
Simpson’s Rule and Integration

• Approximating Integrals

• Simpson’s Rule

• Programming Integration



Approximating Integrals
In Calculus, you learned two basic ways to 
approximate the value of an integral:

• Reimann sums: rectangle areas with heights 
calculated at the left side, right side, or midpoint 
of each interval

• Trapezoidal sums: areas of trapezoids formed at 
each interval



Approximating Integrals

In each of these cases, the area approximation 
got better as the width of the intervals 
decreased. This led to the concept of an integral 
as the limit of the area as the partition width 
tends toward zero.

Calculating the areas of a zillion rectangles 
sounds like something a computer could do 
really well (and it is), but there’s an even better 
way.



Simpson’s Rule
Simpson’s Rule, named after Thomas Simpson 
though also used by Kepler a century before, was 
a way to approximate integrals without having to 
deal with lots of narrow rectangles (which also 
implies lots of decimal calculations).

Its strength is that, although rectangles and 
trapezoids work better for linear functions, 
Simpson’s Rule works quite well on curves.



Simpson’s Rule
Simpson’s Rule is based on the fact that given any three 
points, you can find the equation of a quadratic through 
those points. 
For example, let’s say you had points (3, 12), (1, 5), and (5, 9). 
Starting with (3, 12) and using y = ax2 + bx + c, you could 
write: 

12 = a(3)2 + b(3) + c
12 = 9a + 3b + c

You could do the same thing with the other two points as 
well, getting: 5 = a + b + c

9 = 25a + 5b + c
Then you could solve this system of equations for a, b, and c, 
and get the equation of the quadratic. 

x y



Simpson’s Rule

If you’re curious, the system of equations on the 
previous page solved to:

a = -1.25

b = 8.5

c = -2.25

which gives the quadratic y = -1.25x2 + 8.5x –
2.25, whose graph is shown here.

(5, 9)
(3, 12)

(1, 5)



Simpson’s Rule
This fact inspired Simpson to approximate 
integrals using quadratics, as follows.

If you want to integrate f(x) over the interval 
from a to b, 
1. Find f(a), f(b), and f(m) where 

m is the midpoint of the 
interval.

2. Find a quadratic P(x) that goes 
through the same three points.



Simpson’s Rule
Then, because quadratics are easy to integrate, you 
could just integrate the quadratic over the interval. It 
ends up being a very good approximation, but it’s 
also a lot of math! 
Fortunately, there’s a nice shortcut. It turns out that 
the integral of the quadratic over the interval [a, b] 
always comes out to 

𝑏 − 𝑎

6
∙ 𝑓 𝑎 + 4𝑓 𝑚 + 𝑓(𝑏)

where f(a), f(m) and f(b) were the values of the 
original function at a, m, and b. You don’t need the 
quadratic at all.



Simpson’s Rule
As an example, let’s say you have a function f(x) 
that you need to integrate over the interval [2, 12]. 
The midpoint of this interval is x = 7, which gives us 
three x values: 2, 7 and 12.
The next step is to evaluate the function at these x 
values; suppose it gives (2, 10), (7, -3) and (12, -8). 
According to Simpson’s Rule, the integral can be 
approximated using 

𝑏−𝑎

6
∙ 𝑓 𝑎 + 4𝑓 𝑚 + 𝑓(𝑏) = 

12 − 2

6
∙ 𝑓 2 + 4𝑓 7 + 𝑓 12 =

10

6
∙ 10 + 4 −3 + −8 =

5

3
−10 =

−50

3



Practice Problem 1

1a. Take the integral of y = -1.25x2 + 8.5x – 2.25 
from 1 to 5. Verify that it has the same value as 
the Simpson’s Rule formula for the three points 
(1, 5), (3, 12) and (5, 9).

1b. Verify Simpson’s Rule using the quadratic y = 
2x2 + 5x + 12 on the interval [-1, 5].

1c. Verify Simpson’s Rule using the cubic y = x3 + 
2x2 – 5x – 2 on the interval [0, 2]



Simpson’s Rule

As you (hopefully) noticed in problem 1, 
Simpson’s Rule gives exactly correct answers for 
quadratics and cubics. 

For other functions, Simpson’s Rule only gives 
an approximation.



Practice Problem 2

2a. Find the integral of y = 3x on [-3, 11]. Also 
use Simpson’s Rule. Compare the answers.

b. Repeat for y = 𝑥 on [4, 16].

c. Repeat for y = sin(x) on [0, /2].

d. Repeat for y = ex on [1, 5]. 
(If you’re using Julia for calculations, you may use “pi” to get 
and “e” for e.)



Simpson’s Rule

Like any other approximation rule, Simpson’s works 
best when the interval is narrow and the function 
values over that interval have a similar shape to the 
approximation device (in this case, a quadratic curve). 

Some function types, like 
exponentials, can cause problems 
because their shape over a broad 
interval is not similar enough to a 
quadratic. Here, the exponential is 
shown in red and the Simpson’s 
quadratic in blue.



Simpson’s Rule

However, this problem can be alleviated by 
dividing larger intervals into smaller sub-
intervals over which Simpson’s Rule will 
continue to work well. 

The number of sub-intervals should depend on 
the width of the original interval; it makes as 
little sense to divide an interval of width 0.5 by 5 
as it does to divide an interval of width 100 by 5.



Practice Problem 3

Write a function that will apply Simpson’s Rule to a 
given function f over an interval [a, b]. Do not worry 
about interval width yet. 

Apply that function to the exponential from #2d, 

 
1

5
𝑒𝑥 𝑑𝑥, to determine what interval width will 

yield answers with an acceptable error. 
You may find this language helpful:
for k = 1:0.5:4.5 

(counts from 1 to 4.5 by 0.5’s)



Practice Problem 4

Decide how you will divide any interval of width 
w into a whole number of evenly-spaced sub-
intervals whose width is approximately the 
width you chose in problem 3.



Practice Problem 5

Design a program to take integrals using 
Simpson’s Rule that…

• divides the given interval into a whole number 
of even sub-intervals of acceptable width 

• runs Simpson’s Rule across those subintervals

• finds the sum of the subinterval integrals for 
the total area.

Test, document and save your code!


