
Stochastic Methods 2

• Simulated Annealing

• Genetic Algorithms



Simulated Annealing
Simulated Annealing is used for functions with 
many local extremes. Its goal is to return the 
global extreme as often as possible and, if not, 
then another almost-as-good extreme. 

This is the type of graph for which simulated 
annealing might be appropriate:



Simulated Annealing

Simulated annealing begins with an initial point 
and tests neighboring points. 

Unlike traditional optimization in which the 
neighboring point is immediately rejected if it is 
“worse” than the original, simulated annealing 
will accept some “worse” points in the 
beginning in an attempt to eventually find a 
global extreme.



Simulated Annealing
This link shows simulated annealing in action. 
(credits to Wikipedia contributer Kingpin13)

The “temperature” measure indicates the 
willingness of the program to accept “worse” 
answers: high at first, lower later. 

It’s called “temperature” because the term 
annealing is borrowed from metallurgy where it 
describes a process of refinement by heating and 
then slowly cooling materials.

http://upload.wikimedia.org/wikipedia/commons/d/d5/Hill_Climbing_with_Simulated_Annealing.gif


Simulated Annealing

If the algorithm for simulated annealing is run 
for long enough it will always find the global 
extreme. However it can sometimes be 
prohibitive to run that many calculations.

One of the advantages of simulated annealing is 
that even if you stop it a little early, its current 
solution will either be the optimum or really 
close to it.



Simulated Annealing

Here is a section of pseudocode showing the 
simulated annealing procedure for minimization:

(again credits to Wikipedia)

s ← s0; e ← E(s)                      // Initial state energy.

sbest ← s; ebest ← e                // Initial "best" solution

k ← 0                             // Energy evaluation count.

while k < kmax and e > emax // While time left & not good enough:

T ← temperature(k/kmax)     // Temperature calculation.

snew ← neighbour(s)       // Pick some neighbour.

enew ← E(snew)          // Compute its energy.

if P(e enew T) > random() then // Should we move to it?

s ← snew; e ← enew // Yes change state.

if enew < ebest then // Is this a new best?

sbest ← snew; ebest ← enew // Save 'new neighbour' to 'best found'.

k ← k + 1                    // One more evaluation done

return sbest // Return the best solution found.



Practice Problem 1

1. Translate as much of this pseudocode as 
possible into proper Julia language:

s ← s0; e ← E(s)                      // Initial state energy.

sbest ← s; ebest ← e                // Initial "best" solution

k ← 0                             // Energy evaluation count.

while k < kmax and e > emax // While time left & not good enough:

T ← temperature(k/kmax)     // Temperature calculation.

snew ← neighbour(s)       // Pick some neighbour.

enew ← E(snew)          // Compute its energy.

if P(e enew T) > random() then // Should we move to it?

s ← snew; e ← enew // Yes change state.

if enew < ebest then // Is this a new best?

sbest ← snew; ebest ← enew // Save 'new neighbour' to 'best found'.

k ← k + 1                    // One more evaluation done

return sbest // Return the best solution found.



Genetic Algorithms

Genetic algorithms attempt to find optimal 
solutions by using concepts related to the 
process of natural selection: 

inheritance

mutation

selection

and crossover.



Building a Population
Each “individual” is represented by a string, usually 
in binary; for example:

1111100010100111011010001011011001011011

Fortunately any number can be converted into 
binary and back so this string of 0’s and 1’s can be 
translated into the values of numerical variables. 
These values can then be plugged into an objective 
function.

In the beginning a large number of these strings are 
randomly chosen.



Testing Fitness

The next step is to find the value of the objective 
function for each “individual”. This is done by 
translating the binary strings into numbers and 
plugging them in. The objective function value 
gives a measure of the individual’s “fitness”.

If you are trying to minimize, the “fittest” 
individuals would have the lowest values of the 
objective function. 



Binary Numbers: Review

With binary numbers, each digit space 
represents a power of two. This number:

____ ____ ____ ____ ____ 

…contains 1 sixteen, 0 eights, 0 fours, 1 two and 
1 one. That adds up to 16 + 2 + 1 = 19.

Similarly, 101 = ? 1010 = ?

1  0    0    1     1
16’s 8’s          4’s           2’s            1’s

5 10



Practice Problem 2

Here are four randomly-generated individuals:

A: 011111010001 B: 001000101001

C: 101110001010 D: 101101000111

2a. Split each “phenotype” into three variables of 
length 4. Convert each into a base-10 number, 
represented by a, b, and c.

2b. For each individual, calculate its “fitness” 
according to the objective function a + b – c, with 
the goal of maximizing.



Selection

After fitness is determined, the individuals are 
ranked from most to least fit. All of the 
individuals may contribute to the next 
“generation”, but with different probabilities 
based on their fitness. 

Individuals are chosen randomly, in pairs, with 
repeats allowed, until the number chosen is 
equal to the original population.



Practice Problem 3
In Problem 2, the fitness in order from high to 
low was A, C, D, B.

Randomly choose pairs of individuals according 
to the following method:  

Use the command rand(1:10). If the result 
is 1, 2, 3, 4 choose A; 5, 6, 7 choose C; 8, 9 
choose D; 10 choose B.

Individuals may not “breed” with themselves; 
choose another number if this happens.

Use this method to create two pairs.



Crossover

In the next step, a random number n is selected 
between 1 and one less than the maximum string 
length. Then, the first n characters of each pair are 
switched.

If you had the pair             with n = 3

you would switch the first three characters of each 

creating two “children,”             .

10110
01101

01110
10101



Practice Problem 4a

For each pair from problem 3, use 
rand(1:11) to determine how many digits 
to swap; then, swap those digits.



Mutation
The process of “mutation” is a random process that 
prevents the “children” from being too similar to the 
“parents”, which would make it difficult to break out 
of a local optimum and find the global one. 

In mutation, a probability is selected; it can be a 
chosen number between 0.005 and 0.1, or equal to 
1/k where k is the string length (the second method 
guarantees an average of 1 mutation per child).

Each character is given that probability of randomly 
switching value from 0 to 1 or 1 to 0.



Practice Problem 4b

Use the command rand(12) to generate 12 
random numbers from 0 to 1. 

If any of the numbers is less than 0.08 3 (which 
happens to be 1/12), flip the corresponding 
character(s) on the first child from 4a. 

Repeat for all four children.

Calculate the fitness of all four children.



Using computers, these procedures are repeated 
over large numbers of individuals over many 
generations. Eventually, the “population” will 
become more “fit”, just as natural selection 
works on a biological population. 

In more mathematical terms, this means the 
variables and fitness will gradually converge on 
the optimal solution.

The Last Step



Practice Problem 5

Repeat the genetic algorithm for two more 
generations: pair the children with weighted 
probabilities according to fitness, swap genes, 
mutate, evaluate; then repeat once more. 



Genetic Algorithms

One disadvantage of genetic algorithms is that 
they require a lot of evaluations of the objective 
function, which can be costly and time-
consuming.

Another is that, while they work well for simpler 
systems, they do not scale up well to very 
complex systems: the longer the string, the less 
successful the method tends to be.

Genetic algorithms also tend to get stuck in local 
extremes.



Genetic Algorithms

In spite of these difficulties, for simple systems 
(fewer variables) with many potential inputs (large 
domains) and complicated, interdependent, or 
nonexistent equations and conditions, genetic 
algorithms are surprisingly good at finding optimal 
solutions.


