Building a Network and Data Management for Low Cost GNSS Monitors

SCPNT 2022

Benon Gattis1, Pierre-Antoine Kosmala1, Maxime Olivier1, Dennis Akos1,2, Yu-Hsuan Chen2, Sherman Lo2, Todd Walter2

\textit{1- University of Colorado Boulder}

\textit{2- Stanford University}
Outline

1. Background and Motivation
2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots
3. Data Management
4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example
5. Summary and Future Work
Outline

1. Background and Motivation

2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots

3. Data Management

4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example

5. Summary and Future Work
Critical GNSS relying systems can be easily disrupted by Radio Frequency Interference (RFI) such as:

- Jamming - denying signals
- Spoofing - producing fake signals

- Current RFI detection methods are hard to procure or expensive, making them unavailable to many users
- There is a need for an inexpensive and widely deployable GNSS RFI detector

News

N.J. man fined $32K for illegal GPS device that disrupted Newark airport system

Published: Aug. 08, 2013, 8:28 p.m. By Steve Strunsky | NJ Advance Media for NJ.com
Outline

1. Background and Motivation

2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots

3. Data Management

4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example

5. Summary and Future Work
u-blox Monitor System Overview

Low-cost nodes are deployed to sensitive locations to monitor for RFI

Each node records data continuously, sending 24-hour files to the server

The server parses, processes, and plots the data, and alerts users of any suspected RFI
u-blox Monitor Node

- Based around the **u-blox F9** GNSS receiver – **many useful RFI detection metrics**
- Paired with a PC or Raspberry Pi to record and upload data to server every 24 hours
- An entire node can be built for **less than 300 USD**
• Data transfer through SFTP (Secure File Transfer Protocol)
• Synology NAS (Network-Attach-Storage) receives and is primary storage location for all data
• Computer parses and plots the data every 24 hours in MATLAB, alerts users of RFI
u-blox F9 Receiver

- Three receiver variants:
 - F9P, F9T-00B: Covers L1 and L2 GNSS bands
 - F9T-10B: Covers L1 and L5 GNSS bands
- Inexpensive and COTS, $150-200 USD
- Multi-constellation
- Dual frequency
- Many RFI detection metrics available, like Automatic Gain Control (AGC)
The F9 receiver outputs many powerful RFI detection metrics including:

- Position
- Number of satellites and signals
- Time info - clock bias and drift
- Carrier to noise ratio (C/N_0)
- Automatic Gain Control (AGC)
- Spectrum data

Each day the server plots many of these metrics for closer analysis.
24 Hour Position and Satellite Plot

Cartesian Coordinates
Mean X,Y,Z: -1286567.6, -4721068.1, 4079871.1
Mean Lat, Lon, Height: 40.009957, -105.243662, 1615.432322

Number of Signals
- Total L1
- BeiDou 1 L1
- Galileo L1
- GLONASS L1
- GPS L1

Number of Signals
- Total L2
- BeiDou L2
- Galileo L2
- GLONASS L2
- GPS L2
24 Hour RF and Power Plot
24 Hour AGC and Max C/No
Time

Daily time plot generated by the server

Includes:
- Receiver Oscillator Bias
- Receiver Oscillator Drift
- Accuracy Estimates
- System and GNSS time comparison

Each receiver’s oscillator will be different out of the box and affected by the local setup. Insight into the oscillator bias and drift is necessary for time critical applications.
Outline

1. Background and Motivation

2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots

3. Data Management

4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example

5. Summary and Future Work
SFTP (Secure File Transfer Protocol) is used to send data from node to server.

Internet connectivity is required:
- Utilizing available Wi-Fi is free and simple
- Cellular modems covers other areas
 - Monthly fee is expensive and not suitable for mass deployment
Data Management – File Structure

• Node records two binary files: RINEX and UBX messages
• Both binary files are compressed and saved on node and NAS
 • UBX file ~50 MB, RINEX ~150 MB = 200 MB of raw data a day per location
• Computer parses the UBX file into a .mat file, creates plots
• Folder containing .mat and plots is saved with other days from that location
 • Folder is ~ 500 MB
The node pulls the AGC (Automatic Gain Control) out in real time:

- AGC is a measure of the overall power entering a receiver, making it effective in RFI detection.
- If the AGC crosses a certain threshold, the filename is changed to acknowledge the AGC.

Each day, an email is sent out with the received and missing files:

- This notifies users if any nodes disconnect, as well if any files are worth analyzing further.
Server Demo
Outline

1. Background and Motivation
2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots
3. Data Management
4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example
5. Summary and Future Work
Receiver Locations

- Six receivers have been deployed across the globe for extended periods (3-15 months) collecting data.
- Data has been collected to set baseline values for expected noise and variation under nominal conditions.

<table>
<thead>
<tr>
<th>Location</th>
<th>Receiver Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Colorado Boulder</td>
<td>F9P (L1 + L2)</td>
</tr>
<tr>
<td>Stanford University</td>
<td>F9P (L1 + L2)</td>
</tr>
<tr>
<td>Colorado Springs Airport West</td>
<td>F9P (L1 + L2)</td>
</tr>
<tr>
<td>Colorado Springs Airport East</td>
<td>F9T-10B (L1 + L5)</td>
</tr>
<tr>
<td>Newark Airport</td>
<td>F9T-10B (L1 + L5)</td>
</tr>
<tr>
<td>South Korea</td>
<td>F9T-10B (L1 + L5)</td>
</tr>
</tbody>
</table>

Rooftop antenna in Seoul, South Korea
Position

Position accuracy for each location
- Boulder, Stanford, and South Korea use survey-grade antennas, while the others use the u-blox antenna
- The South Korea node experiences occasional large “drifts” in location

<table>
<thead>
<tr>
<th>Location</th>
<th>X Error (m)</th>
<th>Y Error (m)</th>
<th>Z Error (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1σ, Max</td>
<td>1σ, Max</td>
<td>1σ, Max</td>
</tr>
<tr>
<td>University of Colorado Boulder</td>
<td>0.367, 1.92</td>
<td>0.693, 4.11</td>
<td>0.560, 3.45</td>
</tr>
<tr>
<td>Stanford University</td>
<td>0.368, 1.77</td>
<td>0.487, 2.76</td>
<td>0.421, 1.86</td>
</tr>
<tr>
<td>Colorado Springs Airport West</td>
<td>0.386, 2.59</td>
<td>0.703, 5.76</td>
<td>0.623, 5.46</td>
</tr>
<tr>
<td>Colorado Springs Airport East</td>
<td>0.408, 1.80</td>
<td>0.676, 4.02</td>
<td>0.564, 3.45</td>
</tr>
<tr>
<td>Newark Airport</td>
<td>0.510, 3.26</td>
<td>0.757, 4.88</td>
<td>0.784, 5.67</td>
</tr>
<tr>
<td>South Korea</td>
<td>1.129, 6.85</td>
<td>1.368, 15.32</td>
<td>0.865, 5.17</td>
</tr>
</tbody>
</table>

The position is usually accurate to 1m, with maximum nominal deviations of 4-6 meters.
Automatic Gain Control (AGC)

AGC can be powerful in detecting and characterizing RFI\(^1\).

As a measure of the overall power entering the receiver, different hardware setups and locations will result in different baseline AGC values. Calibration is required to account for this.

u-blox AGC Properties

- Two AGC’s, each spanning 128MHz, one at L1, one at L2 or L5
- AGC is reported as a percentage
- The AGC is coarse, the step sizes are ~4% or ~3dB apart

The AGC is coarse resulting in minimal nominal variations. Deviations more than 2 steps are rare and should be analyzed further.

<table>
<thead>
<tr>
<th>Location</th>
<th>Baseline AGC Value High / Low Band</th>
<th>Mean Epochs per Day 1 Step Away High / Low Band</th>
<th>Mean Epochs per Day 2 Steps Away High / Low Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Colorado Boulder</td>
<td>59 / 55</td>
<td>1 / 449</td>
<td>0 / 26</td>
</tr>
<tr>
<td>Stanford University</td>
<td>72 / 72</td>
<td>0 / 2573</td>
<td>0 / 2122</td>
</tr>
<tr>
<td>Colorado Springs Airport West</td>
<td>64 / 59</td>
<td>3 / 10206</td>
<td>1 / 0</td>
</tr>
<tr>
<td>Colorado Springs Airport East</td>
<td>72 / 64</td>
<td>9692 / 0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Newark Airport</td>
<td>64 / 60</td>
<td>62 / 28</td>
<td>18 / 7</td>
</tr>
<tr>
<td>South Korea</td>
<td>51 / 47</td>
<td>1,521 / 895</td>
<td>4 / 4</td>
</tr>
</tbody>
</table>
How RFI is Detected: Post Processing

Automatic Gain Control: AGC is a measure of the overall power entering a receiver, making it effective in RFI detection

Carrier to Noise Ratio: A measure of an individual signal’s strength entering the receiver

Spectrum Data: Also useful for identifying power changes in the spectrum, with the benefit of seeing where the power is
Newark experiences many brief and powerful influxes in power. The spikes are short, <10s, but often drop the AGC by 20%, or 5 steps. There are no relevant changes in position during these RFI events. Illegal personal jamming devices on trucks are thought to be the cause. While most locations see minimal change in nominal power, others will require more thorough screening for more dangerous RFI.
The monitor produces several plots allowing easy analysis of suspected RFI.

An influx of power between 1560 and 1600 MHz is seen in the spectrum, with the power also reflected in the AGC.

The max C/N₀ of all constellations in that band drop substantially.
1. Background and Motivation

2. Monitor System
 A. System Breakdown
 B. u-blox F9 Receiver
 C. u-blox F9 Metrics and Plots

3. Data Management

4. Data Collection Results
 A. Receiver Locations
 B. Long-term Statistics
 C. RFI Example

5. Summary and Future Work
Summary and Next Steps

The current deployment of nodes and a server has proven the concept, and the extensive data collection provides reliable values for baselines and thresholds for RFI detection.

Several Future Paths:

• Give the node more “brains” – allow the node to do more real time processing
 • Requires a more powerful computer with the node
• Stream data in real time to a server for real time processing
 • Requires reliable internet connection
• Streamline node and server design
 • Build a more compact all in one node unit
 • Refine server to be more resilient and easier to manage nodes
Acknowledgements

We’d like to thank Roger Ishimoto from Zeta Associates for helping to get the Newark receiver installed and running in such an interesting environment.

Citations

Using the AGC as the main source of detection requires special care on with u-blox

Upon further inspection, the incoming power is not as destructive as the AGC would suggest.

A large drop in AGC triggers the initial alarm.