Interplanetary Navigation
Past, Present and Future

Dennis Byrnes
Chief Engineer for Flight Dynamics
Jet Propulsion Laboratory
What is it?

• Trajectory Design
 – Where do we want to go?

• Orbit Determination
 – Where are we actually going?

• Maneuver Design and Execution
 – Fix it!
Orbit Determination

• Data Types
 – Range
 – Doppler (range-rate)
 – Δ-DOR
 – Optical

• Mathematical Models
 – Solar System
 – Spacecraft Trajectory
 – Non-gravitational effects
 • Solar radiation pressure
 • Maneuvers
 • Attitude Control
 • Etc.
\[\rho_1 - \rho_2 = B \cos \theta \]

- **Station-differenced range and range-rate** provide an instantaneous, geometric measure of angular position and velocity components.

- **Difference range:** \[\rho_1 - \rho_2 \rightarrow \theta \]
- **Difference Doppler:** \[\dot{\rho}_1 - \dot{\rho}_2 \rightarrow \dot{\theta} \]

Angular accuracy: \(\propto \) measurement delay accuracy / baseline length.
Optical

- TO EARTH
- OPTICAL SYSTEM MEASURES
- OPTICAL NAV FRAME OF TARGET AND KNOWN STAR
- PREDICTED TARGET LOCATION
- OBSERVED TARGET LOCATION
- STAR IS AT "INFINITY"
- FLIGHT PATH
Past Missions

Successes
- Early Moon, Mars, Venus, Mercury, Outer Solar System
 - Explorers, Pioneers, Rangers, Mariners, Surveyors, Viking, Magellan
- Galileo (Jupiter) (‘89)
- Mars (‘96)
 - MGS
 - Pathfinder
- Deep Space 1 (Tech Demo – Ion Engines) (‘98)
- Stardust (Comet Wild-2 and return) (‘99)
- Genesis (Earth-Sun L1 and return) (‘01)
- Deep Impact (Comet Tempel-1 !) (‘05)

Failures
- Early Moon
 - Explorers, Pioneers, Rangers
- Mars Observer (‘92)
- Mars Climate Orbiter (‘98)
- Deep Space 2 (‘99)
- Mars Polar Lander (‘99)
Galileo Satellite Tour

Orbital Tour of the Jupiter System

I = Io
E = Europa
G = Ganymede
C = Callisto

--- Previous Design Orbit

R_J = 71,492 km

G1 27 Jun 96
G2 6 Sep 96
C3 4 Nov 96
E4 19 Dec 96
E6 20 Feb 97
G7 5 Apr 97
G8 7 May 97
C9 25 Jun 97
C10 17 Sep 97
E11 6 Nov 97
Genesis

Genesis Mission Trajectory: 2001 — 2004

LOI = Lissajous Orbit Insertion Maneuver
(11/16/01)
Genesis is on a “free” return to Earth from this point on.

Launch 8/8/01 - Return 9/8/04
Total Flight Time
(37.6 mos.)
Earth Return (Genesis and Stardust)

SRC Landing Site

22.6 x 61.2 km² (3σ)
Current Missions

- Voyager (‘77)
 - “Grand Tour” of outer planets
 - Heliopause and beyond
- Ulysses Solar Polar (‘90)
 - Solar Poles via Jupiter
- Cassini-Huygens (‘97)
 - Saturn System
- Mars Odyssey (‘01)
- Mars Exploration Rovers (‘03)
 - Spirit and Opportunity
- Spitzer Space Telescope (‘03)
 - “Drift-Away” orbit
- Mars Reconnaissance Orbiter (‘05)
- Phoenix (Mars ‘07)
 - Polar Lander
- Dawn (‘07)
 - Low Thrust Ion Engines
 - Orbit Vesta in 2011, Orbit Ceres in 2015
- Stardust-NExT and EPOXI
 - “Recycled” Stardust and Deep Impact spacecraft busses
Cassini as an Example

- Interplanetary
- Tour
- Icy Satellites
- Navigation Techniques
- “On-the-fly” Changes
- Lessons
Cassini - Interplanetary Trajectory
Initial Cassini Orbits
Cassini Mission Overview

Year of Tour Orbits
<table>
<thead>
<tr>
<th>Year</th>
<th>Orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
</tr>
</tbody>
</table>

Titan
- *Huygens*

Enceladus
- Phoebe

Other Icy Satellites (under 10,000 km)
- Tethys
- Hyperion
- Dione
- Telesto
- Rhea

- Rhea
- Iapetus
- Epimetheus

Views
- **View From Saturn North Pole**
- **View From Sun**
Science Tweaks (2)

- Moved Stellar Occultation of Iapetus away from closest approach to free up time for close-in imaging
- Tweaked groundtrack closer to equatorial ridge
- Added distant stellar occultation through Enceladus plumes
Science Tweaks (3)

070918

- E3 altitude changes through many reference updates
 - 1000 km \(\rightarrow\) 100 km \(\rightarrow\) 25 km \(\rightarrow\) 50 km
- This update set altitude to 50 km so as to confirm plume debris models
- There will be 25 km flybys in the extended mission
Lessons For Future Missions

• Exploration means the discovery of new risks

• New discoveries mean new places to look

• A capable spacecraft is even more capable with flexible operations

Cassini’s Successor:
http://opfm.jpl.nasa.gov/
Navigation Benefit
• Cassini Prime Mission successfully navigated!
 – Enceladus 50 km flyby successful
 • Achieved error of 0.9 km altitude error
 • Confidence for
 – 50 km E4 on Aug 11
 – 25 km E5 on Oct 9
 • Titan Encounters
 – 23 of 34 < 1 km error
 – 9 of these < 500 m error
 – Saturn and satellite masses determined < 0.2%
Mars Examples

- MER
- MRO
- Phoenix
Mars Exploration Rovers
Mars Reconnaissance Orbiter
More Phoenix Landing

Contour for Meeting the Final Maneuver Criteria on the Phoenix Certified Safe Zone Map

- Phoenix Landing Site
- Target

Location Coordinates:
- Lat: 67.387
- Lon: 238.003
Dawn Interplanetary
Dawn – Vesta Arrival

Survey Orbit Injection
September 10, 2011 21:35:18
Mass 961.8381 [kg]
Energy(Vesta) -0.0030 [km2/s2]

Survey Orbit End
September 24, 2011 21:35:18
Mass 961.8381 [kg]
Energy(Vesta) -0.0030 [km2/s2]

Capture Vesta
August 27, 2011 19:33:20
Mass 963.9240 [kg]
Radius 17352.37 [km]
Future Technology - AutoGNC

• Advancement of AutoNav
 – Performed an onboard autonomous navigation function
 • Uses target body images
 • Processed onboard
 • Computes spacecraft/target relative position and orientation
 – Used on Deep Space 1, Stardust, and Deep Impact
 • AutoNav corrected spacecraft trajectory onboard for both DS1 and DI (guided impactor to collision)
 – Captured all NASA close-up images of comets

• Future Mission Requirements
 – Surface feature recognition
 – Integrated navigation, guidance and attitude control
 – Multi-mission capability
Recent Autonomous GN&C Successes

DS1 AutoNav
Deep Cruise, Navigation
Sept. 1999

Stardust AutoNav
at Annefrank and Wild 2,

DS1 AutoNav
At Borrelly Sept., 2001

Deep Impact AutoNav
at Tempel 1 July 2005

MRO OpNav
Camera
Validation Feb. 2006

Altair lunar landing and
“Touch and Go” on
Wirtanen, AutoGNC
simulations, Spring 2008

Hayabusa Imaging
Science: Itokawa
Shape
Model, Sept. 2005

DI AutoNav
Phobos Landing
Simulation Dec. 2005
Future Missions

- Kepler – Feb ’09 – “Drift-away”
- Mars Science Laboratory (MSL) - Sept/Oct ’09
- Juno – Aug ’11 – Jupiter Orbiter
- GRAIL – Sept/Oct ’11 – Lunar Orbiter
- Outer Planets Flagship Mission(s) – 2016/17?
 - Jupiter Europa Orbiter Mission
 - Titan Saturn System Mission
- Mars Sample Return – 2016-2020?
- More to come
http://www.jpl.nasa.gov

“Missions”

dennis.v.byrnes@jpl.nasa.gov