1. Find the exact value of $1 - \frac{1}{3!} + \frac{1}{5!} - \dots$

Answer: sin 1

By Taylor Expansion, $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ Let x=1, and the desired value equals $\sin 1$.

2. At RMT 2009 is a man named Bill who has an infinite amount of time. This year, he is walking continuously at a speed of $\frac{1}{1+t^2}$, starting at time $t = 0$. If he continues to walk for an infinite amount of time, how far will he walk?

Answer: $\frac{\pi}{2}$

 $d = \int_0^\infty \frac{1}{1+t^2} dt = \tan^{-1}(t) \vert_0^\infty = \lim_{t \to \infty} \tan^{-1}(t) - \tan^{-1}(0) = \frac{\pi}{2}.$

3. Evaluate $\lim_{x\to 0} \frac{10x^2}{\sin^2(3x)}$ $\frac{10x}{\sin^2(3x)}$.

Answer: $\frac{10}{9}$

By l'Hôpital's rule,

$$
\lim_{x \to 0} \frac{10x^2}{\sin^2(3x)} = \lim_{x \to 0} \frac{20x}{6 \sin(3x) \cos(3x)}
$$

=
$$
\lim_{x \to 0} \frac{20x}{3 \sin(6x)}
$$

=
$$
\lim_{x \to 0} \frac{20}{18 \cos(6x)}
$$

=
$$
\frac{10}{9}.
$$

4. Compute \int_1^1 0 $\tan^{-1}(x)dx$

Answer: $\frac{\pi - 2\ln(2)}{4}$ or equivalent expression We integrate by parts:

$$
\int_0^1 1 \cdot \tan^{-1}(x) dx = \left[x \tan^{-1}(x) \right]_0^1 - \int_0^1 \frac{x}{x^2 + 1} dx
$$

$$
= \frac{\pi}{4} - 0 - \left[\frac{1}{2} \ln(x^2 + 1) \right]_0^1
$$

$$
= \frac{\pi}{4} - \frac{\ln(2)}{2}.
$$

5. Let $a(t) = \cos^2(2t)$ be the acceleration at time t of a point particle traveling on a straight line. Suppose at time $t = 0$, the particle is at position $x = 1$ with velocity $v = -2$. Find its position at time $t = 2$. Answer: $-\frac{\cos(8)}{32} + \frac{33}{32}$

$$
v(t) = \int a(t)dt = \int \cos^2(2t)dt = \int \frac{1 + \cos(4t)}{2}dt = \frac{\sin(4t)}{8} + \frac{t}{2} + c_1,
$$

where c_1 is a constant. Plug in $t = 0$ to find $v(0) = c_1 = -2$. So $v(t) = \frac{\sin(4t)}{8} + \frac{t}{2} - 2$.

$$
x(t) = \int v(t)dt = \int \frac{\sin(4t)}{8} + \frac{t}{2} - 2dt = -\frac{\cos(4t)}{32} + \frac{t^2}{4} - 2t + c_2.
$$

Plug in $t = 0$ to get $x(0) = -\frac{1}{16} + c_2 = 1$, so $c_2 = \frac{33}{32}$. Thus,

$$
x(2) = -\frac{\cos(8)}{16} + \frac{33}{32}.
$$

6. Find

$$
\sum_{n=2}^{\infty} \frac{d^n}{dx^n} (e^{-ax})
$$

for $|a| < 1$. Answer: $\frac{a^2}{1+a}$ $\frac{a^2}{1+a}e^{-ax}$

Since
$$
\frac{d^n}{dx^n}(e^{-ax}) = (-a)^n e^{-ax}
$$

,

$$
\sum_{n=2}^{\infty} \frac{d^n}{dx^n} (e^{-ax}) = e^{-ax} \sum_{n=2}^{\infty} (-a)^n.
$$

This forms a geometric series with common ratio $-a$ and first element a^2 , which converges since $|a| < 1$. Thus the answer is $\frac{a^2}{1+r}$ $\frac{a^2}{1+a}e^{-ax}.$

7. Compute

$$
\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n-k}{n^2} \cos\left(\frac{4k}{n}\right).
$$

Answer: $\frac{1-\cos(4)}{16}$

Define a partition on [0, 1] with n elements by setting $x_i = \frac{i}{n}$ for $0 \le i \le n$. Then $x_i - x_{i-1} = \frac{1}{n}$ for all *i*. If we let $f(y) = (1 - y)\cos(4y)$ and put $y_k = \frac{k}{n}$ for $1 \leq k \leq n$, then we have

$$
\sum_{k=1}^{n} \frac{n-k}{n^2} \cos\left(\frac{4k}{n}\right) = \sum_{k=1}^{n} f(y_k)(x_i - x_{i-1}).
$$

Thus, we may conclude that

$$
\lim_{n \to \infty} \sum_{k=1}^{n} f(y_k)(x_i - x_{i-1}) = \int_0^1 f(y) dy
$$

=
$$
\int_0^1 (1 - y) \cos(4y)
$$

=
$$
\left[\left(\frac{1 - y}{4} \right) \sin(4y) - \frac{\cos(4y)}{16} \right]_0^1
$$

=
$$
\frac{-\cos(4)}{16} + \frac{1}{16}.
$$

8. Evaluate $\int_0^\infty 4\left[x+7\right]e^{-2x}dx$. Remember to express your answer as a single fraction. Answer: $\frac{14e^2-12}{e^2-1}$ $\frac{4e^2-12}{e^2-1}$, or $\frac{14-12e^{-2}}{1-e^{-2}}$ $1-e^{-2}$

To evaluate the floor function, split the integral into unit intervals:

$$
\int_0^\infty 4[x+7]e^{-2x}dx = \sum_{k=0}^\infty \int_k^{k+1} 4(k+7)e^{-2x}dx
$$

= $(14e^{-0} - 14e^{-2}) + (16e^{-2} - 16e^{-4}) + (18e^{-4} - 18e^{-6}) + ...$
= $12 + 2(e^{-0} + e^{-2} + e^{-4} + ...)$
= $12 + \frac{2}{1 - e^{-2}} = \frac{14 - 12e^{-2}}{1 - e^{-2}} = \frac{14e^2 - 12}{e^2 - 1}.$

9. Compute
$$
\sum_{n=0}^{\infty} n \left(\frac{1}{5}\right)^n
$$
.
\n**Answer:** $\frac{5}{16}$
\nLet $S = \sum_{n=0}^{\infty} \frac{n}{5^n}$. Then
\n
$$
\frac{1}{5}S = \sum_{n=0}^{\infty} \frac{n}{5^{n+1}} = \sum_{n=0}^{\infty} \frac{n+1-1}{5^{n+1}} = \sum_{n=0}^{\infty} \frac{n+1}{5^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{5^{n+1}} = \sum_{n=1}^{\infty} \frac{n}{5^n} - \frac{\frac{1}{5}}{1 - \frac{1}{5}} = S - \frac{1}{4}
$$
\n
$$
\Rightarrow \frac{S}{5} = S - \frac{1}{4} \Rightarrow \frac{4S}{5} = \frac{1}{4} \Rightarrow S = \frac{5}{16}.
$$
\n10. Evaluate $\sum_{n=0}^{\infty} \frac{1}{50 + 2.00000}$, as a decimal to the nearest tenth.

 $n=1$ $50 + n^2/80000$

Answer: 62.8

This sum is difficult to evaluate exactly. However, it can be closely approximated by the improper integral of the same function, which is easily evaluated using u -substitution.

$$
\int_0^\infty \frac{dx}{50 + x^2/80000} = \frac{1}{50} \int_0^\infty \frac{dx}{1 + (x/20000)^2}
$$

= $\frac{1}{50} \int_0^\infty \frac{2000 du}{1 + u^2}$
= $\frac{2000}{50} [\tan^{-1} u]_0^\infty$
= $40 \lim_{b \to \infty} (\tan^{-1}(b) - \tan^{-1}(0))$
= $40 \lim_{b \to \infty} \tan^{-1}(b)$
= $40 \frac{\pi}{2}$
= 20π
 ≈ 62.83 .

To see that this integral is correct to the nearest tenth, we observe that since the integrand is a monotonic function, we can bound it above and below by Riemann sums. More precisely:

$$
\sum_{n=1}^{\infty} \frac{1}{50 + n^2/80,000} \leq 20\pi \leq \sum_{n=0}^{\infty} \frac{1}{50 + n^2/80,000}.
$$

By rearranging terms, this implies that:

$$
20\pi - \frac{1}{50} \le \sum_{n=1}^{\infty} \frac{1}{50 + n^2/80,000} \le 20\pi.
$$

From this it follows that 62.8 is indeed correct to the nearest tenth.