
Policy Compression for
Aircraft Collision Avoidance Systems

Kyle D. Julian∗, Jessica Lopez†, Jeffrey S. Brush†, Michael P. Owen‡ and Mykel J. Kochenderfer∗
∗Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

†Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723
‡Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02420

Abstract—One approach to designing the decision making logic
for an aircraft collision avoidance system is to frame the problem
as Markov decision process and optimize the system using
dynamic programming. The resulting strategy can be represented
as a numeric table. This methodology has been used in the
development of the ACAS X family of collision avoidance systems
for manned and unmanned aircraft. However, due to the high
dimensionality of the state space, discretizing the state variables
can lead to very large tables. To improve storage efficiency, we
propose two approaches for compressing the lookup table. The
first approach exploits redundancy in the table. The table is
decomposed into a set of lower-dimensional tables, some of which
can be represented by single tables in areas where the lower-
dimensional tables are identical or nearly identical with respect
to a similarity metric. The second approach uses a deep neural
network to learn a complex non-linear function approximation
of the table. With the use of an asymmetric loss function and a
gradient descent algorithm, the parameters for this network can
be trained to provide very accurate estimates of values while
preserving the relative preferences of the possible advisories
for each state. As a result, the table can be approximately
represented by only the parameters of the network, which reduces
the required storage space by a factor of 1000. Simulation
studies show that system performance is very similar using either
compressed table representation in place of the original table.
Even though the neural network was trained directly on the
original table, the network surpasses the original table on the
performance metrics and encounter sets evaluated here.

I. INTRODUCTION

Decades of research have explored a variety of different
approaches to designing the decision making logic for aircraft
collision avoidance systems for both manned and unmanned
aircraft [1]. Recent work on formulating the problem of
collision avoidance as a partially observable Markov decision
process (POMDP) has led to the development of the ACAS
X family of collision avoidance systems [2], [3], [4]. The
version for manned aircraft, ACAS Xa, is expected to become
the next international standard for large commercial transport
and cargo aircraft. The variant for unmanned aircraft, ACAS
Xu, uses dynamic programming to determine horizontal or
vertical resolution advisories in order to avoid collisions while
minimizing disruptive alerts. ACAS Xu was successfully flight
tested in 2014 using NASA’s Ikhana UAS [5].

The dynamic programming process for creating the ACAS
Xu horizontal decision making logic results in a large numeric
lookup table that contains scores associated with different
maneuvers from millions of different discrete states. The table

is extremely large, requiring hundreds of gigabytes of floating
point storage. A simple technique to reduce the size of the
score table is to downsample the table after dynamic program-
ming. To minimize the deterioration in decision quality, states
are removed in areas where the variation between values in
the table are smooth. This allows the table to be downsampled
with only minor impact on overall decision performance. The
downsampling reduces the size of the table by a factor of 180
from that produced by dynamic programming. For the rest of
this paper, we refer to the downsampled ACAS Xu horizontal
table as our baseline, original table.

Even after downsampling, the current table requires over
2GB of floating point storage. Discretized score tables like
this have been compressed with Gaussian processes [6] and
decision trees [7]. For an earlier version of ACAS Xa, block
compression was introduced to take advantage of the fact
that, for many discrete states, the scores for the available
actions are identical [8]. One critical contribution of that work
was the observation that the table could be stored in IEEE
half-precision with no appreciable loss of performance. Block
compression was adequate for the ACAS Xa tables that limit
advisories to vertical maneuvers, but the ACAS Xu tables are
much larger.

This paper explores two approaches for compressing the
score table without loss of performance as measured by a set
of safety and operational metrics. The first approach, origami
compression, uses the natural symmetry present within the
table to ‘fold’ the table by decomposing it into smaller tables
and removing redundancies. With the use of a similarity metric
to control the amount of tolerated loss during compression,
the loss of fidelity of the compressed table can be chosen
to yield a smaller size table that still provides acceptable
performance. The second approach seeks to find a robust
non-linear function approximation that represents the table.
A deep neural network, which can serve as a robust global
function approximator when trained using supervised learning,
was used as the functional basis. Using an asymmetric loss
function during training ensures that the approximated table
is able to maintain the actions recommended by the original
table while providing good estimates of the original score table
values.

This paper shows that both methods preserve the per-
formance of the ACAS Xu system according to standard
safety and operational performance metrics. These metrics are



evaluated using 1.5 million encounters with varied encounter
geometries and sensor noise. Although the deep neural net-
work reduces the required memory by a factor of 1000, it
also improves the performance of the ACAS Xu system on
the performance metrics evaluated in this paper. The neural
network imposes regularity on the policy representation and
smooths out artifacts from interpolation of the original dis-
crete representation. Although there are significant certification
concerns with neural network representations, which may be
addressed in the future, these results indicate a promising way
to compactly represent collision avoidance strategies without
sacrificing performance.

Section II provides an overview of the score table used in
the ACAS Xu horizontal logic. Sections III and IV describe
the two techniques used to compress the score table. Section
V discusses performance results derived from the two forms
of compressed score tables, and conclusions are presented in
VI.

II. SCORE TABLE

The ACAS Xu score table associates scores with all pairs
of 120 million states and five actions. The state space is
composed of seven dimensions, as shown in Fig. 1, which
represent information that can be determined from sensor
measurements [4]:

1) ρ (m): Distance from ownship to intruder.
2) θ (rad): Angle to intruder relative to ownship heading

direction.
3) ψ (rad): Heading angle of intruder relative to ownship

heading direction.
4) vown (m/s): Speed of ownship.
5) vint (m/s): Speed of intruder.
6) τ (sec): Time until loss of vertical separation.
7) aprev (◦/s): Previous advisory.

Ownship

vown

Intrudervint

ρ

ψ

θ

Fig. 1. Geometry for ACAS Xu Horizontal Logic Table

The actions in the score table are the horizontal resolution
advisories given to the ownship. These advisories tell the
vehicle either it is Clear-of-Conflict (COC) or that it should
turn left or right at one of two specified heading rates, 1.5 ◦/s
or 3.0 ◦/s. Hence, there are five possible actions, where positive

heading rates are defined as left turns and COC is represented
by a 0 ◦/s action.

The optimal action to take from a given state can be
extracted from the score table. If Q is the real-valued function
associated with the eight-dimensional score table, then the
optimal action is

a∗ = arg max
a

Q(ρ, θ, ψ, vown, vint, τ, aprev, a) (1)

In general, the values of the state variables do not fall exactly
on the grid points, in which case nearest-neighbor interpolation
can be used.

Since the surveillance sensors used by the aircraft are
imperfect, there may be uncertainty in the current state mea-
surement. To improve the robustness of the system to this
uncertainty [9], ACAS Xu uses an unscented Kalman filter
[10] to arrive at a set of weighted state-space samples. These
weighted samples can then be used to compute the best action:

a∗ = arg max
a

b(s(i))Q(s(i), a) (2)

where s(i) is the ith state sample and b(s(i)) is its associated
weight.

III. ORIGAMI COMPRESSION

This section outlines the origami compression scheme used
for reducing the size of the ACAS Xu table.

A. Table Splitting

The score table can be rearranged into a collection of
smaller tables, one for each combination of previous action and
current action. Since there are five possible actions, the original
table can be split into 25 of these smaller tables (Q1, . . . , Q25).
Each of these tables is six dimensional.

Inspection of the smaller tables revealed that there are
patterns in the values that emerge from the process of dynamic
programming. Similarities between many of the tables become
apparent after subtracting out blocks in the score table related
to the minimum scores across the τ dimension. Origami
compression involves computing a set of 25 five-dimensional
tables, where

Q̄i(ρ, θ, ψ, vown, vint) = min
τ
Qi(ρ, θ, ψ, vown, vint, τ) (3)

Origami looks for redundancy in the six-dimensional tables
where Q̄i is subtracted off of Qi.

Q̃i(ρ, θ, ψ, vown, vint, τ) =Qi(ρ, θ, ψ, vown, vint, τ)

− Q̄i(ρ, θ, ψ, vown, vint) (4)

B. Similarity Metric for Lossiness

Inspection of Q̃1, . . . , Q̃25 shows that many of the tables
are very similar. A similarity metric was used to group
similar tables together into m equivalence classes, denoted
Q̃(1), . . . , Q̃(m). Define the vector

δij = |Q̃i − Q̃j | (5)

where Q̃i and Q̃j in this context are treated as vectors
containing the values of the tables, and the absolute value



is applied element-wise to the vector. The distance between
Q̃i and Q̃j is given by the scalar

dij =
σij

(ri + rj)/2
(6)

where σij is the standard deviation of the elements in δij and
ri the maximum value of Q̃i minus the minimum value of Q̃i.

For a given threshold level of tolerance ε, tables Q̃i and
Q̃j can be grouped together when dij < ε. If ε = 0, two
splits must be exactly identical to be deemed equivalent. There
is a tradeoff between loss (determined by ε) and the overall
size of the compressed score table. This tradeoff is discussed
further in the results section in the context of overall system
performance.

C. Symmetry Exploitation

Origami also searches for redundancies due to symmetry in
the score table. Define the symmetric transformation reflecting
about θ = 0 and ψ = 0 as:

Q̃∗
i (ρ, θ, ψ, vown, vint, τ) = Q̃i(ρ,−θ,−ψ, vown, vint, τ) (7)

Inspection revealed similarities between Q̃i and Q̃∗
j when

they correspond to combinations of aprev and a where the
current actions are symmetric, i.e. left and right turns. After
computing dij for all possible (Q̃i, Q̃j) pairs, origami also
computes the distance metric for all (Q̃i, Q̃∗

j ) pairs to identify
the additional symmetric equivalences.

D. Data Layout

The origami representation of the score table requires track-
ing auxiliary data for accessing the compressed scores in real
time. As outlined in Fig. 2, we need to store:

1) m six-dimensional tables Q̃(1), . . . , Q̃(m),
2) a table mapping pairs of (aprev, a) to one of the m

equivalence classes, and
3) 25 five-dimensional offset tables Q̄1, . . . , Q̄25.

This collection of auxiliary data can result in significant
savings over storing the entire eight-dimensional score table.

E. Implementation

The origami folding algorithm is implemented in C++. Run-
ning on a current x64 based Windows machine, the algorithm
required 55 seconds to read the 3.23 GB uncompressed data
from (solid-state) disk, 25 seconds to identify the symmetries
and equivalence classes, and 12 seconds to write the output
files. While the algorithm is only implemented on a single
thread, it is only the final two components that are amenable to
parallelization. If the code was parallelized to take advantage
of four cores, the total time to fold the table under study could
be reduced from 92 seconds to 64 seconds.

IV. DEEP NEURAL NETWORK COMPRESSION

This section explains the development of a deep neural
network function approximation of the score table.

Eq. Class
Table

ρ, θ, ψ,
vown, vint

τ
aprev

a

Input Variables

Q̄i

Q̃(m)

x2
Q̃(1)

Set of m equivalence classes

...

Add
score

Fig. 2. Origami Data Accessing Scheme

A. Function Approximation

Rather than storing all of the state-action scores explicitly,
the values of the table can be represented as a non-linear,
parametric function that takes as input the values of the state
variables and outputs the scores of the various actions. Instead
of storing the table itself, only the parameters of the function
need to be stored, which could significantly decrease the
amount of storage required to represent the table.

Although the large size of the score table may make
this approach seem intractable, recent advances in machine
learning present a viable solution. Deep neural networks are
large, non-linear functions that can be trained to approximate
complex multidimensional target data [11]. A feed-forward
neural network is composed of inputs that are weighted
and summed into a layer of perceptrons. The value at each
perceptron then passes through an activation function before
being weighted and summed again to form the next layer
of perceptrons. In a deep neural network, there are multiple
layers, called hidden layers, before reaching the last layer,
or output layer, which represents the function approximation
for the score table. The weights and biases of the network
can be trained so that a given set of inputs will accurately
compute the score table values. The choices of the neural
network architecture and features can help the network to train
quickly and accurately. Figure 3 shows an example diagram of
a fully-connected network with two hidden layers and rectified
linear unit activations (ReLU) [12], which only allow positive
inputs to pass through to the next layer.

B. Model Architecture

The deep neural network uses fully-connected feed-forward
layers with ReLU activation after each hidden layer. The
network has seven inputs, one for each of the seven state
variables. The output layer consists of five output nodes, one
for each possible advisory. With this architecture, one forward
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Fig. 3. Neural Network Diagram

pass through the network computes the cost values for each
of the five advisories.

Optimizing the network architecture can be challenging
because there are many parameters to vary and evaluation
of the different architectures can be slow. One important
consideration in training deep neural networks is to select
and tune the optimizer used to update the parameters and
weights of the network. Different optimizers were evaluated
including RMSprop [13], Adagrad [14], Adadelta [15], and
Adam [16]. A variant of Adam, known as AdaMax [16],
proved to learn the quickest without becoming stuck in local
optima. In addition, AdaMax requires relatively little tuning
of parameters because it uses estimates of the lower-order
moments of the gradient to anneal the step size of the gradient
descent [16].

After selecting AdaMax for the optimizer, different network
architectures were investigated. A baseline architecture was
chosen with five hidden layers and a set of layer sizes that is
larger early in the network and tapers to smaller layer sizes
towards the end of the network. This approach allows for the
network to find increasingly more abstract representations of
the data, similar to the approach with convolutional neural
networks in image classification [11]. The layer sizes were also
chosen so that the total number of parameters in the network
would be around 600,000, as this would mean the table
could be compressed to occupy only a few megabytes when
using floating point precision. To test the baseline architecture,
the number of hidden layers was varied to see the effect
on the regression performance, but six hidden layers proved
to give the best results with additional layers yielding little
improvement. Figure 4 shows the network loss during training
for the different network optimizers and number of layers. As
a result of this study, a neural network with six hidden layers
and AdaMax optimization was chosen.

C. Loss Function

Another important consideration in training the network
to learn the score table is the choice of loss function to
compute the error propagated back through the network to
update the network parameters. For typical regression models,
mean squared error (MSE) is used because it is simple,
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Fig. 4. Training Comparisons

differentiable, and fast to compute. When applied to the
problem of learning score table values, MSE gives accurate
approximations. However, there is no longer a guarantee that
the optimal advisory remains the same. For many of the states
in the score table, the difference between the scores of the first
and second best advisories is relatively small. When MSE fails
to maintain the order of the actions, the network’s collision
avoidance strategy can be very different from that of the
original table.

Predicting the optimal action given a set of inputs is
a classification problem often solved with categorical cross
entropy loss [17]. This approach can predict optimal actions
well, but there is no regard for representing the score values.
It is important to capture the score values too and not just the
best action in order to accurately compute Eq. (2).

To get the numeric accuracy of MSE with the classification
accuracy of categorical cross entropy, an asymmetric version
of MSE was used. Asymmetric loss functions have been used
to train neural networks when positive or negative errors are
not identical [18]. The asymmetric loss function for collision
avoidance, shown in Fig. 5 is based on MSE, but it increases
the penalty by a factor when the neural network over-estimates
the cost of optimal advisories or under-estimates the cost
of sub-optimal advisories. The factor applied to the optimal



advisory is four times greater than the suboptimal advisories
to balance the fact that there are four sub-optimal advisories
for every optimal advisory. With this loss function, the neural
network has incentive to maintain the optimal advisories of
the score table while still learning accurate representations of
the table values.
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Fig. 5. Asymmetric loss function penalties

The advantage of the asymmetric loss function over regular
MSE can be visualized through the confusion matrices shown
in Fig. 6. Each row is normalized to add up to 100% and
represents the percentage of states where the neural network
selected a particular advisory given the advisory of the original
table.
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Fig. 6. Confusion matrices for MSE and asymmetric MSE loss

The entries on the main diagonal represent the percentage of
advisories correctly classified by the neural network, while the
off-diagonal entries show mis-classifications. For the turning
advisories, the asymmetric loss function is much better at
maintaining advisories and achieves on-diagonal percentages
of 90–94% while the nominal MSE loss function maintains
advisories only 72–74% of the time.

D. Implementation

We implemented the deep neural network in Python using
the Keras library [19] running on top of Theano [20]. We
trained the networks on an NVIDIA DIGITS DevBox with
four Titan X GPUs. Before training, the score table was loaded
as test data for the neural network. The inputs and table values
were normalized so that each has a zero mean and range of
one, which helps the network train more quickly [21]. For

each training epoch, the table data was shuffled and passed
through the network in batches of 216 samples. We trained
the network for 1,200 training epochs over the course of four
days.

V. RESULTS

This section compares the two compression algorithms in
terms of safety and operational performance in simulation,
compression size, and run-time requirements.

A. Performance

One way to assess the quality of the compression is to
plot the actions recommended by the original table and the
compressed strategies for slices through the state space. These
plots show top-down views of encounters with the ownship
centered at the origin and flying in the direction indicated
while the intruder vehicle is flying in the direction shown by
the aircraft in the upper right corner of the plots. The color
at each point in the plot shows the advisory the table would
issue if the intruder were at that location.

Figure 7 shows the actions for a head-on collision encounter
with the aprev being COC. While the origami table with the
lowest loss tolerance is almost identical to the original table,
relaxing the loss tolerance begins to change the shape of the
alerting regions. In addition, while the original and origami
table plots appear choppy due to discretization and nearest
neighbor interpolation, the neural network is able to produce
regions that are smooth representations of the table. For the
neural network, no interpolation is needed since raw input
values can be passed directly to the neural network to compute
the advisory costs of that state.

The smoothing effect of the deep neural network represen-
tation can be seen for angled encounters as well. Figure 8
shows the policies for an aircraft approaching at a right angle
with the previous advisory being −1.5 ◦/s. The neural network
shows a smooth representation of the table, while the origami
tables show accurate representations of the original table.

The origami table with the most loss consists of a single
equivalence class - that is, a single policy to be applied across
all previous advisories (and then adjusted according to the
contents of Q̄). While this policy appears almost identical to
the policy of the original table for τ = 0 and aprev = COC,
when τ is increased, the policy diverges from the original. As
seen in Fig. 9, when τ is set to a high value of 60 seconds, the
strategy for this high loss table (which should be significantly
different than the strategy for low τ , since the intruder aircraft
is farther away vertically) remains the same as when τ = 0.
The origami tables with more loss, those with small numbers
of equivalence classes, essentially average the policies across
aprev, which leads to the origami table alerting in situations
that do not need alerts.

Confusion matrices can again be used to show compression
performance on an aggregate scale. Figure 10 shows the
confusion matrices for three origami tables as well as the deep
neural network. The origami representation with the smallest
loss tolerance almost perfectly matches the original while
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Fig. 7. Advisories for a head-on encounter with aprev = COC, τ = 0 s
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Fig. 9. Advisories for a head-on encounter scenario with aprev = COC, τ = 60 s

increasing the loss tolerance results in increasingly greater
confusion. The neural network matches the original table
actions well, though not as well as the lower loss tolerance
origami tables.
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Fig. 10. Confusion matrices for different compression schemes

Similar to confusion matrices, analyzing differences be-
tween the action ordering of the original table and an al-
ternative representation can help quantify the fidelity of that
representation. These ordering difference metrics can be de-
fined as the percentage of all discrete states for which the

TABLE I
ORDER DIFFERENCES COMPARISON

Compression Any Action Best Two Best

Origami: ε = 0.0003 18.35% 7.33% 0.34%
Origami: ε = 0.002 18.59% 7.52% 0.36%
Origami: ε = 0.003 26.55% 13.69% 5.98%
Origami: ε = 0.03 26.81% 17.32% 11.61%
Neural Network 37.94% 23.83% 2.07%

relative ordering of the actions (when sorted by the cost
associated with each of those actions) differs between the
original table and the compressed representation for a subset of
the actions. Table I shows three different ordering difference
metrics for the origami tables and neural network. The first
metric counts the percent of states where the ordering of any
of the actions are switched, while the second metric counts
only the states where the best two actions have changed, and
the third counts only when the best action (with the lowest
score) has changed. The neural network compression has many
ordering differences when more than just the optimal action is
considered, but it is still accurate when considering only the
optimal action. The neural network was trained to maintain
the optimal action at each state, but there is little incentive for
the other actions to keep their order. The origami tables show
more ordering differences as the loss tolerance increases.

In addition to comparing how well advisory orders are
maintained, the errors in the score values can show how well
the compression performed. Similar to the policy plots shown
above, Figure 11 shows a heat map for an encounter scenario,
but Figure 11 shows the average error of the five advisory



TABLE II
SIMULATION COMPARISON

Compression p(NMAC) p(Alert) p(Reversal)

Original Table 1.546× 10−4 0.55485 0.007438
Origami: ε = 0.0003 1.545× 10−4 0.55499 0.007447
Origami: ε = 0.002 1.545× 10−4 0.55553 0.007729
Origami: ε = 0.003 1.296× 10−4 0.65317 0.006794
Origami: ε = 0.03 1.554× 10−4 0.62617 0.011789
Neural Network 1.272× 10−4 0.53128 0.006903

scores rather than the value of the optimal advisory. For the
neural network plot, only the discrete states are considered
since we are comparing score values to the original table,
which only contains values at discrete points. As expected,
increasing the loss tolerance increases the magnitude of the
score value errors. Unlike in the previous plots where the 0.002
loss tolerance tables looked identical to the the original score
table, a very small difference has emerged, but it is not enough
to affect the policy. The plots for higher loss origami tables are
sensitive to changes in τ , just as seen in the policy plots. The
plots shown here have a medium τ value of 20 seconds, but
lower values will results in lower errors while higher values
will result in higher errors for the origami tables with more
loss.

To quantify the performance of the compressed score rep-
resentations against the performance of the original table,
the neural network code was integrated into a framework
for simulating aircraft encounters generated by an airspace
encounter model [22]. Evaluating the performance metrics
involved simulating over 1.5 million different encounter sce-
narios. Each encounter has a weight representing the relative
probability of that scenario occurring.

Table II compares the likelihood of different events includ-
ing near mid-air collisions (NMACs), alerts, and advisory
reversals (i.e., changing the direction of the advisory). For
higher values of loss tolerance, the origami tables reduce the
probability of collision by alerting more frequently. The neural
network reduces all three metrics, performing even better than
the original table.

Figure 12 shows the ground tracks for a simulated encounter
where the neural network yields a better outcome than the
original table. The arrows perpendicular to the ownship paths
show the turn advisories given by the original table and neural
network. While both systems advise left turns, the neural
network alerts sooner than the original table. This small change
has a large impact as the encounter progresses. The aircraft
following the table policy cannot avoid collision and switches
advisory directions in an effort to pass behind the intruder, but
this switch is too late and the encounter results in an NMAC.
The neural network, in contrast, is able to turn to pass in front
of the intruder and avoid collision. The switch in advisory
at the end prevents the ownship from turning too much and
colliding with the intruder.

Because the neural network defines a continuous func-
tion with respect to the state variables, the neural network

TABLE III
ORIGAMI SIZES

Compression Number of Table Size
Eq. Classes (MB)

Origami: ε = 0.0003 15 812.6
Origami: ε = 0.002 8 492.6
Origami: ε = 0.003 7 446.9
Origami: ε = 0.03 1 172.7

sometimes extends the alerting region past areas where the
nearest neighbor interpolation would give an alert. In cases
like Figure 12, this small change propagates and makes the
difference between colliding with or avoiding the intruder.
On the other hand, although alerting earlier provides a safety
benefit it often causes an increase in unnecessary alerts. While,
the encounter set used throughout this paper is representative
of encounters in the airspace, it is focused on evaluation of
near-miss scenarios. Further analysis is necessary to determine
if an alerting reduction still exists in encounter sets which
include a broader sampling of encounter geometries. The
ability to use continuous states may explain why the neural
network is able to outperform the original score table on the
encounter set used in this paper and could potentially enable
similar performance in broader encounter sets as well.

B. Storage Requirement Reduction

The loss tolerance is a mechanism for directly controlling
the tradeoff between size and fidelity of the origami table
representation. Table I shows that the origami configuration
with the lowest amount of loss preserves the optimal action
in 99.66% of the table states. Table II illustrates that this
high fidelity representation performs almost identically to the
original table in simulation. As the loss tolerance increases,
more loss is introduced into the origami representation and
the original set of n splits is represented by fewer equivalence
classes, as shown in Table III. This loss of fidelity results in
deviations from the original score table in safety and alerting
performance.

The neural network occupies much less memory than the
original table. When the weights are saved in a text file, the file
occupies just 5MB. This file specifies 600,000 floats, which
would occupy only 2.4MB in memory. Since the original table
requires 600 million floats, the neural network compresses the
table by a factor of 1000.

C. Runtime

Recovery of the cost for a set of inputs using the origami
folding algorithm entails two interpolation operations along
with two one-dimensional table accesses as shown in Sec-
tion III-D. However, the fact that the multidimensional tables
share all but one dimension in common allows us to efficiently
compute the interpolants so that the runtime impact is not
double what it would be with a single large table. Use of
the origami folding technique slows the access by about 30%
compared to direct table lookups [23].
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Fig. 12. Ground track comparison through simulation

Because the neural network must perform large matrix
multiplications to compute the costs of each set of inputs,
the neural network approach requires more time to operate.
When tested on the NVIDIA DIGITS DevBox, the network
calculations take 0.32 ms for each set of inputs, which is about
100 times slower than performing a table lookup. With the
use of a BLAS library, which optimizes matrix operations for
faster calculations, the computation time can be sped up to an
average of 77 µs per set of inputs.

VI. CONCLUSION

To decrease the size of the large score table used for ACAS
Xu, two compression algorithms are introduced. Origami
compression exploits redundancies and symmetries in the state
and action spaces to compress the table with little loss. The

neural network compression finds a function approximation
for the table that strives to maintain optimal advisories while
approximating table values as well. Simulation shows that both
compression algorithms perform as well as the original table.
The origami approach gives a more accurate compression
with faster runtime performance, while the neural network
approach gives a smaller compressed representation at the
expense of runtime speed. Although not explored in this paper,
it is possible to use neural networks to compress the smaller
tables associated with the equivalence classes produced by
the origami approach. This may result in even higher quality
compression.

Future work will explore the effects of compressed tables
on other aircraft encounter sets and surveillance sources.
Additional investigations will incorporate coordinated actions
for both the ownship and intruder, which will allow encounters
between two or more aircraft with ACAS Xu to issue optimal
advisories with knowledge of intruder aircrafts’ advisories
[24]. In addition, the process of computing a score table, down-
sampling, and then training a neural network requires a large
amount of time, making trade studies between different reward
functions or dynamic models difficult. A future approach will
incorporate deep reinforcement learning to learn a collision
avoidance strategy while simultaneously training a neural
network representation. This could greatly reduce the time
to learn new collision avoidance strategies and lead to more
accurate neural network models because the approach would
not require any discretization.
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