta = d + dbP_{\text{max}}$

→ where it suffices to study $\text{sign}(P_1 - Q_1)$, as Q_1 follows such that

$$\text{sign}\left(\frac{\partial^2 \mathcal{F}_2}{\partial c_1^2}\right) = \text{sign}(P_1 - Q_1)$$
Convexity or Concavity of the Frontiers

- $Q_1 \leq 0$: F_2 is convex, as $(P_1 - Q_1) \geq 0$ for all range of P_1
- $Q_1 \geq P_{\text{max}}$: F_2 is concave, as $(P_1 - Q_1) \leq 0$ for all range of P_1
- $0 \leq Q_1 \leq P_{\text{max}}$: F_2 has a non-stationary inflection point when $P_1 = Q_1$
 - it follows that the convexity of the frontier follows from the point $\Phi(P_{\text{max}}, P_{\text{max}})$ onwards.
Outline

1. Introduction

2. n-user Achievable Rate Region

3. Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel

4. Conclusion
Optimality of Time-Sharing

Analyzing the F_2 frontier:

- $Q_1 \leq 0$: F_2 is convex, then the time sharing options are:
 1. between A & B
 2. between A & C
 3. between A & inflection point on F_1, E
 4. between A & point on concave section of F_1

Rate region frontiers for n—user interference chan.. Stanford University
Optimality of Time-Sharing

- $Q_1 \geq 0$: \mathcal{F}_2 is concave, $\Phi(\cdot, P_{\text{max}})$ is optimal and no time sharing is employed.
- $0 \leq Q_1 \leq P_{\text{max}}$: use the concave segment from A to $\Phi(Q_1, P_{\text{max}})$, and the time-sharing candidates that were mentioned for the $Q_1 \leq 0$ case.
Optimality of Time-Sharing

When to operate with one user at a time?

Discounting case when \mathcal{F}_1 or \mathcal{F}_2 have inflection points for simplicity

Focus when time-sharing between A & C is better than going through intermediate point B.

Operating with one transmitter active at a certain time (i.e. along $A \leftrightarrow C$) is optimal when:

$$\left(\frac{1+cP_{\text{max}}}{1+cP_{\text{max}}+dP_{\text{max}}} \right)^\gamma \geq \left(\frac{1+aP_{\text{max}}+bP_{\text{max}}}{1+bP_{\text{max}}} \right)^\gamma$$

with $\gamma = \log_2 \left(1 + cP_{\text{max}} \right) / \log_2 \left(1 + aP_{\text{max}} \right)$.

\[\begin{array}{c}
\text{Rate region frontiers for } n-\text{user interference chan.} \\
\text{Stanford University}
\end{array} \]
Outline

1. Introduction

2. n-user Achievable Rate Region

3. Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel

4. Conclusion
2–user symmetric channel

for the symmetric case, the time-sharing optimality condition simplifies and leads to the following theorem

Theorem

Time-sharing through operating with one user at a time is optimal when

\[b \geq \sqrt{1 + \frac{aP_{\text{max}}}{P_{\text{max}}}} \]

Remark: proved that this condition is sufficient to guarantee \(Q_1 \) is always \(\leq 0 \), the assumption we started with.
Summary

- Found the achievable rate region frontiers for \(n \)-user interference channel when receivers treat interference as noise.
- Characterized the convexity and concavity conditions for the 2-user interference channel.
- Found the sufficient condition when time-sharing is optimal between one transmitter being active at a certain time for the case of 2-user symmetric channel.
Comparing with recent IT results [EtkinTse07]

The switching point, using high SIR assumption:

\[b \geq \sqrt{\frac{aP_{\text{max}}}{P_{\text{max}}}} \]

From our result, the switching point is:

\[b \geq \sqrt{1 + \frac{aP_{\text{max}}}{P_{\text{max}}}} \]