GPS, Flying Clocks and Fun with Relativity

Tom Van Baak (tvb)

www.LeapSecond.com

"Time Nut"

Outline

- Part 1 Navigation and traveling clocks
 - clocks, timing, the 'T' in PNT
- Part 2 GPS and <u>relativity</u> (time dilation)
 - so good it needs clock corrections
- Part 3 Atomic clock <u>collecting</u> hobby
 - going to extremes at home
- Part 4 Project <u>GREAT</u>
 - a DIY gravitational time dilation experiment

- Who is this?
 - John Harrison
- Why all the clocks?
 - genius <u>clockmaker</u>
 - marine chronometer, accurate
- Longitude prize winner
 - 1759 (250+ years ago)
 - he put the "T" in PNT
- Read.the.book
 - by Dava Sobel

- Who is this?
 - John Harrison
- Why all the clocks?
 - genius <u>clockmaker</u>
 - marine chronometer, accurate
- Longitude prize winner
 - 1759 (250+ years ago)
 - he put the "T" in PNT
- Read.the.book
 - by Dava Sobel

- Who is this?
 - John Harrison
- Why all the clocks?
 - genius clockmaker
 - marine chronometer, accurate
- Longitude prize winner
 - 1759 (250+ years ago)
 - he put the "T" in PNT
- Read.the.book
 - by Dava Sobel

- Who is this?
 - John Harrison
- Why all the clocks?
 - genius clockmaker
 - marine chronometer, accurate
- Longitude prize winner
 - 1759 (250+ years ago)
 - he put the "T" in PNT
- Read.the.book
 - by Dava Sobel

Cesium "chronometers" by air

- Who is this?
 - Len Cutler, hp clockmaker
- See the clock?
 - hp 5060A cesium atomic
 - batteries & "digital" clock
- Mission?
 - time synchronization
 - cross-country
 - round-the-world
 - 1960's "flying clock" era

Cesium "chronometers" by land

- Who is this?
 - hp field engineer
- See the clock?
 - hp 5061A cesium
 - atomic clock
- Marketing ad
 - year 1967
 - self-contained
 - portable, rugged
 - accurate 1µs/month

Flying clocks around-the-world

- Who is this?
 - J.Hafele & R.Keating
- See the clocks?
 - 4 @ hp 5061A
 - backup DC power
 - time interval counter
- Relativity experiment
 - year 1971
 - commercial flights
 - RTW, twice! (6 days)

Outline

- Part 1 Navigation and traveling clocks
 - clocks, timing, the 'T' in PNT
- Part 2 GPS and <u>relativity</u> (time dilation)
 - so good it needs clock corrections
- Part 3 Atomic clock <u>collecting</u> hobby
 - going to extremes at home
- Part 4 Project <u>GREAT</u>
 - a DIY gravitational time dilation experiment

Ultimate "flying" clocks: spacecraft

- GP-A
- NTS-2
- NAVSTAR / GPS

First space test was GP-A

- Gravity Probe "A"
- 1976, first H-maser in space
 - Robert Vessot, <u>clockmaker</u>
- Successful test of relativity
 - science mission
 - launched to 10,000 km
 - 2 hour flight up / down
 - 60 ppm accuracy

First orbital test was NTS-2

"Navigation Technology Satellite"

- 1977, first cesium in orbit
 - Robert Kern, clockmaker
- Successful test of relativity
 - pre-NAVSTAR (GPS)
 - 12 hour orbit
 - similar relativity as GPS
 - cesium clocks, synthesizer

Relativity in NTS-2

- Plots for NTS-2
- $4.425 \times 10^{-10} = 38 \, \mu s/day$

32 atomic clocks in space: GPS

- What's this?
 - GPS IIR-M
 - present era
- 250 year evolution
 - from Harrison to GPS
 - now many GNSS
- Clock accuracy
 - from seconds/dayto nanoseconds/day

15

Relativity in GPS

GPS orbits are extreme:

```
speed 14,000 kph, 8,700 mph (Mach 12) altitude 20,000 km, 12,500 miles (\sim3× R<sub>e</sub>) N.B. GPS speed is only 0.000013 c, "13 \muc"
```

Large relativistic effects occur:

```
\Deltaf/f is -8.4 \times 10^{-11}, or -7.3 µs/day (kinematic) \Deltaf/f is +5.3 \times 10^{-10}, or +45.6 µs/day (gravitational) \Deltaf/f is +4.4 \times 10^{-10}, or +38.3 µs/day (net effect) 1.023 MHz set to 10.2299999954326 MHz
```

How small is 4×10^{-10} ?

Relativity correction:

```
4.4647 \times 10^{-10} (fractional frequency offset) 38.575~\mu s / day (time interval ratio units) \sim 1~ms / month 1~s / \sim 71~y ears
```

• In "newspaper" units:

~6 inches / distance to Moon

~1 atom / 1 meter

~1.4 m² / area of Rhode Island

~1 cm³ / volume of Olympic swimming pool

Relativity at human scale: SR

GPS velocity

```
14,000 kph, 8,700 mph (Mach 12)
Δf/f is -8.4×10<sup>-11</sup>, or -7.3 μs/day (kinematic)
```

- Human-scale velocity
 - -3×10^{-13} , 0.02 µs/day flying (500 mph)
 - -4×10^{-15} , 0.0003 µs/day driving (60 mph)
 - -1×10⁻¹⁷, 0.0000008 µs/day walking (3 mph)

Relativity at human scale: GR

GPS altitude

```
20,000 km, 12,500 miles (\sim3× R<sub>e</sub>)

\Deltaf/f is +5.3×10<sup>-10</sup>, or +45.6 µs/day (gravitational)
```

Human-scale altitude

```
+9.6×10<sup>-13</sup>, 0.083 μs/day – Mt. Everest (8848 m)
+1.7×10<sup>-13</sup>, 0.015 μs/day – Denver, CO (1 mile)
+9.5×10<sup>-15</sup>, 0.00082 μs/day – Hoover tower (285 ft)
```

- "down to earth" relativity
 - Denver 3000× less than GPS

Outline

- Part 1 Navigation and traveling clocks
 - clocks, timing, the 'T' in PNT
- Part 2 GPS and <u>relativity</u> (time dilation)
 - so good it needs clock corrections
- Part 3 Atomic clock <u>collecting</u> hobby
 - going to extremes at home
- Part 4 Project <u>GREAT</u>
 - a DIY gravitational time dilation experiment

Precise time as a hobby (1994)

How to keep time?

- "Timebase" required (quartz oscillator)
 - how accurate is it?
 - how to measure it?
- Use frequency counter
 - how accurate is it?
 - how to measure it?
- Use a reference standard
 - how accurate ...

Timebase accuracy

- 0.01 / 10.00 MHz = 0.1% (90 sec/day)
- 0.0001 / 10 MHz = 10 ppm (1 sec/day)

The quest for better oscillators

The quest for more digits

The quest for larger time lab

Slippery slope!

- I started <u>www.LeapSecond.com</u>
 - to share photos, data, software, lab reports, manuals
- Then created the "time-nuts" mailing list
 - now 1800 'nuts interested in amateur precise time
 - like amateur astronomy, seismology, etc.
- Relatively inexpensive, time-consuming hobby
 - measurement concepts work at \$1 as well as \$1000
 - easy to buy, repair, trade, collect interesting gear
 - massive trove of military and telecom surplus (eBay)

Vintage hp 5061A (eBay)

Extremely wide range of precision

- $10^{-2} = 1\% \approx 15 \text{ min / day}$
- $10^{-4} = 0.01\% \approx 1 \text{ min / week}$
- $10^{-6} = 1 \text{ ppm} \approx 0.1 \text{ s / day}$
- $10^{-8} \approx 1 \text{ ms / day}$
- $10^{-10} \approx 10 \, \mu s / day$
- $10^{-12} = 1 \text{ ppt} \approx 100 \text{ ns} / \text{day}$
- $10^{-14} \approx -1 \text{ ns / day} \approx 1 \text{ s / } 3,000,000 \text{ years}$
- 10⁻¹⁶ ≈ ~3 ns / year ≈ 3 s / billion years

10⁻² heart beat

- The original '1 PPS'
- 10% stability at night, long-term
- 1% stability possible, short-term


```
61.0
61.0
62.0
62.0
62.0
63.0
64.0
65.0
65.0
65.0
65.0
64.0
63.0
62.0
60.0
60.0
60.0
```

10⁻⁴ tuning fork, mains

- Mechanical oscillator transistorized
- "Four 9's"

```
999.907,211,67 Hz

999.907,250,33 Hz

999.907,273,16 Hz

999.907,311,01 Hz

999.907,250,27 Hz

999.907,345,09 Hz

N : 60

STD DEV: 151.812 UHz

MEAN : 999.907,159,334 Hz

MAX : 999.907,404,05 Hz

MIN : 999.906,840,54 Hz

999.907,392,20 Hz

999.907,415,25 Hz

999.907,354,85 Hz
```


10⁻⁴ tuning fork, mains

Power line frequency: 60± Hz

```
60.003,640,720,5
60.009,491,393,8
60.000,431,181,6
                  Hz
59.992,198,219,9
                  Hz
59.987,371,509,5
                  Ηz
59.993,148,200,6
                  Hz
59.999,032,462,5
                  Hz
59.985,892,634,1
                  Hz
59.995,727,396,2
         36
STD DEU: 0.006,765,596,40 Hz
MEAN
       : 59.999,554,563,23 Hz
MAX
       : 60.010,390,980,5
MIN
       : 59.985,892,634,1
59.996,011,518,6
```


60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~1 month)

10⁻⁶ quartz watch, chronometer

• +160 ms/d = +1.85 ppm

10⁻⁶ quartz watch, chronometer

Conservatively rated ¼ sec/day deviation

10⁻⁸ pendulum clock, earth

- Shortt-Synchronome
- 1 second / year

10⁻⁸ pendulum clock, earth

~1 second / year, irregular

10⁻¹⁰ ovenized quartz

- 10⁻¹⁰...10⁻¹³ short-term
- 5×10⁻¹⁰/d drift

::\tvb\TSCplot\Log4165.gif

10⁻¹² rubidium (atomic)

- ~10⁻¹³ mid-term
- $\sim 10^{-11}$ /month drift

10⁻¹⁴ cesium (atomic)

- ~10⁻¹³ mid-term
- 1×10⁻¹⁴ at 1 day

C:\tvb\TSCplot\Log23362.gif

39

- Most stable (but non-portable)
- 5×10⁻¹⁶ possible

40

FYI: cesium (caesium)

- Cesium atomic clocks are not radioactive
- They use a natural, stable Cs¹³³ atom, not the dangerous man-made radioisotope Cs¹³⁷
- Analogy: C¹² vs. C¹⁴
- K³⁹ vs. K⁴⁰ (banana)
- "hyperfine transition"9,192,631,770 Hz
- Solid / liquid [28 °C]

First radioactive cesium clock!

Outline

- Part 1 Navigation and traveling clocks
 - clocks, timing, the 'T' in PNT
- Part 2 GPS and <u>relativity</u> (time dilation)
 - so good it needs clock corrections
- Part 3 Atomic clock <u>collecting</u> hobby
 - going to extremes at home
- Part 4 Project <u>GREAT</u>
 - a DIY gravitational time dilation experiment

Clocks, mountains, relativity

- Is relativity detectable at human scale?
 - have I accumulated enough toys by now?
 - can time dilation be measured by an amateur?
 - can I travel fast enough, or high enough?

A great idea

- Take our 3 kids with portable cesium clocks high up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run <u>faster</u> up there
- In 2005

Einstein and 2005

 100th anniversary of relativity: books, magazines, radio, TV, web sites, "Physics Year", lectures...

Louis Essen (UK) and 2005

- 50th anniversary of cesium clock (NPL)
- "famous for a second" 9 192 631 770 Hz

Project GRE²AT

- General Relativity Einstein/Essen Anniversary Test (2005)
 - 100th anniversary (Einstein) theory of relativity
 - 50th anniversary (Essen) first cesium clock
- Combine atomic clock hobby, physics, history, technology, math, computers, children, car trip, vacation, and family fun
- First "home made" general relativity test

Back-of-envelope calculation

- Turn infinitesimal into measurable
- Frequency change $\Delta f/f \approx gh/c^2$ $\Delta f/f \approx 1.09 \times 10^{-16} \text{ s/s/meter}$
- But if you go up $\frac{1 \text{ km instead of } 1 \text{ m}}{\Delta f/f} = 1.1 \times 10^{-13} = 0.11 \text{ ps/s}$ note: $4000 \times \text{less than GPS}$
- And if you stay up there 24 hours, then $\Delta T = \Delta f/f \times 86400 \text{ s} = 9.5 \times 10^{-9} \text{ s} = 9.5 \text{ ns}$
- Rule-of-thumb: 1 km elevation ≈ 10 ns/day

Magnify 0.000000000000001

- Go as high as possible
- Stay as long as possible
- Measure as precisely as possible
- Use the **best** clock(s) possible

Cartoon by Dusan Petricic
Scientific American column Wonders by Philip and Phyllis Morrison
http://www.sciam.com/1998/0298issue/0298wonders.html

Bellevue to Mt Rainier

Just 100 miles away (~2½ hours)

 Carrying synchronized, running cesium clock downstairs. Repeat. Repeat.

• 3 clocks in the middle. Batteries on the floor. Monitoring instruments in front.

 3 kids in the back. Dad making final clock BNC connections. Mom says goodbye.

 Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

 Paradise Inn is at 5400' elevation. Large parking lot for car & precious clocks.

 Classic old Northwest inn. Wonderful place to visit during the summer.

 Wonderful hiking trails and climbing. Lucky to have clear weather.

 Avoid a ticket and move the car again. Worried about running out of fuel.

 More hiking, exploring, playing. It's a fun place for a weekend.

 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

Time dilation: prediction

- Home clock and mountain clock elevations
- 5400 ft 1000 ft = 4400 ft (1340 m)
- $\Delta f/f = 1.46 \times 10^{-13}$ times 42 hours = +22 ns

Time dilation: measured

- 3 clock <u>mean</u>
 23.2 ns
 ±4 ns
- Prediction22.4 ns
- Wow!

Project GRE²AT – summary

- Einstein was right; time dilation is real!
 - clocks (and we) came back 22 ns older
 - gravitational effect (elevation, not velocity)
 - unexpected press: WIRED, Physics Today, Reddit,
 Scientific American, even a physics textbook, etc.
- Now "relativity is child's play"

And then a decade later...

GREAT 2016a – Lemmon

- Stephen Hawking "GENIUS" series (PBS / BBC)
 - episode on space-time, clocks, time dilation
 - they asked me to repeat the GREAT experiment
- Mt Lemmon, Tucson, AZ (January 2016)
 - 9160 ft (2790 m) summit, dormitory
 - 2600 ft (790 m) base camp, hotel
 - UK film crew, tight schedule, no re-takes
- 2000 m × 24 hours = ~20 ns time dilation
 - used 3+3 cesium clocks

2016a – time dilation results

2016a – summary

- It worked! (much relieved)
 - up-down-up vs. down-up-down
 - different elevation and latitude (earth rotation)
- RIP Stephen Hawking (1942–2018)
- Show available on iTunes or pbs.org

GREAT 2018a – Palomar

- Earlier this year (2018), another request
 - History channel, "In Search Of", Zachary Quinto
- Demonstrate time dilation
 - sort of related to their "time travel" theme
- Palomar Mountain, CA
 - low clocks: Oceanside (sea level)
 - high clocks: Palomar Mountain (~5500 ft)
- Predicted time dilation: ~15 ns
 - used 2+2 cesium clocks

2018a - prep

2018a – battery backup

November 2018 SCPNT/Stanford 73

2018a – summary

- Predicted time dilation: 15.5 ns
 - based on recorded elevation and dwell time
- Measured time dilation: 14.1 ns
 - another success!
 - Cs1 to Cs4: 14.3 ns
 - Cs3 to Cs5: 13.8 ns
- Show available on iTunes or history.org

Conclusion

- Welcome to the world of amateur precise time
 - fascination with time, vintage and atomic clocks, counters, experiments, GPS, relativity, etc.
- GR time dilation experiments
 - just for fun, with the kids, and
 - larger audience via talks, TV episode or two
- Looking for interesting new venues
 - below sea level, or deep underground?
 - 50th anniversary of Hafele-Keating in 2021

Thanks

- Thanks to Tom Langenstein, Leo Hollberg, and Ralph Devoe (via time-nuts).
- Thanks for your time...
- Contact: tvb@LeapSecond.com
- Website: <u>www.LeapSecond.com</u>
- Questions?

Backup slides

Time interval counter (TIC)

- Time-To-Digital
 - start input
 - stop input
- Trigger
 - pos/neg slope
 - AC/DC input
 - trigger level
- Resolution

Comparing clocks / nanosecond

Terrestrial relativity math, easy

- At modest speeds and modest elevation
 - time dilation equations become very simple
- Kinematic effect (moving clocks run slower)
 Δf/f ≈ -½v²/c²
- Gravitational effect (lower clocks run slower)
 Δf/f ≈ +gh/c²
- Sign? SI second defined at sea level
 - so clocks speed up with higher altitude
 - "speed up" is actually "slow down less"

Power of c²

Speed of light

 $c \approx 300\ 000\ 000$

 $c^2 \approx 90\ 000\ 000\ 000\ 000$

 $1/c^2 \approx 0.000\ 000\ 000\ 000\ 001$

- $E = mc^2$
 - c² in numerator
 - very, very large
- $\Delta f/f = gh/c^2$
 - c² in denominator
 - very, very small
- As they say: "make time dilation, not war"

First "atomic" wristwatch

Smaller and smaller ... CSAC

Museum of hp clocks

HP quartz

- 105B
- 107BR
- 106B
- 104AR
- 103AR
- 101A
- 100ER

HP clocks

- HP01
- 571B
- **•** 5321
- 117A
- 114BR
- 115BR
- 113AR

HP cesium & rubidium

- 5071A
- 5065A
- 5062c
- 5061B
- 5061A
- 5060A

Elevation and *predicted* dilation

3-hat, residuals (home)

Cs_i – Cs_j via lab reference

3-hat, residuals (away)

Cs_i – Cs_i via mutual-comparisons

3 clocks using '3-hat'

3-hat, residuals (combined)

Cs_i – Cs_j

3 clocks using '3-hat'

Kids, Clocks, and Relativity on Mt Rainier Three Cesium Clocks: Red Green Blue & Mean

Chronometer adjust (time, rate)

Frequency adjust

Atomic clock 1PPS – 10 s

Atomic clock 1PPS – 10 ms/div

Atomic clock 1PPS – 10 µs/div

Atomic clock 1PPS – 10 ns/div

Cesium 9,192,631,770 Hz

