Evolution of the GPS Navigation Payload – A Historical Journey

Stanford Center for Position, Navigation & Time (SCPNT)

October 2009

This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). However, this information may be restricted from transfer to various embargoed countries under U.S. laws and regulations.
Navigation Payloads have Supplied the Path for GPS Capability and Growth

<table>
<thead>
<tr>
<th>Period</th>
<th>Block</th>
<th>Payloads</th>
<th>GPS Signals</th>
<th>GPS Transmitters</th>
<th>GPS Payload System</th>
<th>Fully Integrated GPS Payload</th>
<th>GPS Modernization</th>
<th>GPS Modernization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974-1983</td>
<td>Block I</td>
<td>12</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• On-Orbit Reprogramability</td>
<td>• On-Orbit Signal Structure Changes</td>
<td>• Flexible RF Power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Crosslink Ranging</td>
<td>• Enhanced Signal Security Per NSA</td>
<td>• High Power GaAs Transmitters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Self Navigation (AutoNav)</td>
<td>• High Power GaAs Transmitters</td>
<td></td>
</tr>
<tr>
<td>1983-1988</td>
<td>Block II/IIA</td>
<td>28</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• Improved Accuracy (1m)</td>
<td>• New High Power Military Unique Signals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Improved Time Keeping</td>
<td>• Improved Time Keeping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Improved Security</td>
<td>• Improved Security</td>
<td></td>
</tr>
<tr>
<td>1987-1989</td>
<td>Payload Box Study</td>
<td>2</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• On-Orbit Reprogramability</td>
<td>• On-Orbit Signal Structure Changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breadboard</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Crosslink Ranging</td>
<td>• Enhanced Signal Security Per NSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Self Navigation (AutoNav)</td>
<td>• High Power GaAs Transmitters</td>
<td></td>
</tr>
<tr>
<td>1988-1999</td>
<td>Block IIR</td>
<td>21</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• Improved Accuracy (1m)</td>
<td>• New High Power Military Unique Signals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Improved Time Keeping</td>
<td>• Improved Time Keeping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Improved Security</td>
<td>• Improved Security</td>
<td></td>
</tr>
<tr>
<td>2000-Present</td>
<td>Block IIR M</td>
<td>8</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• On-Orbit Reprogramability</td>
<td>• On-Orbit Signal Structure Changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Crosslink Ranging</td>
<td>• Enhanced Signal Security Per NSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Self Navigation (AutoNav)</td>
<td>• High Power GaAs Transmitters</td>
<td></td>
</tr>
<tr>
<td>2003-Present</td>
<td>Block IIF</td>
<td>12</td>
<td>• Code Generators</td>
<td>• L1</td>
<td>• Mission Computer</td>
<td>• Improved Accuracy (1m)</td>
<td>• New High Power Military Unique Signals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flight</td>
<td>• L1 Transmitter</td>
<td>• L2</td>
<td>• Atomic Clocks</td>
<td>• Improved Time Keeping</td>
<td>• Improved Time Keeping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Payloads</td>
<td>• Triplexer</td>
<td>• Triplexer</td>
<td>• Crosslink Transponder</td>
<td>• Improved Security</td>
<td>• Improved Security</td>
<td></td>
</tr>
</tbody>
</table>

An Instrumental Part of the Continuous Evolution of GPS
For GPS Block I and II, ITT’s PRNSA Develops and Transmits the GPS L1&L2 Signals

ITT’s Pseudo Random Noise Signal Assembly (PRNSA)
IIR GPS Navigation Payload Represents an Evolution for the GPS Satellite

- GPS IIR Payload is Unique as It is
- Designed as a Completely Integrated System
- Occupies One Side of the Spacecraft on Two Panels
 - NAV
 - L-Band

The GPS Block IIR Space Vehicle
GPS IIR Satellite Navigation Payload

A Complete System From Atomic Reference Clocks Through Transmitted NAV Messages

Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
The MDU or Mission Data Unit Represents the “Heart” of the GPS Payload

- **Main MDU Function – Controlling the L-Band Signals**
 - Combines Uploaded Navigation Data with internally generated Ranging Codes and routes to the L-Band Transmitter System
 - Contains the FSU or Frequency Synthesizer Unit
 - Generates the 10:23 MHz Reference Frequency

- **Additional MDU Functions**
 - Encodes/Prepares NDS Data for L-Band Transmission to Ground and UHF Crosslink
 - Stores & Processes Message Data from OCS
 - Generates PRN Codes & Nav Data
 - Add Anti-Spoof (AS) to Signals for Authorized Users
 - Operate Through & Recovery through Radiation Environment
 - Operate Autonomously for 180 days without Ground Contact in Autonav Mode
 - Operate Accurately for 14 Days in a “Block II” (Non-Autonav) Mode

IIR Payload Flight Panels Under Test at ITT
MDU Controls the Total NAV Payload Operation from Atomic Frequency Standards Through Transmitted Signals

- **Mission Data Unit**
 - Central Processor
 - ADA HOL Used Throughout
 - Clock Frequency Synthesis from Multiple Standards
 - Integral Baseband Processor
 - Full Message Encoding and Message Processing

- **Crosslink Transponder Data Link**
 - RF Receive Transmit of Digital Data
 - Precision Inter Satellite Ranging
 - Frequency Hopped TDMA
 - Full Frame Modulation and Mode Control

- **Time Standard Assembly**
 - Multiple Atomic Frequency Standards for Reliability
 - Accommodates Various Clock Types (Cs, Rb)
 - RAD-Hard Upset Proof Design
 - Synthesized High Stability GPS Timing Signals
 - Automated Integrity Monitoring

- **L-Band Subsystem**
 - 25-30 Watt Transmitter
 - Bandwidth 20 MHz
 - Radiation Hardened
 - L1: 1 or 10 Mchip/s Quadraphase
 - L2, L3: 1 or 10 Mchip/s Biphase
 - Space Proven Design Operational on Block I and Block II

Although supported in MDU software, the fourth map is not provided.
Modernizing the Block IIR Navigation Payload – Adding the New Signals

- High Power GaAs Transmitters with Selectable RF Output
- Significant Signal Flexibility
- M and L2C Codes

Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
Autonav Gives Satellites the Ability to Self-Navigate

AUTONAV
Regularly computes new estimates of Keplerian states and clock states

CROSSTLINK RANGING

Initial upload ephemeris (180 day)

Each spacecraft can navigate autonomously by:
- Crosslink ranging
- Exchanging time tagged nav parameters
A Key Part of the AUTONAV Function is Provided By a VHF Crosslink

CROSSLINKS AND AUTONAV

- Each GPS IIR Satellite has a Redundant Crosslink Transponder Data Unit (CTDU) supplying a dual function for AUTONAV
 - Supplies a Precise Inter-Satellite Ranging Signal
 - Exchanges the AUTONAV State Vector between satellites
- The CTDU is a Time Division Multiple Access (TDMA) Frequency Hopped Spread Spectrum Communication System incorporating a 5 mChip/s Pseudorandom Code. Output power is 108 Watts.

CTDU Configuration Utilizes Dual Frequency for Elimination of Plasmasphere Delays
Autonav as an Aid To GPS Clock Performance

- AUTONAV Synchronizes Constellation Clocks by Processing Inter-Satellite Pseudoranges and Exchanged State Vectors in their Kalman Filters
- Constellation Time Synchronization Diverges within 3 days (AUTONAV OFF), but rapidly converges when AUTONAV turned on (Figure 1)
- One hundred Monte Carlo simulations for a 12 Satellite IIR Constellation shows 95 percentile less than 1.3 meters residual value. All trials < 0.85 meters (Figure 2)
Block IIR Pioneered Improved Reference Frequency Generation

- ΔF Commands Used to Discipline the VCXO for Precise 10.23 MHz Generation
- Having Access to Two Time References Allows for Failure Detection
- Employed a “Natural” Reference Frequency to Implement Multiple Clock Technologies

Hardware Functions
- RAFS
- 13.4 MHz
- 1.5 Sec Reference Epoch
- Reference Epoch Generator
- Phase Meter
- System Epoch Generator
- 1.5 Sec System Epoch
- 10.23 MHz
- VCXO

Software Functions
- Phase Difference Prediction
- Predicted Phase
- Sum
- TKS Loop Filter
- Delta F Command

10/22/09

Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
RAFS-IIR & RFS-IIF

<table>
<thead>
<tr>
<th></th>
<th>RAFS-IIR</th>
<th>RFS-IIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>13.4 MHz</td>
<td>10.23 MHz</td>
</tr>
<tr>
<td>Weight</td>
<td>11.6 lbs</td>
<td>13.55 lbs</td>
</tr>
<tr>
<td></td>
<td>5.26 kg</td>
<td>6.15 kg</td>
</tr>
<tr>
<td>Volume</td>
<td>226.6 in³</td>
<td>290.7 in³</td>
</tr>
<tr>
<td></td>
<td>3.7 liters</td>
<td>4.8 liters</td>
</tr>
</tbody>
</table>

2008 IEEE International Frequency Control Symposium
RAFS-IIR physics package
- Lamp buffer gas was Krypton
- Krypton buffer gas lines are close to Rubidium pumping lines and can not be easily filtered from reaching the photodetector and generating shot noise

RFS-IIIF physics package
- Lamp buffer gas is Xenon
- Xenon buffer gas lines are far away from the Rubidium pumping lines and can be easily filtered by means of a spectral filter (a thin film interference filter)
Physics Package Improvements

2008 IEEE International Frequency Control Symposium

Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
RAFSMOD EDU Performance

RAFSMOD EDU Stability

Allan and Theo Deviation

Log Fit to Frequency Data Removed

Averaging Time, \(\tau \), Seconds

Threshold

Objective

2008 IEEE International Frequency Control Symposium

Use or disclosure of this information is subject to the restrictions on the Title Page of this document.
Are We There Yet?

Future of the Navigation Payload

- Reduced Obsolescence Through
 - Signal Flexibility
 - Reprogramability
 - Flexibility for Mixed Constellation Use
 - Improved
 - Integrity
 - Accuracy
 - Failure Detection
 - Power Requirements
 - Payload Size and Weight

Technology Will Continue to Drive GPS Innovation