1. Answer: $rac{1}{2}$

Using the product to sum trigonometric identity, we get:

$$
\int_0^{\pi/2} \sin x \cos x \, dx = \int_0^{\pi/2} \frac{1}{2} (\sin 2x - \sin 0) \, dx
$$

= $\frac{1}{2} \int_0^{\pi/2} \sin 2x \, dx$
= $\frac{1}{2} \left(-\frac{1}{2} \cos 2x \right) \Big|_0^{\pi/2}$
= $\frac{1}{2} (1/2 - (-1/2))$
= $\frac{1}{2} (1)$
= 1/2

2. Answer: 30

Two applications of L'Hôpital's rule are necessary to obtain a fraction which does not divide by zero; the result is

$$
\frac{20 - 3x}{\frac{2}{3}e^{x^2} + \frac{4}{9}x^2e^{x^2}} = \frac{20 - 0}{\frac{2}{3} + 0} = 30
$$

3. Answer: $\frac{8}{3}$

The graph is a figure-8. By symmetry, the area it encloses is four times the area under the curve that we get from just considering $0 \le t \le \frac{\pi}{2}$. For these values of t, we can write $y = 2\sin(t)\cos(t) = 2x\sqrt{1-x^2}$ for $0 \leq x \leq 1$. But this is integrable easily enough by letting $u = 1 - x^2$. The antiderivative that we get is $-\frac{2}{3}u^{\frac{3}{2}}$, which gives an area of $\frac{2}{3}$. Thus the total area enclosed by the parametric graph is $\frac{8}{3}$.

4. Answer: n!

You can think of taking the derivatives this way, in an extended version of the product rule: For each $j \leq n$, let $f_j(x) = \sin(x)$. Then $f(x) = f_1(x)f_2(x)...f_n(x)$. Each time you take the derivative, you pick one of the f_j 's and replace it with its derivative. Some f_j 's might be differentiated more than once in this process. To find the derivative of f, take the results from each way of choosing the f_j 's to differentiate and add them all up.

That said, since $\sin(0) = 0$, if any f_i doesn't get differentiated, it'll make the whole product zero when $x = 0$, so these terms don't matter. But we're only taking the nth derivative, so if every f_i gets differentiated at least once, then they all have to be differentiated exactly once. There are $n!$ remaining terms (the number of ways to choose what order we differentiate the f_j 's in), each of which is $\cos^n(0) = 1$, so the value we want is just n!.

5. Answer: $\frac{125}{4}$

Let $w(t)$ and $s(t)$ denote the amounts of water and salt, respectively, in the tank at time t. We can immediately see that $w(t) = t + 100$. Since the tank is constantly mixed, we know that

$$
\frac{ds}{dt} = -\frac{s(t)}{w(t)}
$$

$$
\frac{ds}{s} = -\frac{dt}{t + 100}
$$

$$
\ln(s) = -\ln(C(t + 100))
$$

$$
s = \frac{C}{t + 100}
$$

Since $s(0) = 50$, $C = 5000$, so $s(60) = 125/4$.

6. Answer:
$$
\frac{1}{10}e^{3x}(3\sin(x) - \cos(x))
$$

Let I be the answer. Integrating by parts twice:

$$
I = \frac{1}{3}e^{3x}\sin(x) - \int \frac{1}{3}e^{3x}\cos(x)dx
$$

= $\frac{1}{3}e^{3x}\sin(x) - \frac{1}{9}e^{3x}\cos(x) - \frac{1}{9}I$

$$
I = \frac{9}{10}\left(\frac{1}{3}e^{3x}\sin(x) - \frac{1}{9}e^{3x}\cos(x)\right)
$$

7. Answer: $\frac{1}{2}e^2$

Multiply the sum by 2 and you get $\sum_{n=1}^{\infty}$ $n=0$ 2^n $\frac{2}{n!}$.

Now notice that the nth derivative of e^{2x} is $2^n e^{2x}$, which gives 2^n evaluated at $x = 0$. The Taylor series for e^{2x} around $x = 0$ is thus $\sum_{n=1}^{\infty}$ $n=0$ 2^n $\frac{2}{n!}x^n$. Evaluated at $x=1$, this gives the sum above, so the sum we want is equal to $\frac{1}{2}e^2$.

8. Answer: $\tan^{-1} x$ or $\tan^{-1}(x) + ax + b$ The limit is, by definition, $\frac{1}{f''(x)}$. Therefore:

$$
\frac{1}{f''(x)} = -\frac{x^4 + 2x^2 + 1}{2x} = -\frac{(1+x^2)^2}{2x}
$$

$$
f''(x) = -\frac{2x}{(1+x^2)^2}
$$

$$
f'(x) = \frac{1}{1+x^2}
$$

$$
f(x) = \tan^{-1} x
$$

9. Answer: $\frac{a_{n-7}-(n-1)a_{n-1}}{n(n-1)}$

Plugging the power series into the differential equation gives:

$$
\sum n(n-1)a_nt^{n-2} + \sum na_nt^{n-1} = \sum a_nt^{n+5}
$$

$$
\sum n(n-1)a_nt^{n-2} + \sum (n-1)a_{n-1}t^{n-2} = \sum a_{n-7}t^{n-2}
$$

$$
n(n-1)a_nt^{n-2} + (n-1)a_{n-1}t^{n-2} = a_{n-7}t^{n-2}
$$

$$
n(n-1)a_n + (n-1)a_{n-1} = a_{n-7}
$$

10. Answer: $\frac{x(2e)^x}{1+\ln 2} - \frac{(2e)^x}{(1+\ln 2)}$ $\sqrt{(1+ \ln 2)^2}$

$$
\int_{-\infty}^{x} t2^{t} e^{t} dt = \left[t \frac{1}{\ln(2e)} (2e)^{t} \right]_{-\infty}^{x} - \int_{-\infty}^{0} \frac{1}{\ln 2e} (2e)^{t} dt
$$

$$
= \frac{x(2e)^{x}}{1 + \ln 2} - \left[\frac{(2e)^{t}}{(1 + \ln 2)} \right]_{-\infty}^{x}
$$

$$
= \frac{x(2e)^{x}}{1 + \ln 2} - \frac{(2e)^{x}}{(1 + \ln 2)^{2}}
$$