Demonstration of sub-nanosecond time transfer via optical links to nanosatellites

Paul Serra, Nathan Barnwell, Leopoldo Caro, Maria Carrascilla, Olivia Formoso, Seth Nydam, Norman Fitz-Coy, John W. Conklin
Background and Motivation

Use of precision time transfer to space:
- Satellite navigation systems ($\Delta x = c \Delta t$)
- International time standards
- Test of general relativity
- Satellite encryption/authentication

Solution: exchange of light pulses
- Optical frequencies less affected by ionosphere than RF ($\sim 1/f^2$)
- CNES T2L2 (2008), hosted payload on Jason-2

CHOMPTT Objectives:
- <200 psec time transfer error
- <20 nsec clock drift after 1 orbit
- Real time clock update
CHOMPTT: CubeSat Handling Of Multisystem Precision Time Transfert (NS-8)

Clock discrepancy

$$\chi = t_{1}^{space} - \frac{t_{2}^{ground} + t_{0}^{ground}}{2} + \Delta t$$
Application to Navigation

Improved time transfer accuracy
- Better time standard on navigation satellites

Robust against signal interference/jamming

Disaggregated Navigation System:
1. Command station performs time transfer to timing satellite
2. Navigation satellites synced to timing satellite using RF
3. End-users determine location and time from navigation satellites

Acknowledgement:
Leo Hollberg (Stanford)
Optical Precision Time-transfer Instrument (OPTI)

SLR Facility

Laser

Beam Splitter

t_0

ground

t_2

ground

Event Timer

Clock
t_{ground}

Atmosphere

Photodiode

Space Instrument

Event Timer

Photodiode

Retroreflector

Clock
t_{cubesat}

t_{1}

cubesat

Paul Serra, Stanford PNT Symposium 2014
Atomic Clocks

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Chip Scale Atomic Clock (CSAC)</th>
<th>Miniature Atomic Clock (MAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Cesium</td>
<td>Rubidium</td>
</tr>
<tr>
<td>Allan Deviation (time error)</td>
<td>$3.3 \times 10^{-12} @ 6000$ sec (20 nsec)</td>
<td>$9.5 \times 10^{-13} @ 6000$ sec (6 nsec)</td>
</tr>
<tr>
<td>Power</td>
<td>0.12 W</td>
<td>5 W</td>
</tr>
<tr>
<td>Mass</td>
<td>35 g</td>
<td>85 g</td>
</tr>
<tr>
<td>Size (LxWxH)</td>
<td>40.64 x 35.31 x 11.42 mm</td>
<td>51 x 51 x 18 mm</td>
</tr>
</tbody>
</table>

Clocks from Microsemi
Photodetectors

2 avalanche photodiodes:
- InGaAs for 1064 nm, 150 ps rise time
- Si for 532 nm, 500 ps rise time

Photodetector in linear mode

Temperature regulated by Thermo-Electric Coolers

Photodetectors are fiber-coupled

Pulse sent back by a PLX retroreflector
- 25 mm diameter, 50° FOV
- Space Capable
Optics

Band-pass filters
- Increase SNR

Light collected by a multimode optical fiber on the nadir face
- 12° max incidence
- 200 µm diameter

GRIN Lens focuses light onto APD
10 psec Event Timers – fine time

2 independent channels

Fine time on short intervals, course time over long duration

Time-to-digital converter – measures fine time
 ◦ Integrated, off-the-shelf: Acam TDC-GPX
 ◦ Measurement based on propagation delays
 ◦ Autonomous calibration using Delay Lock Loops
 ◦ Low power (<150 mW)
 ◦ 10 ps single shot accuracy
 (12 ps measured)
10 psec Event Timer – course time

Counter – measures course time
 ◦ Ti MSP430 microcontroller used as counter

TDC and Counter are synchronized on an a chosen clock rising edge.
 ◦ Within 7 µs TDC range
OPTI Laboratory Demonstration

SLR Emulator

Laser, Pulse driver
Beam Splitter

$ t_{\text{ground}}$
CSAC
Event Timer

APD
$t_{0, \text{ground}}$
$t_{2, \text{ground}}$

Space Segment

Event Timer

CSAC
$ t_{\text{space}}$

APD
$t_{1, \text{space}}$
Measured Performance

Clock difference (2 CSACs) measured using OPTI breadboard

![Graph showing measured performance over elapsed time (ksec)]
Timing Error Budget

GPS Time (20 nsec)

10 nsec

1 nsec

Predicted Timing Budget

Measured

One Orbit

Timing error, Δt (nsec)

Averaging time τ (sec)
OPTI Flight Instrument

- Interface and power regulator
- TEC controllers, reverse bias voltage
- Event Timers
- Photodetectors
- Atomic Clocks
- Light collectors
- Retroreflector (not shown)

CSAC
MAC
MAC

CSAC

Event Timers

TEC controllers and reverse bias voltage

Interface and power regulator (balloon launch configuration)
The CHOMPTT 3U CubeSat

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF turnstile, GPS antennas</td>
</tr>
<tr>
<td>CDH (MSP430)</td>
</tr>
<tr>
<td>GPS receiver, UHF/VHF radio</td>
</tr>
<tr>
<td>Batteries</td>
</tr>
<tr>
<td>Power distribution system</td>
</tr>
<tr>
<td>ADACS interface electronics</td>
</tr>
<tr>
<td>ADACS</td>
</tr>
<tr>
<td>Interface electronics</td>
</tr>
<tr>
<td>High voltage, TEC controllers</td>
</tr>
<tr>
<td>Event timers, clock counters</td>
</tr>
<tr>
<td>CSAC</td>
</tr>
<tr>
<td>MAC</td>
</tr>
<tr>
<td>Retroreflector and light collectors</td>
</tr>
</tbody>
</table>

Paul Serra, Stanford PNT Symposium 2014
Concept of Operations

1. Launch
2. Deployment
3. Safe Hold
4. Standby
5. Measurement Prep
6. Measurement
7. Communication
8. Deorbit

SLR
Ground Station (Flight Operations)
Laser Communication

2-Pulse Position Modulation (2 slots per pulse)

Synchronization string provide phase and rate for communication, masks SLR delays

High precision measurement only on the first pulse

Timed laser pulse

- Synchronization string
- Timing data (20 bytes)
- Checksum (2 bytes)

TRUE/1
FALSE/0
Sync. error
Comm. Loss or sync. error
Status and Future

Engineering Model of OPTI fabricated, currently under test

High altitude balloon launch
 ◦ In space a few hours ago

2015: OPTI integrated into CHOMPTT satellite bus

Qualification testing at NASA KSC

2016-2017: ELaNA launch

Satellite Laser Ranging collaborators
 ◦ Townes Institute Science & Technology Experimentation Facility at University of Central Florida, CREOL
 ◦ NGSLR managed by NASA GSFC, MD
 ◦ Starfire optical range at Kirtland AFB, NM
High Altitude Balloon Launch