GPS, Flying Clocks and Fun with Relativity

Tom Van Baak (tvb)
www.LeapSecond.com
"Time Nut"

Outline

- Part 1 - Navigation and traveling clocks
- clocks, timing, the 'T' in PNT
- Part 2 - GPS and relativity (time dilation)
- so good it needs clock corrections
- Part 3 - Atomic clock collecting hobby
- going to extremes at home
- Part 4 - Project GREAT
- a DIY gravitational time dilation experiment

Chronometers at sea

- Who is this?
- John Harrison
- Why all the clocks?
- genius clockmaker
- marine chronometer, accurate
- Longitude prize winner
- 1759 (250+ years ago)
- he put the "T" in PNT
- Read.the.book
- by Dava Sobel

Chronometers at sea

- Who is this?
- John Harrison
- Why all the clocks?
- genius clockmaker
- marine chronometer, accurate
- Longitude prize winner
- 1759 (250+ years ago)
- he put the "T" in PNT
- Read.the.book
- by Dava Sobel

Chronometers at sea

- Who is this?
- John Harrison
- Why all the clocks?
- genius clockmaker
- marine chronometer, accurate
- Longitude prize winner
- 1759 (250+ years ago)
- he put the "T" in PNT
- Read.the.book
- by Dava Sobel

Chronometers at sea

- Who is this?
- John Harrison
- Why all the clocks?
- genius clockmaker
- marine chronometer, accurate
- Longitude prize winner
- 1759 (250+ years ago)
- he put the "T" in PNT
- Read.the.book
- by Dava Sobel

Cesium "chronometers" by air

- Who is this?
- Len Cutler, hp clockmaker
- See the clock?
- hp 5060A cesium atomic
- batteries \& "digital" clock
- Mission?
- time synchronization
- cross-country
- round-the-world
- 1960's "flying clock" era

Cesium "chronometers" by land

-Who is this?

- hp field engineer
- See the clock?
- hp 5061A cesium
- atomic clock
- Marketing ad
- year 1967
- self-contained
- portable, rugged
- accurate $1 \mu \mathrm{~s} /$ month

Flying clocks around-the-world

-Who is this?

- J.Hafele \& R.Keating
- See the clocks?
- 4 @ hp 5061A
- backup DC power
- time interval counter
- Relativity experiment
- year 1971
- commercial flights
- RTW, twice! (6 days)

Outline

- Part 1 - Navigation and traveling clocks
- clocks, timing, the 'T' in PNT
- Part 2 - GPS and relativity (time dilation)
- so good it needs clock corrections
- Part 3 - Atomic clock collecting hobby
- going to extremes at home
- Part 4 - Project GREAT
- a DIY gravitational time dilation experiment

Ultimate "flying" clocks: spacecraft

- GP-A
- NTS-2
- NAVSTAR / GPS

First space test was GP-A

- Gravity Probe "A"
- 1976, first H-maser in space
- Robert Vessot, clockmaker
- Successful test of relativity
- science mission
- launched to $10,000 \mathrm{~km}$
- 2 hour flight up / down
- 60 ppm accuracy

First orbital test was NTS-2

- "Navigation Technology Satellite"
- 1977, first cesium in orbit
- Robert Kern, clockmaker
- Successful test of relativity
- pre-NAVSTAR (GPS)
- 12 hour orbit
- similar relativity as GPS
- cesium clocks, synthesizer

Relativity in NTS-2

- Plots for NTS-2
- $4.425 \times 10^{-10}=38 \mu \mathrm{~s} / \mathrm{day}$

32 atomic clocks in space: GPS

-What's this?

- GPS IIR-M
- present era
- 250 year evolution
- from Harrison to GPS
- now many GNSS
- Clock accuracy
- from seconds/day to nanoseconds/day

Relativity in GPS

- GPS orbits are extreme:
speed $14,000 \mathrm{kph}, 8,700 \mathrm{mph}$ (Mach 12)
altitude $20,000 \mathrm{~km}, 12,500$ miles $\left(\sim 3 \times \mathrm{R}_{\mathrm{e}}\right)$
N.B. GPS speed is only 0.000013 c , " $13 \mu \mathrm{c}$ "
- Large relativistic effects occur:
$\Delta \mathrm{f} / \mathrm{f}$ is -8.4×10^{-11}, or $-7.3 \mu \mathrm{~s} /$ day (kinematic)
$\Delta \mathrm{f} / \mathrm{f}$ is $+5.3 \times 10^{-10}$, or $+45.6 \mu \mathrm{~s} /$ day (gravitational)
$\Delta \mathrm{f} / \mathrm{f}$ is $+4.4 \times 10^{-10}$, or $+38.3 \mu \mathrm{~s} /$ day (net effect)
1.023 MHz set to 10.2299999954326 MHz

How small is 4×10^{-10} ?

- Relativity correction:
4.4647×10^{-10}
(fractional frequency offset)
$38.575 \mu \mathrm{~s} /$ day
(time interval ratio units)
$\sim 1 \mathrm{~ms} / \mathrm{month}$
$1 \mathrm{~s} / \sim 71$ years
- In "newspaper" units:
~6 inches / distance to Moon
~1 atom / 1 meter
$\sim 1.4 \mathrm{~m}^{2}$ / area of Rhode Island
$\sim 1 \mathrm{~cm}^{3}$ / volume of Olympic swimming pool

Relativity at human scale: SR

- GPS velocity
$14,000 \mathrm{kph}, 8,700 \mathrm{mph}$ (Mach 12)
$\Delta \mathrm{f} / \mathrm{f}$ is -8.4×10^{-11}, or $-7.3 \mu \mathrm{~s} /$ day (kinematic)
- Human-scale velocity
$-3 \times 10^{-13}, 0.02 \mu \mathrm{~s} /$ day - flying (500 mph)
$-4 \times 10^{-15}, 0.0003 \mu \mathrm{~s} /$ day - driving (60 mph)
$-1 \times 10^{-17}, 0.0000008 \mu \mathrm{~s} /$ day - walking (3 mph)

Relativity at human scale: GR

- GPS altitude
$20,000 \mathrm{~km}, 12,500$ miles ($\sim 3 \times \mathrm{R}_{\mathrm{e}}$)
$\Delta \mathrm{f} / \mathrm{f}$ is $+5.3 \times 10^{-10}$, or $+45.6 \mu \mathrm{~s} /$ day (gravitational)
- Human-scale altitude
$+9.6 \times 10^{-13}, 0.083 \mu \mathrm{~s} /$ day -Mt . Everest (8848 m)
$+1.7 \times 10^{-13}, 0.015 \mu \mathrm{~s} /$ day - Denver, CO (1 mile)
$+9.5 \times 10^{-15}, 0.00082 \mu \mathrm{~s} /$ day - Hoover tower (285 ft)
- "down to earth" relativity
- Denver 3000× less than GPS

Outline

- Part 1 - Navigation and traveling clocks
- clocks, timing, the 'T' in PNT
- Part 2 - GPS and relativity (time dilation)
- so good it needs clock corrections
- Part 3 - Atomic clock collecting hobby
- going to extremes at home
- Part 4 - Project GREAT
- a DIY gravitational time dilation experiment

Precise time as a hobby (1994)

How to keep time?

- "Timebase" required (quartz oscillator)
- how accurate is it?
- how to measure it?
- Use frequency counter
- how accurate is it?
- how to measure it?
- Use a reference standard
- how accurate ...

Timebase accuracy

- 0.01 / 10.00 MHz = $0.1 \% ~(90 \mathrm{sec} /$ day $)$
- 0.0001 / $10 \mathrm{MHz}=10 \mathrm{ppm}$ ($1 \mathrm{sec} /$ day)

The quest for better oscillators

The quest for more digits

FLபKKE PM6680B HIGH RESOLUTION PROGRAMMABLE TIMER/COUNTER

E,

The quest for larger time lab

Slippery slope!

- I started www.LeapSecond.com
- to share photos, data, software, lab reports, manuals
- Then created the "time-nuts" mailing list
- now 1800 'nuts interested in amateur precise time
- like amateur astronomy, seismology, etc.
- Relatively inexpensive, time-consuming hobby
- measurement concepts work at $\$ 1$ as well as $\$ 1000$
- easy to buy, repair, trade, collect interesting gear
- massive trove of military and telecom surplus (eBay)

Vintage hp 5061A (eBay)

Extremely wide range of precision

- $10^{-2}=1 \% \approx 15 \mathrm{~min} /$ day
- $10^{-4}=0.01 \% \approx 1 \mathrm{~min} /$ week
- $10^{-6}=1 \mathrm{ppm} \approx 0.1 \mathrm{~s} /$ day
- $10^{-8} \approx 1 \mathrm{~ms} /$ day
- $10^{-10} \approx 10 \mu \mathrm{~s} /$ day
- $10^{-12}=1 \mathrm{ppt} \approx 100 \mathrm{~ns} /$ day
- $10^{-14} \approx \sim 1 \mathrm{~ns} /$ day $\approx 1 \mathrm{~s} / 3,000,000$ years
- $10^{-16} \approx \sim 3 \mathrm{~ns} /$ year $\approx 3 \mathrm{~s} /$ billion years

10^{-2} heart beat

- The original '1 PPS'
- 10% stability at night, long-term
- 1% stability possible, short-term

10^{-4} tuning fork, mains

- Mechanical oscillator transistorized
- "Four 9's"

999.907, 211,67	Hz	
999.907,250,33	Hz	
999.907, 273,16	Hz	
999.907, 311,01	Hz	
999.907, 250, 27	Hz	
999.907, 34 5,09	Hz	
N : 60		
STD DEV: 151.81	12 uHz	
MEAN : 999.907	07,159,334	Hz
MAX : 999.907,	07,404,05	Hz
MIN : 999.90	06,840,54	Hz
999.907, 392,20	Hz	
999.907,415,25	Hz	
999.907,354,85	Hz	

10^{-4} tuning fork, mains

- Power line frequency: $60 \pm \mathrm{Hz}$

$\begin{aligned} & 60.005,640,120,5 \\ & 60.009,491,393,8 \end{aligned}$	Hz
60.000,431, 181,6	Hz
59.992,198,219,9	Hz
59.987, 371, 509,5	Hz
59.993, 148, 200,6	Hz
59.999, 032,462,5	Hz
59.985, 892,634,1	Hz
59.995, 727,396,2	Hz
N: 36	
STD DEU: 0.006,76	5,596,40 Hz
MEAN : 59.999,5	54, 563, 23 Hz
MAX : 60.010,3	90,980,5 Hz
MIN : 59.985,8	92,634,1 Hz
59.996, 011, 518,6	Hz

60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~ 1 month)

10^{-6} quartz watch, chronometer

- $+160 \mathrm{~ms} / \mathrm{d}=+1.85 \mathrm{ppm}$

10^{-6} quartz watch, chronometer

- Conservatively rated $1 / 4 \mathrm{sec} /$ day deviation

10^{-8} pendulum clock, earth

- Shortt-Synchronome
- 1 second / year

10^{-8} pendulum clock, earth

- ~1 second / year, irregular

10^{-10} ovenized quartz

- 10-10 ...10-13 short-term
- $5 \times 10^{-10} / \mathrm{d}$ drift

Allan Deviation $\sigma_{y}(\tau)$

Ch A: 5.0 MHz 2.7 Vpp
Averaged Phase

Ch B: $10.2 \mathrm{MHz} 1.4 \mathrm{~V}_{\mathrm{pp}}$ $B / A=2.04600007663435$

10^{-12} rubidium (atomic)

- ~10-13 mid-term
- $\sim 10^{-11} / m o n t h$ drift

Allan Deviation $\sigma_{y}(\tau)$

10^{-14} cesium (atomic)

- ~10-13 mid-term
- 1×10^{-14} at 1 day

10^{-16} hydrogen maser

- Most stable (but non-portable)
- 5×10^{-16} possible

FYI: cesium (caesium)

- Cesium atomic clocks are not radioactive
- They use a natural, stable Cs^{133} atom, not the dangerous man-made radioisotope Cs ${ }^{137}$
- Analogy: C^{12} vs. C^{14}
- K ${ }^{39}$ vs. K^{40} (banana)
- "hyperfine transition" 9, 192, $631,770 \mathrm{~Hz}$
- Solid / liquid $\left[28^{\circ} \mathrm{C}\right]$

First radioactive cesium clock!

Outline

- Part 1 - Navigation and traveling clocks
- clocks, timing, the 'T' in PNT
- Part 2 - GPS and relativity (time dilation)
- so good it needs clock corrections
- Part 3 - Atomic clock collecting hobby
- going to extremes at home
- Part 4 - Project GREAT
- a DIY gravitational time dilation experiment

Clocks, mountains, relativity

- Is relativity detectable at human scale?
- have I accumulated enough toys by now?
- can time dilation be measured by an amateur?
- can I travel fast enough, or high enough?

A great idea

- Take our 3 kids with portable cesium clocks high up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run faster up there
- In 2005

Einstein and 2005

- $100^{\text {th }}$ anniversary of relativity: books, magazines, radio, TV, web sites, "Physics Year", lectures...

Louis Essen (UK) and 2005

- $50^{\text {th }}$ anniversary of cesium clock (NPL)
- "famous for a second" 9192631770 Hz

Project GRE²AT

- General Relativity Einstein/Essen Anniversary Test (2005)
- $100^{\text {th }}$ anniversary (Einstein) theory of relativity
- 50 th anniversary (Essen) first cesium clock
- Combine atomic clock hobby, physics, history, technology, math, computers, children, car trip, vacation, and family fun
- First "home made" general relativity test

Back-of-envelope calculation

- Turn infinitesimal into measurable
- Frequency change $\Delta \mathrm{f} / \mathrm{f} \approx \mathrm{gh} / \mathrm{c}^{2}$ $\Delta f / f \approx 1.09 \times 10^{-16} \mathrm{~s} / \mathrm{s} / \mathrm{meter}$
- But if you go up 1 km instead of 1 m , then $\Delta f / f=1.1 \times 10^{-13}=0.11 \mathrm{ps} / \mathrm{s}$ note: $4000 \times$ less than GPS
- And if you stay up there 24 hours, then

$$
\Delta \mathrm{T}=\Delta \mathrm{f} / \mathrm{f} \times 86400 \mathrm{~s}=9.5 \times 10^{-9} \mathrm{~s}=9.5 \mathrm{~ns}
$$

- Rule-of-thumb: 1 km elevation $\approx 10 \mathrm{~ns} /$ day

Magnify 0.0000000000000001

- Go as high as possible
- Stay as long as possible
- Measure as precisely as possible
- Use the best
 clock(s) possible

Cartoon by Dusan Petricic
Scientific American column Wonders by Philip and Phyllis Morrison http://www.sciam.com/1998/0298issue/0298wonders.html

Bellevue to Mt Rainier

- Just 100 miles away ($\sim 21 / 2$ hours)

The GREAT trip, day 1

- Carrying synchronized, running cesium clock downstairs. Repeat. Repeat.

The GREAT trip, day 1

- 3 clocks in the middle. Batteries on the floor. Monitoring instruments in front.

The GREAT trip, day 1

- 3 kids in the back. Dad making final clock BNC connections. Mom says goodbye.

The GREAT trip, day 1

- Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

The GREAT trip, day 2

- Paradise Inn is at 5400' elevation. Large parking lot for car \& precious clocks.

The GREAT trip, day 2

- Classic old Northwest inn. Wonderful place to visit during the summer.

The GREAT trip, day 2

- Wonderful hiking trails and climbing. Lucky to have clear weather.

November 2018

The GREAT trip, day 2

- Avoid a ticket and move the car again. Worried about running out of fuel.

The GREAT trip, day 3

- More hiking, exploring, playing. It's a fun place for a weekend.

The GREAT trip, day 3

- 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

Time dilation: prediction

- Home clock and mountain clock elevations
- $5400 \mathrm{ft}-1000 \mathrm{ft}=4400 \mathrm{ft}(1340 \mathrm{~m})$
- $\Delta \mathrm{f} / \mathrm{f}=1.46 \times 10^{-13}$ times 42 hours $=+22 \mathrm{~ns}$

Time dilation: measured

- 3 clock mean 23.2 ns $\pm 4 \mathrm{~ns}$
- Prediction 22.4 ns
- Wow!

Project GREAT - $3 x$ Composite Clock 3 (pre) +2 (trip) +9 (post) $=14$ days

SCPNT/Stanford

Project GRE²AT - summary

- Einstein was right; time dilation is real!
- clocks (and we) came back 22 ns older
- gravitational effect (elevation, not velocity)
- unexpected press: WIRED, Physics Today, Reddit, Scientific American, even a physics textbook, etc.
- Now "relativity is child's play"
- And then a decade later...

GREAT 2016a - Lemmon

- Stephen Hawking "GENIUS" series (PBS / BBC)
- episode on space-time, clocks, time dilation
- they asked me to repeat the GREAT experiment
- Mt Lemmon, Tucson, AZ (January 2016)
- $9160 \mathrm{ft}(2790 \mathrm{~m})$ summit, dormitory
- 2600 ft (790 m) base camp, hotel
- UK film crew, tight schedule, no re-takes
- $2000 \mathrm{~m} \times 24$ hours $=\sim 20 \mathrm{~ns}$ time dilation
- used 3+3 cesium clocks

2016a - time dilation results

GREAT 2016a Time Dilation (Cs2,4,6 vs Cs1)

SCPNT/Stanford

2016a - summary

- It worked! (much relieved)
- up-down-up vs. down-up-down
- different elevation and latitude (earth rotation)
- RIP Stephen Hawking (1942-2018)
- Show available on iTunes or pbs.org

GREAT 2018a - Palomar

- Earlier this year (2018), another request
- History channel, "In Search Of", Zachary Quinto
- Demonstrate time dilation
- sort of related to their "time travel" theme
- Palomar Mountain, CA
- low clocks: Oceanside (sea level)
- high clocks: Palomar Mountain (~5500 ft)
- Predicted time dilation: $\sim 15 \mathrm{~ns}$
- used 2+2 cesium clocks

2018a - prep

November 2018

2018a - battery backup

November 2018
SCPNT/Stanford

2018a - summary

- Predicted time dilation: 15.5 ns
- based on recorded elevation and dwell time
- Measured time dilation: 14.1 ns
- another success!
- Cs1 to Cs4: 14.3 ns
- Cs3 to Cs5: 13.8 ns
- Show available on iTunes or history.org

Conclusion

- Welcome to the world of amateur precise time
- fascination with time, vintage and atomic clocks, counters, experiments, GPS, relativity, etc.
- GR time dilation experiments
- just for fun, with the kids, and
- larger audience via talks, TV episode or two
- Looking for interesting new venues
- below sea level, or deep underground?
- 50 th anniversary of Hafele-Keating in 2021

Thanks

- Thanks to Tom Langenstein, Leo Hollberg, and Ralph Devoe (via time-nuts).
- Thanks for your time...
- Contact: tvb@LeapSecond.com
- Website: www.LeapSecond.com
- Questions?

Backup slides

Time interval counter (TIC)

- Time-To-Digital
- start input
- stop input
- Trigger
- pos/neg slope
- AC/DC input
- trigger level
- Resolution

Comparing clocks / nanosecond

Terrestrial relativity math, easy

- At modest speeds and modest elevation
- time dilation equations become very simple
- Kinematic effect (moving clocks run slower)

$$
\Delta f / f \approx-1 / 2 v^{2} / c^{2}
$$

- Gravitational effect (lower clocks run slower)

$$
\Delta f / f \approx+\mathrm{gh} / \mathrm{c}^{2}
$$

- Sign? SI second defined at sea level
- so clocks speed up with higher altitude
- "speed up" is actually "slow down less"

Power of c^{2}

- Speed of light
c ≈ 300000000
$c^{2} \approx 90000000000000000$
$1 / \mathrm{c}^{2} \approx 0.00000000000000001$
- $E=m c^{2}$
- c^{2} in numerator
- very, very large
- $\Delta f / f=g h / c^{2}$
- c^{2} in denominator
- very, very small
- As they say:
"make time dilation, not war"

First "atomic" wristwatch

Smaller and smaller ... CSAC

Museum of $h p$ clocks

HP quartz

- 105B
- 107BR
- 106B
- 104AR
- 103AR
- 101A
- 100ER

November 2018

SCPNT/Stanford

HP clocks

- HP01
- 571B
- 5321
- 117A
- 114BR
- 115BR
- 113AR

SCPNT/Stanford

HP cesium \& rubidium

- 5071A
- 5065A
- 5062c
- 5061B
- 5061A
- 5060A

SCPNT/Stanford

Elevation and predicted dilation

3-hat, residuals (home)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{j}}$ via lab reference

3 clocks using '3-hat'

3-hat, residuals (away)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{j}}$ via mutual-comparisons

3 clocks using '3-hat'

3-hat, residuals (combined)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{j}}$

Kids, Clocks, and Relativity on Mt Rainier Three Cesium Clocks: Red Green Blue \& Mean

Chronometer adjust (time, rate)

November 2018

Frequency adjust

November 2018
SCPNT/Stanford

Atomic clock 1PPS - 10 s

Atomic clock 1PPS - 10 ms/div

Atomic clock 1PPS - $10 \mu \mathrm{~s} / \mathrm{div}$

Atomic clock 1PPS - 10 ns/div

Cesium 9,192,631,770 Hz

