Can Components Save Us From the Software Talent Shortage?

Web.Builder San Francisco
April 14, 1998

Avron Barr and Shirley Tessler
Stanford Computer Industry Project
http://www-scip.stanford.edu/scip/
The Stanford University Computer Industry Project

An Alfred P. Sloan Foundation Industry Study

SCIP’s Corporate Sponsors
- Andersen Consulting
- Booz-Allen & Hamilton
- British Petroleum (BP)
- Citibank N.A.
- CMP Media, Inc.
- Daiwa Inst. of Research Ltd.
- Ernst & Young LLP
- Fujitsu
- FX Research Laboratory
- Goodyear Tire and Rubber
- Merrill Lynch
- Microsoft Corporation
- Montgomery Securities
- Moore Corporation Ltd.
- NTT
- Perot Systems Corp.
- PeopleSoft
- Philips
- Sumitomo Corporation
- Symantec
- Toshiba America, Inc.
SCIP Software Research Team

- Professor William F. Miller
 - Professor of Computer Science & Public & Private Management
 - President Emeritus of SRI International

- Professor Edward A. Feigenbaum
 - Professor of Computer Science
 - Recently returned from leave as Chief Scientist, US Air Force

- Avron Barr and Shirley G. Tessler
 - Co-Directors of the SCIP Software Research Team
 - Consultants on corporate use of advanced software technologies
Issues That Will Shape the Software Industry

- Intellectual property: patents, piracy
- Global competition, trade and immigration
- Consolidation & antitrust
- Distribution mechanisms and channels
- Quality, systems failures & litigation
- Education of software professionals
- Software development tools and methods
- Software project management practices
- Global capacity for software development
This Afternoon’s Question

- If there really is a shortage of software developers …
- If off-the-shelf componentware increases the productivity of developers …
- If web developers are better able to take advantage of component frameworks than other developers …
- Will we be able to get all the code written, someday?
Is There Really a Shortage of Software Developers?

The Scope of the Problem
The world’s supply of software development talent has natural limits.

The world’s demand for software seems unbounded — every new idea for what computers can do ...

The productivity of developers (e.g., tools) hasn’t increased as fast as demand.

We have reached global capacity.
<table>
<thead>
<tr>
<th></th>
<th>Worldwide Expenditures</th>
<th>Impact, Value</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publishing</td>
<td>$122B</td>
<td>Tools, Education, Entertainment</td>
<td>Microsoft, Oracle, Nintendo</td>
</tr>
<tr>
<td>Services</td>
<td>$252B</td>
<td>Mostly software</td>
<td>EDS, IBM/GS, Andersen</td>
</tr>
<tr>
<td>In-house/ MIS</td>
<td>$700B+</td>
<td>Productivity, Informed ops., Strategic apps.</td>
<td>Payroll, mfg. automation, Yield mgt., supply logistics, FedEx, home banking</td>
</tr>
<tr>
<td>Embedded</td>
<td>?</td>
<td>Functionality, Communication</td>
<td>Consumer electronics (auto), Complex systems (airplane)</td>
</tr>
</tbody>
</table>

1997 data from IDC.
The Importance of Software

- SW products & services are a $374B industry
- The modern enterprise runs on software
 - A $1 trillion+ annual expense worldwide
- Software is a competitive weapon
 - Not just a productivity investment anymore
 - Frequent flier, FedEx Ship, home banking, …
- Product functionality is achieved in SW
 - Cellular phones, airbags, Tamagotchi
- The use of SW in business is accelerating
William Gates is the richest man in the US
3 of the next 10 richest men in the country also made their $ billions in software
Software has become a valuable industrial commodity, like oil …
A Prolonged Shortage of Talent Will Reshape the SW Industry

- A year ago, the ITAA reported 190,000 unfilled positions in IT in the US alone, excluding government and non-profit organizations. This year, they estimate 340,000 open positions.
- The fundamental cause of the shortage is the rise in demand for software of all types.
- In the early ‘90s, the rising demand was masked:
 - Cutbacks in aerospace/defense spending
 - Massive layoffs at IBM, AT&T, Digital, etc.
 - Widespread downsizing of corporate IS depts.
Some Common Misconceptions About the SW Talent Shortage

- Software involves talent as well as skill.
- This shortage is not local to a region or to the US — it is global. There are no major untapped pools of talent abroad.
- It is not limited to Year 2000, Java, SAP or any other technical specialty.
- The shortage is not focused on high-tech industries. In fact, they are the last to feel the pinch.
What is Software Talent?

- Everyone has the same computers — it’s the software people who create business value:
 - Analysis — needs, vision, and requirements
 - Architecture — form and function
 - Design — usability and construction
 - Development — still craftsmanship
 - Debugging & maintenance — skill & temperament
 - Testing — still undervalued
 - Documentation, training and support
 - Project management — key to success
1997 NFL Regular Season Rushing Statistics

Data from www.nfl.com
Software Talent — The Best are Significantly Better

“Not All Programmers Are Created Equal,” G. Edward Bryan, IEEE, 1994
The Software Workforce: Who’s Getting the Top Talent?

- **Tier 1 — Hot software companies**
 - Software start-ups & boutique services firms
 - Software publishers
 - Wall Street
 - R & D (corporate & university)

- **Tier 2 — Software-aware companies**
 - VARs, consulting firms, systems integrators
 - Software intensive industries (computer hardware, communications, financial services)
 - Aerospace systems firms

- **Tier 3 — Everyone else**
 - Other industries with incidental software
 - Most IS application development & maint.
 - DoD, federal, state & local government
Misconceptions, continued

- The shortage is not temporary and will not be very sensitive to economic cycles.
- There are no magic technologies that will soon make programmers unnecessary.
- Rising salaries, global sourcing and training initiatives will only slowly increase the world’s capacity.
- The first generation of programmers is about to retire.
CS Graduates in the US 1986-1994

Source: Science and Engineering Indicators, 1996, 1997
Note: Associate Degrees includes Math and CS
EE Graduates in the US 1986-1994

Source: Science and Engineering Indicators, 1996, 1997
Will Components Save the Day?

(At least for web developers?)
A History of Technologies to Increase Developer Productivity

- Programming languages and compilers
- Database technology
- Structured programming
- Computer-assisted software engineering
- Knowledge-based programming
- Object-oriented programming & analysis
- Component-based assembly of software
Components — Two Common Definitions

- Software designed to work as a component of a larger application
 - Designed to work with other components in the same or other computers
 - It is possible to mix components from different manufacturers in a single system
- Microsoft: “A discrete unit of code built on ActiveX™ technologies...”
The Promise of Componentware

- Published software — economies of scale
- Modular, self-contained, standard interfaces (interoperable), black-box
- Allow development teams to “assemble” substantial parts of applications
 - Dramatic productivity increases
 - May reduce the wizard/coder ratio
Barriers to Reuse, Generally

- Components of what? — appl. architecture
- “Business model” — economies of scale
- Infrastructure investment: Selling the idea, managing code library, training & support
- Requires changing programmers’ habits about “other people’s code”
- Poor functionality, testing, interoperability
- Slow diffusion across “software worlds”
Extending the IT Infrastructure

- Applications
- Software Infrastructure
 - Database
 - Network
 - Computing Platform
But the Web Has Some Advantages

- Coherent community
- Communication
- Object-oriented at all layers
- Rapid growth
- Rich “frameworks”
- Standards, de facto and otherwise
- Too much to do too fast
The Demand for Software — A Competitive Necessity

- Quantity and variation
 - Published, enterprise & embedded software
 - Wintel, SAP-ification, corporate mergers, …

- Quality
 - “Minimum” quality is really difficult
 - Systems and product failures — litigation

- Complexity
 - This is rocket science
 - Innovation, speed and legacy
The Truth About Software

The better the tools, the higher the bar.
Question Number 8.