Rate region frontiers for n–user interference channel with interference as noise

Mohamad Charafeddine, Aydin Sezgin, Arogyaswami Paulraj

Stanford University

Sept 28th, 2007/ Allerton
Introduction: the big picture

n–user interference channel

Treating the interference as additive noise, what rates could be achieved?

Rate region frontiers for n–user interference channel
Introduction: the big picture

$n-$user interference channel

Treating the interference as additive noise, what rates could be achieved?
Introduction: why the interference channel?

Cellular

- Transmitter nodes are closer to each other.
- System performance is more interference-limited.

n-nodes ad hoc network
Introduction: why the interference channel?

- Transmitter nodes are closer to each others
- System performance is more interference-limited
Introduction

Outline

1 Introduction
Outline

1. Introduction
2. n–user Achievable Rate Region
Outline

1. Introduction
2. n-user Achievable Rate Region
3. Characteristics of 2-user Rate Region Frontiers
Outline

1. Introduction
2. n-user Achievable Rate Region
3. Characteristics of 2-user Rate Region Frontiers
4. Conclusion
Introduction: literature review

- The capacity region of a 2-user interference channel has been an open problem for about 30 years [Sato77,78].
- Information-theoretic bounds through achievable rate regions have been proposed, most famously with the Han-Kobayashi approach [HK81].
- The capacity of the Gaussian interference channel under strong interference has been found in [Sato 81].
- Recent results on the 2-user interference channel to within one bit of capacity have been shown in [EtkinTse07].
Introduction: literature review

- The capacity region of a 2-user interference channel has been an open problem for about 30 years [Sato77,78].
- Information-theoretic bounds through achievable rate regions have been proposed, most famously with the Han-Kobayashi approach [HK81].
- The capacity of the Gaussian interference channel under strong interference has been found in [Sato 81].
- Recent results on the 2-user interference channel to within one bit of capacity have been shown in [EtkinTse07].

- Our work treats the n-user case with interference as noise + dimension orthogonalization introduced at a certain point.
Introduction: literature review

- The capacity region of a 2-user interference channel has been an open problem for about 30 years [Sato77,78].
- Information-theoretic bounds through achievable rate regions have been proposed, most famously with the Han-Kobayashi approach [HK81].
- The capacity of the Gaussian interference channel under strong interference has been found in [Sato 81].
- Recent results on the 2-user interference channel to within one bit of capacity have been shown in [EtkinTse07].

- Our work treats the n-user case with interference as noise + dimension orthogonalization introduced at a certain point.

Cases when interference is treated as noise:
Introduction: literature review

- The capacity region of a 2-user interference channel has been an open problem for about 30 years [Sato77,78].
- Information-theoretic bounds through achievable rate regions have been proposed, most famously with the Han-Kobayashi approach [HK81].
- The capacity of the Gaussian interference channel under strong interference has been found in [Sato 81].
- Recent results on the 2-user interference channel to within one bit of capacity have been shown in [EtkinTse07].

- Our work treats the n-user case with interference as noise + dimension orthogonalization introduced at a certain point.

- **Cases when interference is treated as noise:**
 - low complexity transceivers
 - low power, low cost
 - mostly assumed in cellular and ad hoc networks
Introduction: assumptions and objectives

Assumptions:
- no cooperation at the transmit nor at the receive side
- SISO flat channel
Introduction: assumptions and objectives

Assumptions:
- no cooperation at the transmit nor at the receive side
- SISO flat channel

Objectives:
- Characterize the achievable rate region when treating interference as noise for the n-user case
Outline

1. Introduction

2. n–user Achievable Rate Region
 - 2-user Interference Channel Frontiers
 - 3-user Interference Channel Frontiers
 - n–user Interference Channel Frontiers

3. Characteristics of 2-user Rate Region Frontiers

4. Conclusion
2-user Interference Channel

System setup

\[a = \frac{g_{1,1}}{\sigma^2_n}, \quad b = \frac{g_{1,2}}{\sigma^2_n}, \]
\[d = \frac{g_{2,1}}{\sigma^2_n}, \quad c = \frac{g_{2,2}}{\sigma^2_n}. \]
2-user Interference Channel

System setup

\[a = \frac{g_{1,1}}{\sigma_n^2}, \quad b = \frac{g_{1,2}}{\sigma_n^2}, \]
\[d = \frac{g_{2,1}}{\sigma_n^2}, \quad c = \frac{g_{2,2}}{\sigma_n^2}. \]

- No assumptions on \(a, b, c \) or \(d \)
- \(P_i \leq P_{\text{max}}, \ i = 1, 2 \)
2-user Interference Channel

System setup

$$a = g_{1,1}/\sigma_n^2, \quad b = g_{1,2}/\sigma_n^2,$$
$$d = g_{2,1}/\sigma_n^2, \quad c = g_{2,2}/\sigma_n^2.$$

- No assumptions on a, b, c or d
- $$P_i \leq P_{\text{max}}, \; i = 1, 2$$

Achievable rates:

$$C_1(P_1, P_2) = \log_2 \left(1 + \frac{aP_1}{1+bP_2} \right),$$
$$C_2(P_1, P_2) = \log_2 \left(1 + \frac{cP_2}{1+dP_1} \right).$$
Set $C_1 = R$, then $C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{aP_1}{1+bP_2} \right)$.
Set \(C_1 = R \), then

\[
C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{aP_1}{1 + bP_2} \right).
\]

Establish a relation between \(P_1 \) & \(P_2 \) such as constant rate \(C_1 = R \).
Set $C_1 = R$, then $C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{a P_1}{1 + b P_2} \right)$.

Establish a relation between P_1 & P_2 such as constant rate $C_1 = R$

$P_1 = \frac{1}{a} (1 + b P_2)(2^R - 1)$.
Set $C_1 = R$, then $C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{aP_1}{1 + bP_2} \right)$.

Establish a relation between P_1 & P_2 such as constant rate $C_1 = R$

$P_1 = \frac{1}{a}(1 + bP_2)(2^R - 1)$. → Express $C_2(P_1, P_2)$ in function of P_2 only
Set $C_1 = R$, then $C_1(P_1, P_2) = R = \log_2 \left(1 + \frac{aP_1}{1+bP_2} \right)$.

Establish a relation between P_1 & P_2 such as constant rate $C_1 = R$

$P_1 = \frac{1}{a}(1 + bP_2)(2^R - 1)$. → Express $C_2(P_1, P_2)$ in function of P_2 only

$$C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1 + bP_2)(2^R - 1)} \right).$$
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + d \frac{1}{a} (1 + bP_2)(2^R - 1)} \right) \text{ monotonically increasing in } P_2 \]
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + d \frac{1 + bP_2}{(1+bP_2)(2^R-1)}} \right) \]

monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a *unique* \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1 + bP_2)(2^R - 1)} \right) \]

is monotonically increasing in \(P_2 \).

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a unique \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a unique \(P_1^* \) that achieves \(C_1 = R \).
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1+bP_2)(2^R-1)} \right) \]

monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a unique \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a unique \(P_1^* \) that achieves \(C_1 = R \).
- \(\Rightarrow \) for a unique rate tuple, there is a unique power tuple.
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1+bP_2)(2R-1)} \right) \]

monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a *unique* \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a *unique* \(P_1^* \) that achieves \(C_1 = R \).
- \(\Rightarrow \) *for a unique rate tuple, there is a unique power tuple.*

Introduce the *Potential Line* notation \(\Phi(:, P_{\text{max}}) \) to denote \(P_1 \) sweeps its full range and \(P_2 \) is held at \(P_{\text{max}} \).
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a} (1 + bP_2)(2^R - 1)} \right) \]
monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a unique \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a unique \(P_1^* \) that achieves \(C_1 = R \).
- \(\Rightarrow \) for a unique rate tuple, there is a unique power tuple.

Introduce the *Potential Line* notation \(\Phi(\cdot, P_{\text{max}}) \) to denote \(P_1 \) sweeps its full range and \(P_2 \) is held at \(P_{\text{max}} \).

Based on uniqueness property, potential lines along a certain dimension are non-touching.
Rate region frontier formulation

\[C_2(P_2) = \log_2 \left(1 + \frac{cP_2}{1 + \frac{d}{a}(1 + bP_2)(2^R - 1)} \right) \]

monotonically increasing in \(P_2 \)

Corollary:

- Direct implication of \(C_2(P_2) \) monotonicity in \(P_2 \) for a certain \(C_1 = R \), is that there is a unique \(P_2^* \) that achieves \(C_2(P_2) = C_2^* \).
- Once \(P_2^* \) is found, there is a unique \(P_1^* \) that achieves \(C_1 = R \).
- ⇒ for a unique rate tuple, there is a unique power tuple.

Introduce the Potential Line notation \(\Phi(\cdot, P_{\text{max}}) \) to denote \(P_1 \) sweeps its full range and \(P_2 \) is held at \(P_{\text{max}} \).

Based on uniqueness property, potential lines along a certain dimension are non-touching.

i.e. \(\Phi(\cdot, P_2) \) & \(\Phi(\cdot, P_2') \) do not intersect if \(P_2 \neq P_2' \)
Rate region frontier formulation

Rate region frontier formulated as:

\[
\arg \max_{P_2} C_2(P_2) \quad \text{subject to} \quad C_1(P_1, P_2) = R \quad P_i \leq P_{\max} \quad i = 1, 2.
\]
Rate region frontier formulation

Rate region frontier formulated as:

\[
\begin{align*}
\text{arg max}_{P_2} & \quad C_2(P_2) \\
\text{subject to} & \quad C_1(P_1, P_2) = R \\
& \quad P_i \leq P_{\text{max}} \quad i = 1, 2.
\end{align*}
\]

\(R\) is swept over the full range of \(C_1\), i.e. \(0 \leq R \leq C_1(P_{\text{max}}, 0)\).
Rate region frontier formulation

Rate region frontier formulated as:

\[
\arg\max_{P_2} \quad C_2(P_2)
\]

subject to

\[
C_1(P_1, P_2) = R
\]

\[
P_i \leq P_{\text{max}} \quad i = 1, 2.
\]

\[0 \leq R \leq C_1(P_{\text{max}}, 0)\]

\[0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\]
Rate region frontier formulation

Rate region frontier formulated as:

\[
\arg \max_{P_2} \quad C_2(P_2) \\
\text{subject to} \quad C_1(P_1, P_2) = R \\
\quad P_i \leq P_{\text{max}} \quad i = 1, 2.
\]

\(R\) is swept over the full range of \(C_1\), i.e. \(0 \leq R \leq C_1(P_{\text{max}}, 0)\)

1. \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\)
2. \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\)
Rate region frontier formulation:

$0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})$

As $C_2(P_2)$ is monotonically increasing in P_2, then $P_2 = P_{\text{max}}$ is attainable for any of the range $R \leq C_1(P_{\text{max}}, P_{\text{max}})$.

\[
C_2(C_1(P_{\text{max}}, P_{\text{max}})) = \log_2 \left(\frac{1}{1 + cP_{\text{max}}} \right)
\]
Rate region frontier formulation:

\[0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}}) \]

As \(C_2(P_2) \) is monotonically increasing in \(P_2 \), then \(P_2 = P_{\text{max}} \) is attainable for any of the range \(R \leq C_1(P_{\text{max}}, P_{\text{max}}) \).

Therefore for \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}}) \):

\[\arg \max_{P_2} C_2(P_2) = P_{\text{max}}. \]
Rate region frontier formulation: \((1) \ 0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\)

As \(C_2(P_2)\) is monotonically increasing in \(P_2\), then \(P_2 = P_{\text{max}}\) is attainable for any of the range \(R \leq C_1(P_{\text{max}}, P_{\text{max}})\).

Therefore for \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\):

\[
\arg \max_{P_2} C_2(P_2) = P_{\text{max}}.
\]

Hence expressing \(C_2\) in function of \(C_1 = R\) with \(P_2 = P_{\text{max}}\), we obtain the log-defined frontier equation \(\Phi(:, P_{\text{max}})\), denoted \(\mathcal{F}_2\):
2-user Channel

Rate region frontier formulation: \((1) \ 0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\)

As \(C_2(P_2)\) is monotonically increasing in \(P_2\), then \(P_2 = P_{\text{max}}\) is attainable for any of the range \(R \leq C_1(P_{\text{max}}, P_{\text{max}})\).

Therefore for \(0 \leq R \leq C_1(P_{\text{max}}, P_{\text{max}})\):

\[
\arg \max_{P_2} C_2(P_2) = P_{\text{max}}.
\]

Hence expressing \(C_2\) in function of \(C_1 = R\) with \(P_2 = P_{\text{max}}\), we obtain the log-defined frontier equation \(\Phi(:, P_{\text{max}})\), denoted \(\mathcal{F}_2\):

\[
C_2(C_1) = \log_2 \left(1 + \frac{c P_{\text{max}}}{1 + \frac{d}{a}(1 + b P_{\text{max}})(2^{C_1} - 1)} \right).
\]
Rate region formulation: \((2) \ C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0) \)

By symmetry of previous result, for a constant \(C_2 = \tilde{R} \), we find that the frontier for that range of \(C_1 \) and \(\tilde{R} \) is achieved when \(P_1 = P_{\text{max}} \).
By symmetry of previous result, for a constant $C_2 = \tilde{R}$, we find that the frontier for that range of C_1 and \tilde{R} is achieved when $P_1 = P_{\text{max}}$.

Therefore for $C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)$, the values of C_1 at the frontier are: $C_1(P_{\text{max}}, P_2) = \log_2 \left(1 + \frac{aP_{\text{max}}}{1 + bP_2} \right) = R$. Then,

$$P_2 = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1 \right).$$
Rate region formulation: \((2)\) \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\)

By symmetry of previous result, for a constant \(C_2 = \tilde{R}\), we find that the frontier for that range of \(C_1\) and \(\tilde{R}\) is achieved when \(P_1 = P_{\text{max}}\).

Therefore for \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\), the values of \(C_1\) at the frontier are: \(C_1(P_{\text{max}}, P_2) = \log_2 \left(1 + \frac{aP_{\text{max}}}{1 + bP_2} \right) = R\). Then,
\[
P_2 = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1\right).
\]
By symmetry of previous result, for a constant $C_2 = \tilde{R}$, we find that the frontier for that range of C_1 and \tilde{R} is achieved when $P_1 = P_{\text{max}}$.

Therefore for $C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)$, the values of C_1 at the frontier are: $C_1(P_{\text{max}}, P_2) = \log_2 \left(1 + \frac{aP_{\text{max}}}{1+bP_2} \right) = R$. Then, $P_2 = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R-1} - 1 \right)$. $\arg \max_{P_2} C_2(P_2) = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R-1} - 1 \right)$.

Hence we obtain a log-defined frontier equation $\Phi(P_{\text{max}}, :)$, \mathcal{F}_1: \[C_2 \left(\frac{aP_{\text{max}}}{2^R-1} - 1 \right) \]
Rate region formulation: \(2\) \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\)

By symmetry of previous result, for a constant \(C_2 = \tilde{R}\), we find that the frontier for that range of \(C_1\) and \(\tilde{R}\) is achieved when \(P_1 = P_{\text{max}}\).

Therefore for \(C_1(P_{\text{max}}, P_{\text{max}}) \leq R \leq C_1(P_{\text{max}}, 0)\), the values of \(C_1\) at the frontier are: \(C_1(P_{\text{max}}, P_2) = \log_2 \left(1 + \frac{aP_{\text{max}}}{1+bP_2}\right) = R\). Then,

\[
P_2 = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1\right).
\]

\(\rightarrow\) \(\arg \max_{P_2} C_2(P_2) = \frac{1}{b} \left(\frac{aP_{\text{max}}}{2^R - 1} - 1\right)\).

Hence we obtain a log-defined frontier equation \(\Phi(P_{\text{max}}, :)\), \(\mathcal{F}_1\):

\[
C_2(C_1) = \log_2 \left(1 + \frac{c}{b} \left(\frac{aP_{\text{max}} - (2^{C_1} - 1)}{(2^{C_1} - 1)(1 + dP_{\text{max}})}\right)\right)
\]
Rate region formulation: Summary

The rate region for the 2-user interference channel is:

$$F = \text{Convex Hull} \{F_1 \cup F_2\}$$
Rate region formulation: Summary

1. $0 \leq C_1 \leq C_1(P_{\text{max}}, P_{\text{max}})$, $\rightarrow \mathcal{F}_2 = \Phi(\cdot, P_{\text{max}})$
2. $C_1(P_{\text{max}}, P_{\text{max}}) \leq C_1 \leq C_1(P_{\text{max}}, 0)$, $\rightarrow \mathcal{F}_1 = \Phi(P_{\text{max}}, \cdot)$
Rate region formulation: Summary

The rate region for the 2-user interference channel is:

\[
\mathcal{F} = \text{Convex Hull}\{\mathcal{F}_1 \cup \mathcal{F}_2\}
\]

1. \[0 \leq C_1 \leq C_1(P_{\text{max}}, P_{\text{max}}), \quad \rightarrow \mathcal{F}_2 = \Phi(:, P_{\text{max}})\]
2. \[C_1(P_{\text{max}}, P_{\text{max}}) \leq C_1 \leq C_1(P_{\text{max}}, 0), \quad \rightarrow \mathcal{F}_1 = \Phi(P_{\text{max}}, :)\]
Outline

1. Introduction

2. n–user Achievable Rate Region
 - 2-user Interference Channel Frontiers
 - 3-user Interference Channel Frontiers
 - n–user Interference Channel Frontiers

3. Characteristics of 2-user Rate Region Frontiers

4. Conclusion
3-user channel: Effect of increasing P_3 from 0 to P_{max}
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- $P_3 = 0$ the same results of 2-user case apply. The frontier is the red potential line $\Phi(\cdot, P_{\text{max}}, 0)$ denoted Φ_{AB}
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- $P_3 = 0$ the same results of 2-user case apply. The frontier is the red potential line $\Phi(:, P_{\text{max}}, 0)$ denoted Φ_{AB}
- when P_3 increases, how is the effect traced in the rate region?
3-user channel: Effect of increasing P_3 from 0 to P_{max}
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- For C_1 & C_2, P_3 dimension effect is lumped as additional noise.
- Potential lines $\Phi(:, P_{\text{max}}, P_3)$ are monotonically increasing with P_3 in the C_3 dimension, forming a surface frontier $\mathcal{F}_2 = \Phi(:, P_{\text{max}}, :)$.
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- For C_1 & C_2, P_3 dimension effect is lumped as additional noise
- Potential lines $\Phi(\cdot, P_{\text{max}}, P_3)$ are monotonically increasing with P_3 in the C_3 dimension, forming a surface frontier $\mathcal{F}_2 = \Phi(\cdot, P_{\text{max}}, \cdot)$

By symmetry, we obtain the rate region frontier for the 3-user case:
3-user channel: Effect of increasing P_3 from 0 to P_{max}

- For C_1 & C_2, P_3 dimension effect is lumped as additional noise.
- Potential lines $\Phi(:, P_{\text{max}}, P_3)$ are monotonically increasing with P_3 in the C_3 dimension, forming a surface frontier $\mathcal{F}_2 = \Phi(:, P_{\text{max}}, :)$.

By symmetry, we obtain the rate region frontier for the 3-user case:

$$\mathcal{F} = \text{Convex Hull}\{\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3\}$$

with $\mathcal{F}_1 = \Phi(P_{\text{max}}, :, :)$, $\mathcal{F}_2 = \Phi(:, P_{\text{max}}, :)$, and $\mathcal{F}_3 = \Phi(:, :, P_{\text{max}})$.

Rate region frontiers for n–user interference chan.. Stanford University
1 Introduction

2 $n-$user Achievable Rate Region
 - 2-user Interference Channel Frontiers
 - 3-user Interference Channel Frontiers
 - $n-$user Interference Channel Frontiers

3 Characteristics of 2-user Rate Region Frontiers

4 Conclusion
The additional power effect of P_n can be lumped into the noise term of the other $(n-1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.
The additional power effect of P_n can be lumped into the noise term of the other $(n-1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.

The frontier on C_n is monotonically increasing in P_n.

n-user generalization
The additional power effect of P_n can be lumped into the noise term of the other $(n-1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.

The frontier on C_n is monotonically increasing in P_n.

Invoking symmetry we can generalize over all rate ranges.
The additional power effect of P_n can be lumped into the noise term of the other $(n-1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.

The frontier on C_n is monotonically increasing in P_n.

Invoking symmetry we can generalize over all rate ranges.

Theorem

The achievable rate region frontier for the n–user interference channel is:

$$\mathcal{F} = \text{Convex Hull}\{\bigcup_{i=1}^{n} \mathcal{F}_i\}$$

where \mathcal{F}_i is a hyper-surface of $n–1$ dimensions, characterized by holding the i^{th} transmit power at the maximum power P_{\max}.
The additional power effect of P_n can be lumped into the noise term of the other $(n - 1)$ dimensions. Thus the results for C_1, \ldots, C_{n-1} hold and carry through.

- The frontier on C_n is monotonically increasing in P_n.
- Invoking symmetry we can generalize over all rate ranges.

Theorem

The achievable rate region frontier for the n–user interference channel is:

$$\mathcal{F} = \text{Convex Hull}\{\bigcup_{i=1}^{n} \mathcal{F}_i\}$$

where \mathcal{F}_i is a hyper-surface of $n - 1$ dimensions, characterized by holding the i^{th} transmit power at the maximum power P_{max}.

Remark: Results also hold for different thermal noise levels, or different maximum power levels.
Outline

1. Introduction

2. n-user Achievable Rate Region

3. Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel

4. Conclusion
Convexity or Concavity of the Frontiers

Recall the frontiers equation for the 2–user case:
Convexity or Concavity of the Frontiers

Recall the frontiers equation for the 2–user case:

\[C_2(C_1) = \log_2 \left(1 + \frac{d}{a} \frac{cP_{\text{max}}}{1 + bP_{\text{max}}(2^{C_1} - 1)} \right) \]

\[C_2(C_1) = \log_2 \left(1 + \frac{c}{b} \frac{aP_{\text{max}} - (2^{C_1} - 1)}{(2^{C_1} - 1)(1 + dP_{\text{max}})} \right) \]
Recall the frontiers equation for the 2–user case:

\[\Phi(\cdot, P_{\text{max}}), \mathcal{F}_2: \]
\[C_2(C_1) = \log_2 \left(1 + \frac{d}{1 + \frac{cP_{\text{max}}}{a(1 + bP_{\text{max}})(2^{C_1} - 1)}} \right) \cdot \]

\[\Phi(P_{\text{max}}, \cdot), \mathcal{F}_1: \]
\[C_2(C_1) = \log_2 \left(1 + \frac{c}{b} \left(\frac{aP_{\text{max}} - (2^{C_1} - 1)}{(2^{C_1} - 1)(1 + dP_{\text{max}})} \right) \right) \]

when would the frontiers be convex or concave?
Convexity or Concavity of the Frontiers

Recall the frontiers equation for the 2–user case:

\[C_2(C_1) = \log_2 \left(1 + \frac{cP_{\text{max}}}{1 + \frac{d}{a}(1 + bP_{\text{max}})(2^{C_1} - 1)} \right) \]

\[C_2(C_1) = \log_2 \left(1 + \frac{c}{b} \left(\frac{aP_{\text{max}} - (2^{C_1} - 1)}{(2^{C_1} - 1)(1 + dP_{\text{max}})} \right) \right) \]

- when would the frontiers be convex or concave?
- can they be neither, i.e. exhibiting a non-stationary inflection point?
We focus on one frontier by symmetry, \mathcal{F}_2, we study its second derivative.
We focus on one frontier by symmetry, \mathcal{F}_2, we study its second derivative.

We introduce a quantity Q_1 defined as:

$$Q_1 = \Re\left(\sqrt{(a - \theta)(a - \theta + acP_{\text{max}})}\right) - \theta$$

where $\theta = d + dbP_{\text{max}}$

→ where it suffices to study $\text{sign}(P_1 - Q_1)$, as Q_1 follows such that

$$\text{sign}\left(\frac{\partial^2 \mathcal{F}_2}{\partial c_1^2}\right) = \text{sign}(P_1 - Q_1)$$
Convexity or Concavity of the Frontiers

Convexity or Concavity of the Frontiers

- Convexity or Concavity of the Frontiers
- Frontiers Characteristics
- Conclusion

Rate region frontiers for n–user interference chan.. Stanford University 23/ 31
Convexity or Concavity of the Frontiers

\[Q_1 \leq 0: \ F_2 \text{ is convex, as } (P_1 - Q_1) \geq 0 \text{ for all range of } P_1 \]
Convexity or Concavity of the Frontiers

- \(Q_1 \leq 0 \): \(F_2 \) is convex, as \((P_1 - Q_1) \geq 0 \) for all range of \(P_1 \)
- \(Q_1 \geq P_{\text{max}} \): \(F_2 \) is concave, as \((P_1 - Q_1) \leq 0 \) for all range of \(P_1 \)
Convexity or Concavity of the Frontiers

- \(Q_1 \leq 0 \): \(\mathcal{F}_2 \) is convex, as \((P_1 - Q_1) \geq 0\) for all range of \(P_1 \)
- \(Q_1 \geq P_{\text{max}} \): \(\mathcal{F}_2 \) is concave, as \((P_1 - Q_1) \leq 0\) for all range of \(P_1 \)
- \(0 \leq Q_1 \leq P_{\text{max}} \): \(\mathcal{F}_2 \) has a non-stationary inflection point when \(P_1 = Q_1 \)
Convexity or Concavity of the Frontiers

- $Q_1 \leq 0$: \mathcal{F}_2 is convex, as $(P_1 - Q_1) \geq 0$ for all range of P_1
- $Q_1 \geq P_{\text{max}}$: \mathcal{F}_2 is concave, as $(P_1 - Q_1) \leq 0$ for all range of P_1
- $0 \leq Q_1 \leq P_{\text{max}}$: \mathcal{F}_2 has a non-stationary inflection point when $P_1 = Q_1$
 - it follows that the convexity of the frontier follows from the point $\Phi(P_{\text{max}}, P_{\text{max}})$ onwards.
Outline

1 Introduction

2 n-user Achievable Rate Region

3 Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel

4 Conclusion
Optimality of Time-Sharing

Analyzing the \mathcal{F}_2 frontier:

Optimality of Time-Sharing
Analyzing the \mathcal{F}_2 frontier:

- $Q_1 \leq 0$: \mathcal{F}_2 is convex, then the time sharing options are:
Analyzing the \mathcal{F}_2 frontier:

- $Q_1 \leq 0$: \mathcal{F}_2 is convex, then the time sharing options are:
 - between A & B
Optimality of Time-Sharing

Analyzing the F_2 frontier:

- $Q_1 \leq 0$: F_2 is convex, then the time sharing options are:
 1. between A & B
 2. between A & C
Optimality of Time-Sharing

Analyzing the \mathcal{F}_2 frontier:

- $Q_1 \leq 0$: \mathcal{F}_2 is convex, then the time sharing options are:
 1. between A & B
 2. between A & C
 3. between A & inflection point on \mathcal{F}_1, E
Optimality of Time-Sharing

Analyzing the F_2 frontier:

- $Q_1 \leq 0$: F_2 is convex, then the time sharing options are:
 1. between A & B
 2. between A & C
 3. between A & inflection point on F_1, E
 4. between A & point on concave section of F_1
Optimality of Time-Sharing

Q_1 ≥ 0: F_2 is concave, Φ(Q_1, P_{max}) is optimal and no time sharing is employed.

0 ≤ Q_1 ≤ P_{max}: use the concave segment from A to Φ(Q_1, P_{max}), and the time-sharing candidates that were mentioned for the Q_1 ≤ 0 case.
Optimality of Time-Sharing

$Q_1 \geq 0$: \mathcal{F}_2 is concave, $\Phi(\cdot, P_{\text{max}})$ is optimal and no time sharing is employed.
Optimality of Time-Sharing

- $Q_1 \geq 0$: F_2 is concave, $\Phi(\cdot, P_{\text{max}})$ is optimal and no time sharing is employed.
- $0 \leq Q_1 \leq P_{\text{max}}$: use the concave segment from A to $\Phi(Q_1, P_{\text{max}})$, and the time-sharing candidates that were mentioned for the $Q_1 \leq 0$ case.
When to operate with one user at a time?

Discounting case when \mathcal{F}_1 or \mathcal{F}_2 have inflection points for simplicity

Operating with one transmitter active at a certain time (i.e. along $A \leftrightarrow C$) is optimal when:

$$\left(1 + c_{P_{\max}}\right) \left(1 + d_{P_{\max}}\right) \geq \left(1 + a_{P_{\max}} + b_{P_{\max}}\right) \gamma$$

with $\gamma = \log_2 \left(1 + c_{P_{\max}}\right) / \log_2 \left(1 + a_{P_{\max}}\right)$.
When to operate with one user at a time?

Discounting case when \mathcal{F}_1 or \mathcal{F}_2 have inflection points for simplicity

Focus when time-sharing between A & C is better than going through intermediate point B.
Optimality of Time-Sharing

When to operate with one user at a time?

Discounting case when \mathcal{F}_1 or \mathcal{F}_2 have inflection points for simplicity

Focus when time-sharing between A & C is better than going through intermediate point B.

Operating with one transmitter active at a certain time (i.e. along $A \leftrightarrow C$) is optimal when:

\[
(1 + c_{P_{\text{max}}})(1 + d_{P_{\text{max}}}) \geq (1 + a_{P_{\text{max}}} + b_{P_{\text{max}}})^{\gamma}
\]

where

\[
\gamma = \log_2 \left(\frac{1 + c_{P_{\text{max}}}}{1 + a_{P_{\text{max}}}} \right)
\]
When to operate with one user at a time?

Discounting case when \mathcal{F}_1 or \mathcal{F}_2 have inflection points for simplicity

Focus when time-sharing between A & C is better than going through intermediate point B.

Operating with one transmitter active at a certain time (i.e. along $A \leftrightarrow C$) is optimal when:

$$\frac{(1+cP_{\text{max}})(1+dP_{\text{max}})}{1+cP_{\text{max}}+dP_{\text{max}}} \geq \left(\frac{1+aP_{\text{max}}+bP_{\text{max}}}{1+bP_{\text{max}}} \right)^{\gamma}$$

with $\gamma = \log_2(1 + cP_{\text{max}})/ \log_2(1 + aP_{\text{max}})$.

\[\text{Rate region frontiers for } n-\text{user interference chan.}.. \text{ Stanford University}\]
Outline

1. Introduction

2. n-user Achievable Rate Region

3. Characteristics of 2-user Rate Region Frontiers
 - Convexity or Concavity of the Frontiers
 - Optimality of Time-Sharing
 - Symmetric 2-user interference channel

4. Conclusion
2–user symmetric channel

For the symmetric case, the time-sharing optimality condition simplifies and leads to the following theorem.

Theorem
Time-sharing through operating with one user at a time is optimal when
\[b \geq \sqrt{1 + \frac{a P_{\text{max}}}{P_{\text{max}}}} \]

Remark: proved that this condition is sufficient to guarantee
\[Q \] is always \(\leq 0 \), the assumption we started with.
for the symmetric case, the time-sharing optimality condition simplifies and leads to the following theorem
for the symmetric case, the time-sharing optimality condition simplifies and leads to the following theorem

Theorem

Time-sharing through operating with one user at a time is optimal when

\[b \geq \frac{\sqrt{1 + aP_{\text{max}}}}{P_{\text{max}}} \]
for the symmetric case, the time-sharing optimality condition simplifies and leads to the following theorem

Theorem

Time-sharing through operating with one user at a time is optimal when

\[b \geq \frac{\sqrt{1 + aP_{\text{max}}}}{P_{\text{max}}} \]

Remark: proved that this condition is sufficient to guarantee Q_1 is always ≤ 0, the assumption we started with.
Summary

- Found the achievable rate region frontiers for n–user interference channel when receivers treat interference as noise.
- Characterized the convexity and concavity conditions for the 2–user interference channel.
- Found the sufficient condition when time-sharing is optimal between one transmitter being active at a certain time for the case of 2–user symmetric channel.
Comparing with recent IT results [EtkinTse07]

The switching point, using high SIR assumption:

\[b \geq \sqrt{\frac{aP_{\text{max}}}{P_{\text{max}}}} \]

From our result, the switching point is:

\[b \geq \sqrt{1 + \frac{aP_{\text{max}}}{P_{\text{max}}}} \]