Micro-Technology for Positioning, Navigation, and Timing
Towards PNT Everywhere and Always

Dr. Robert Lutwak
Program Manager
Microsystems Technology Office
Defense Advanced Research Projects Agency

Stanford PNT Symposium
Stanford, CA
October 29, 2014

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Formed in 1958 to **PREVENT** and **CREATE** strategic surprise.

Capabilities, mission focused

Finite duration projects

Diverse performers

Multi-disciplinary approach...from basic research to system engineering

We focus on high risk, high reward R&D for national security.
DARPA Technical Offices

BTO
- Biology, Technology & Complexity
- Restore and Maintain Warfighter Abilities
- Harness Biological Systems
- Apply Biological Complexity at Scale

DSO
- Discover, Model, Design & Build
- Physical Sciences
- Mathematics Materials and Manufacturing
- Autonomy
- Science of Complexity

I2O
- Information, Innovation & Cyber
- Cyber
- Data Analysis at Massive Scales
- ISR Exploitation

MTO
- Electronics, Photonics & MEMS
- Biological Platforms
- Computing
- Electronic Warfare
- Manufacturing
- Novel Concepts
- Photonics
- Positioning, Navigation and Timing
- Thermal Management

STO
- Networks, Cost Leverage & Adaptability
- Battle Mgmt, Command & Control
- Comms & Networks
- Electronic Warfare
- Positioning, Navigation and Timing

TTO
- Weapons, Platforms & Space
- Air Systems
- Ground Systems
- Marine Systems
- Space Systems

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
DARPA PNT programs focused on reducing GPS reliance

Achieve GPS-level timing and positioning performance without GPS
 • Eliminate GPS as single point of failure
 • Provide redundant capabilities and adaptable architectures
 • Provide optimal PNT solution based on all available data sources

Outperform GPS for disruptive capabilities
 • Ultra-stable clocks (short and long term) for electronic warfare, ISR, and communications
 • Persistent PNT in environments where GPS was never designed for use: undersea, underground, indoors
 • High precision PNT for cooperative effects (distributed electronic warfare, distributed ISR, autonomous formation flying, time transfer to disadvantaged users)
Notional all source navigation

- C-band comm.
- GPS
- IMU
- Ku-band comm.
- alimeter
- air speed
- nose camera
- SAR imagery
- EO/IR imagery
- SIGINT (not shown)

current navigation sensors
existing sensors applicable to all source navigation
Adaptable Navigation Sensors and Systems

Global Navigation Satellite Systems
- Present: GPS, GLONASS, WAAS, EGNOS
- Future: Galileo, BeiDou, QZSS, IRNSS

Inertial Sensors
- Present: iFOG, RLG, MEMS
- Future: PINS-HiDRA, TIMU, C-SCAN, MRIG, PASCAL

Clocks
- Present: Cesium beam, Rubidium and quartz oscillators, CSAC
- Future: QuASAR, IMPACT, MEMs

Signals of Opportunity
- Future: Cell towers, SATCOM, Radio, TV, Lightning, etc.

Other Sensors
- Present: Camera, pitot, altimeter, RADAR, magnetometer, etc.

Optimal solution algorithms
Plug-and-play architectures

Distributed and future-proof
Program Objective:

Every thing knows where and when it is all of the time

“PNT Everywhere”

- Specifically: Unaided navigation and timing error of 20 m and 1 \(\mu \)s at 1 hour
- Applications have requirements on Cost, Size, Weight, and Power (CSWaP)
- At present, we can meet performance requirements in an unmoving laboratory, with unlimited power, for about $1M.
- DARPA micro-PNT goal: 10 mm\(^3\), 2g, 1W
- Where are the off-ramps?
 - For many platforms: 30,000 cm\(^3\), 10 kg, 10 W, + $10,000
 - For most platforms: 1000 cm\(^3\), 1 kg, 1W, + $1000.
 - For EVERY platform: 1 cm\(^3\), 100 g, 100 mW, $100

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
DoD Munition Profiles

Source: http://en.wikipedia.org/wiki/List_of_active_missiles_of_the_United_States_military

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Battery-powered atomic timing
- Next-gen GPS
- Freq. Agile Radio
- Geolocation
- ISR
- IED defeat
- Remote sensing
- Calibration

DARPA Timing Programs
Gyroscope Technology Gaps

- MEMS Gyroscopes (current micro-PNT efforts: PASCAL, MRIG, TIMU)
 - Super-low CSWaP (< $50, < 1 cm³, < 100 mW)
 - **Gap**: Performance, mostly bandwidth, calibration drift and temperature sensitivity

- Atomic Gyroscopes (current micro-PNT efforts: C-SCAN)
 - Superb stability and accuracy
 - Viable candidate for navigation in FY2030
 - **Gap**: Only lab demonstrations to date; enabling atomic physics components needed

- Optical Gyroscopes (e.g. RLG and iFOG)
 - Good stability and accuracy
 - Candidate technology for gyrocompassing
 - **Gap**: Cost and SWaP ($25K, 500 cm³, 2W); MEMS-based solution?
Primary and Secondary Calibration on Active Layer

PASCAL Objective:
Realize MEMS inertial sensors with on-chip calibration to address long-term drift of bias and scale factor

Key challenges:
- Co-fabrication of high-performance MEMS devices and calibration stages
- Calibrator calibration, numerous (tiny) moving parts
- “True” reversibility

<table>
<thead>
<tr>
<th>PASCAL Metrics</th>
<th>Ph I</th>
<th>Ph II</th>
<th>End Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume [mm³]</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Bias stability (1 month) [ppm]</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Scale factor stability (1 month) [ppm]</td>
<td>100</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Approaches: Active Layer Stage (TA1)

<table>
<thead>
<tr>
<th>External physical reference stimulus (dithering, maytagging, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Honeywell</th>
<th>University of Michigan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Grant Lodden</td>
<td>Prof. Khalil Najafi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sandia National Labs/Draper Laboratory</th>
<th>Cornell University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Murat Okandan</td>
<td>Prof. Amit Lal</td>
</tr>
</tbody>
</table>
Approaches: Electronic Self-Calibration (TA2)

<table>
<thead>
<tr>
<th>Electronic interchange of drive/sense (detect and correct for mechanical change)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PSU-ARL</td>
</tr>
<tr>
<td>Mr. Terry Roszhart</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UC Berkeley</td>
</tr>
<tr>
<td>Prof. Bernhard Boser</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Sandia/Draper MEMS Gyro + Active Layer Gimbal Rotation
Single-chip Timing and Inertial Measurement Unit (TIMU)

TIMU Objective:
Fully-integrated co-fabricated 6-axis IMU for extraordinarily low CSWaP

Key challenges:
- Co-fabrication of high-performance MEMS inertial sensors
- Encapsulation requirements for gyros vs. accels
- Top-level yield

<table>
<thead>
<tr>
<th>TIMU Metrics</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume [mm³]</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IMU accuracy [CEP, nmi/hour]</td>
<td>Oper.</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Timing accuracy [ns/min]</td>
<td>Oper.</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Power [mW] (-55°C to +85°C)</td>
<td>-</td>
<td>500</td>
<td>200</td>
</tr>
</tbody>
</table>
Approaches

<table>
<thead>
<tr>
<th>Multi-layer (stacked die)</th>
<th>Monolithic (single die)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell Dr. Bob Horning</td>
<td>University of Michigan Prof. Khalil Najafi</td>
</tr>
</tbody>
</table>

Three-Dimensional (folded, co-integrated)

<table>
<thead>
<tr>
<th>Evigia Dr. Navid Yazdi</th>
<th>UC Irvine Prof. Andrei Shkel</th>
</tr>
</thead>
</table>
Micro-Scale Rate-Integrating Gyroscope (MRIG)

MRIG Objective:
Micro-scale, high-performance, rate-integrating gyroscope for high-bandwidth high-accuracy inertial navigation

Key Challenges:
Fabrication of high-Q, high-symmetry MEMS devices

Northrop-Grumman
Hemispherical Resonator Gyroscope (HRG)
4W, 250 cm³, $100K

MRIG Goals
100 mW, 1 cm³, $50

Output
- RIG
- TFG

30 Hz 60 Hz

Courtesy L. Sorenson, HRL
Approach: Surface Tension Processes

<table>
<thead>
<tr>
<th>CVD Diamond</th>
<th>Fused Silica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell (Dr. Burgess Johnson)</td>
<td>Univ. of Michigan (Prof. Khalil Najafi)</td>
</tr>
<tr>
<td>![CVD Diamond Image]</td>
<td>![Fused Silica Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulk Metallic Glass</th>
<th>ULE Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yale University (Prof. Jan Schroers)</td>
<td>UC Irvine (Prof. Andrei Shkel)</td>
</tr>
<tr>
<td>![Bulk Metallic Glass Image]</td>
<td>![ULE Glass Image]</td>
</tr>
</tbody>
</table>
Approach: Deposition on a Mold

<table>
<thead>
<tr>
<th>Silicon-Based</th>
<th>Nickel Alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northrop / Ga Tech D. Rozelle, Prof. F. Ayazi</td>
<td>Northrop / Georgia Tech D. Rozelle, Prof. F. Ayazi</td>
</tr>
<tr>
<td>Cornell University Prof. Sunil Bhave</td>
<td>GE Global Research Christopher Keimel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CVD Diamond</th>
<th>ULE Glass</th>
<th>ALD Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC Davis Prof. David Horsley</td>
<td>Draper Laboratory Dr. Jon Bernstein</td>
<td>University of Utah Prof. Carlos Mastrangelo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CU Boulder Prof. Victor Bright</td>
</tr>
</tbody>
</table>

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Atomic Gyroscopes

• **Similar to clocks, atoms make fabulous gyroscopes**
 • All atoms are the same
 • No manufacturing variance, minimal calibration drift

• **Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Program**
 • Parallel pursuit of two physics architectures
 • Nuclear Magnetic Resonance Gyroscopes (NMRG)
 • Each atom is a tiny spinning-top gyroscope (but no bearing friction)
 • Under development since 1940’s
 • New opportunity for practicality leveraging CSAC technology
 • Atom-Interferometric (AI) Gyroscopes
 • Similar to fiber-optic gyroscope (FOG) and ring-laser gyroscope (RLG)
 • Use atom waves rather than light waves
 • Provides both gyroscopy and accelerometry
 • STO PINS/HiDRA program targeting extra-super performance
 • MTO C-SCAN targeting great performance in low C-SWaP

• **Technology gap:** Enabling atomic physics components
 • Nearly identical requirements as high-performance clocks, magnetometers, gravimeters, etc.
Approach: Light Pulsed Atomic Interferometry

<table>
<thead>
<tr>
<th>AO Sense</th>
<th>Draper Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Matt Cashen</td>
<td>Dr. David M. Johnson</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandia National Labs</td>
<td>Honeywell</td>
</tr>
<tr>
<td>Dr. Grant Biedermann</td>
<td>Dr. Robert Compton</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approach: Nuclear Magnetic Resonance

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northrop Grumman</td>
<td>Dr. Mike Larsen</td>
</tr>
<tr>
<td>Microsemi</td>
<td>Dr. Richard Overstreet</td>
</tr>
<tr>
<td>UC Irvine</td>
<td>Prof. Andrei Shkel</td>
</tr>
<tr>
<td>Princeton University</td>
<td>Prof. Mike Romalis</td>
</tr>
</tbody>
</table>
CAMS Objective:
Laboratory experiments have demonstrated that laser-cooled atomic clocks and inertial sensors are capable of extraordinary performance. Practical deployment of cold-atom sensors requires the development of enabling components. CAMS is a collection of seedlings developing low-CSWaP atomic wavelength lasers, optical isolators, shutters, vacuum cells, alkali vapor pressure control, and frequency control techniques.

Key Challenges:
• Maintain lifetime vacuum levels of 1nT without magnets
• Stabilization of alkali vapor pressure across mil-spec temperature range
• Fast, large aperture, shutters with extinction ratio >70dB
• Stable, single-mode, narrow-linewidth lasers at atomic transition wavelengths
• All at low-CSWaP
Thank you

Robert.Lutwak@darpa.mil