
Another Way to Solve Systems

• Array commands in Julia

• Gaussian Elimination 

• Reduced Row-Echelon Form



Useful Array Commands

First, type this array into Julia: A = 
2 −1 4
6 0 −3

Then try these commands:

A[1]

A[3]

A[4]

A[1, 3]

A[2, 2]

first element (upper left)

third element (counting across)

fourth element

first row, third column

second row, second column



Useful Array Commands

Now try these:

A[1, :]

A[2, :]

A[:, 3]

B = A[2, :]

vcat(A[1, :], B)

hcat(A, [3; 5])

first row of A

second row

third column

B is now the second row of A

re-creates A from A row 1 and B

augments A on the right



Useful Array Commands

Finally, try these: 

A[1,:]=[A[1,:]*A[2,1]/A[1,1]]

…what did that do?

Next, 

A[2,:]= [A[1,:] - A[2,:]]

…what did that do?



A Note About Types

Now, try typing this in:

A[1, :] = A[1, :]/5

ERROR: InexactError()...

… so why can’t you divide by 5?

The answer is that Julia thought A was an 
integer only array (Int64), not all numbers 
(Float64). Dividing by 5 would give non-integer 
results which is considered illegal in A.



A Note About Types
There are multiple ways around this.

One is to be specific about the desired type of an 
array when you originally enter it:

A = Float64[3 3 -2; 4 1 0]

Another is to enter one of the original numbers as a 
decimal:

A = [3.0 3 -2; 4 1 0]

If the matrix has already been entered, you can 
convert it:

A = float64(A)



Practice Problem 1

1. Let A = 
3 1 −2
2 −2 5

. Use Julia to get a 1 in the 

first row, first column (location [1, 1]) and 0 in the 
second row, first column (location [2, 1]) by 

• dividing the entire first row by 3, then

• replacing the second row with a sum of the 
second row and a multiple of the first row

Try to make your code as general as possible (ie, use  
locations rather than actual numbers from the 
array) 



Gaussian Elimination
Let’s say you were solving this system of equations 
using elimination: 

2x1 + 3x2 = 4

3x1 – 5x2 = 5

You might choose to multiply the first row by 3 and the 
second row by -2, then add the two rows like this:

6x1 + 9x2 = 12

-6x1 + 10x2 = -10

19x2 = 2

After dividing, you might plug the answer back in to 
the first equation to find x1.



Gaussian Elimination

Without actually solving it, the implication is:

The solution to 2x1 + 3x2 = 4

3x1 – 5x2 = 5

is the same as the solution to  2x1 + 3x2 = 4

19x2 = 2

but the second is easier to solve.



Gaussian Elimination

In matrix form, we could say that the solution to 
2 3 4
3 −5 5

is the same as the solution to
2 3 4
0 19 2

but the second is easier to solve.



Practice Problem 2

Write a program that, given a 2x3 matrix A, 

a) returns a matrix with 0 in the lower corner

b) reports the value of x2

c) reports the value of x1.

Test your code!



Reduced Row-Echelon Form 

As long as we’re building equivalent (but 
simpler) matrices, this is the ideal form:

1 0 𝑎
0 1 𝑏

With reduced row-echelon form, this is exactly 
the goal. It’s painful to do by hand, but with 
computers, it’s not so bad.



Reduced Row-Echelon Form

The rules for creating equivalent matrices are as 
follows:

1. You may always, anytime, multiply or divide a 
row by a constant.

2. You may replace any row with the sum or 
difference of that row and another row.

3. You may combine these operations by 
combining multiples of rows.



Reduced Row-Echelon Form

In creating the ideal (row-reduced) matrix, the 
simplest way to progress is as follows:

𝑎11 𝑎12 𝑏1

𝑎21 𝑎22 𝑏2
original problem

1 𝑐12 𝑑1

0 𝑐22 𝑑2
first column complete

1 0 𝑥1

0 1 𝑥2

second column 
complete, 
matrix solved



Practice Problem 3

Write a program that will return a 2x3 matrix A 
in reduced row-echelon form, and the answers 
(x1, x2) as an array B. 

Then modify your program so it only returns the 
answers.



Reduced Row-Echelon: Moving Up
Next, we’ll move on to solving 3x3 systems, like 

this one:
4 −2 1
3 0 −1

−2 1 3
 
12
5

−8

As we do so, here is some useful vocabulary:

The current row of focus (the row where you divide 
to get 1 and make the rest of the column 0) is 
called the pivot row. 

The location that becomes = 1 is called the pivot.

The process of getting 0’s in the rest of the column 
is called pivoting.



Reduced Row-Echelon Form

In words, the process is summarized like this: 

1. Divide row 1 by the number in [1, 1].

2. Pivot around [1, 1].

3. Divide row 2 by the number in [2, 2].

4. Pivot around [2, 2]. 

5. (repeat for row 3 and [3, 3])



Reduced Row-Echelon Form

You could summarize even more by saying:

For rows k = 1-3, divide row k by [k, k], then 
pivot around [k, k].

And, you could deal with even larger matrices by 
saying:

For rows k = 1-n, divide row k by [k, k], then 
pivot around [k, k].



Practice Problems 4-6

4. Write a program that solves 3x3 matrices using 
reduced row-echelon solving without using loops.

5. Modify your program so it uses “for” loops to 
solve 3x3 matrices.

6. Write a program that solves a matrix of any size 
(use size(A,1)) to find the number of rows) 
using reduced row-echelon solving.

Test your code! Then document and save this program!


