1. In the future, each country in the world produces its Olympic athletes via cloning and strict training programs. Therefore, in the finals of the 200 m free, there are two indistinguishable athletes from each of the four countries. How many ways are there to arrange them into eight lanes?

Answer: 2520

$$\frac{8!}{(2!)^4} = \frac{7!}{2} = 2520$$

2. Factor completely the expression $(a-b)^3 + (b-c)^3 + (c-a)^3$.

Answer: 3(a-b)(b-c)(c-a)

The expression is zero when any two of a, b, and c are equal. So it must have (a - b)(b - c)(c - a) as a factor. But the original polynomial is degree 3, and so is this one, so the remaining factor must be a constant. The original polynomial contains a term $3ab^2$, but (a - b)(b - c)(c - a) only contains a term ab^2 , so the constant must be 3.

3. If x and y are positive integers, and $x^4 + y^4 = 4721$, find all possible values of x + y.

Answer: 13

Consider the equation modulo 5. All fourth powers are either 0 or 1 mod 5. So one of x and y must be divisible by 5; suppose it's x. Then we must in fact have x = 5, since x = 10 is too large. This gives y = 8, and this is the only possible solution. So the answer is 13.

4. How many ways are there to write 657 as a sum of powers of two where each power of two is used at most twice in the sum? For example, 256+256+128+16+1 is a valid sum.

Answer: 41

A recursion relationship describing this problem is $a_1 = 1, a_2 = 2, a_{2n} = a_n + a_{n-1}, a_{2n+1} = a_n$ where a_n is the number of valid sums for n. Thus, $a_{657} = a_{328} = a_{164} + a_{163} = a_{82} + 2a_{81} = a_{41} + 3a_{40} = 3a_{19} + 4a_{20}$ $= 4a_{10} + 7a_9 = 4a_5 + 11a_4 = 4a_2 + 11a_4 = 4 \cdot 2 + 11 \cdot 3 = 41.$

5. Compute

$$\int_0^\infty t^5 e^{-t} dt$$

Answer: 120

Define $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt$. Using integration by parts,

$$\begin{split} \Gamma(n+1) &= \int_{0}^{\infty} t^{n} e^{-t} dt \\ &= -t^{n} e^{-t} |_{0}^{\infty} + \int_{0}^{\infty} n t^{n-1} e^{-t} dt \\ &= 0 + n \int_{0}^{\infty} t^{n-1} e^{-t} dt \\ &= n \Gamma(n). \end{split}$$

Next we evaluate $\Gamma(1) = \int_0^\infty e^{-t} dt = -e^{-t}|_0^\infty = 0 - -1 = 1$. Thus, $\Gamma(n+1) = n\Gamma(n) = \dots = n!\Gamma(1) = n!$. So for the problem, $\Gamma(6) = 5! = 120$.

6. Rhombus ABCD has side length 1. The size of $\angle A$ (in degrees) is randomly selected from all real numbers between 0 and 90. Find the expected value of the area of ABCD.

Answer: $\frac{2}{\pi}$

Area of Rhombus
$$ABCD = 4 * \frac{1}{2} * \cos \frac{\theta}{2} \sin \frac{\theta}{2}$$

= $2 * \cos \frac{\theta}{2} \sin \frac{\theta}{2} = \sin \theta$

$$\mathbf{E}[\text{Rhombus } ABCD] = \frac{1}{\frac{\pi}{2} - 0} \int_0^{\frac{\pi}{2}} \sin \theta \, dx$$
$$= \frac{2}{\pi} * 1$$
$$= \frac{2}{\pi}.$$

7. An isosceles trapezoid has legs and shorter base of length 1. Find the maximum possible value of its area.

Answer: $\frac{3\sqrt{3}}{4}$

Let the angle between the longer base and the leg be θ . The Area of the Trapezoid $\Delta(\theta) = \sin \theta + \sin \theta * \cos \theta = \sin \theta + \frac{1}{2} \sin 2\theta$ The area reaches extrema when its derivative is zero: $\Delta' = \cos \theta + \cos 2\theta = 0$ We use the formula $\cos 2\theta = 2 * \cos^2 \theta - 1$ $2 * \cos^2 \theta + \cos \theta - 1 = 0$ $\cos \theta = \frac{-1 \pm \sqrt{9}}{4} = \frac{1}{2}$ or -1 (omitted) $\sin \theta = \frac{\sqrt{3}}{2}$ $\Delta_{Max} = \begin{bmatrix} \frac{3\sqrt{3}}{4} \end{bmatrix}$

8. Simplify

$$\sum_{k=1}^{n} \frac{k^2(k-n)}{n^4}$$

Answer: $\frac{-n^2+1}{12n^2}$

$$\begin{split} \sum_{k=1}^{n} \frac{k^2(k-n)}{n^4} &= \sum_{k=1}^{n} \frac{k^3 - k^2 n}{n^4} \\ &= \sum_{k=1}^{n} \frac{k^3}{n^4} - \sum_{k=1}^{n} \frac{k^2}{n^3} \\ &= \frac{1}{n^4} \sum_{k=1}^{n} k^3 - \frac{1}{n^3} \sum_{k=1}^{n} k^2 \\ &= \left(\frac{1}{n^4}\right) \left(\frac{n(n+1)}{2}\right)^2 - \left(\frac{1}{n^3}\right) \left(\frac{n(n+1)(2n+1)}{6}\right) \\ &= \frac{n^4 + 2n^3 + n^2}{4n^4} - \frac{2n^3 + 3n^2 + n}{6n^3} \\ &= \frac{-n^4 + n^2}{12n^4} \\ &= \frac{-n^2 + 1}{12n^2}. \end{split}$$

9. Find the shortest distance between the point (6,12) and the parabola given by the equation $x = \frac{y^2}{2}$.

Answer: $2\sqrt{17}$

Find the point on the parabola closest to the point (6,12). Call it (x, y) This point is where the normal line at x crosses the parabola. We find the derivative by:

$$x = y^{2}$$
$$dx = ydy$$
$$\frac{dy}{dx} = \frac{1}{y}$$

The normal line will have slope of -y. It will contain (6, 12). Its equation is:

$$y - 12 = -y(x - 6)$$

$$y = -xy + 6y + 12$$

$$y = -\frac{y^3}{2} + 6y + 12$$

$$2y = -y^3 + 12y + 24$$

$$0 = y^3 - 10y - 24$$

The roots are 4 and two other imaginary answers, so 4 is the only one that works.

$$y - 12 = -y(x - 6)$$
$$-8 = -4(x - 6)$$
$$x = 8$$

Find the distance between (8, 4) and (6, 12). The answer is $2\sqrt{17}$.

10. Evaluate
$$\sum_{n=2009}^{\infty} \frac{\binom{n}{2009}}{2^n}.$$
Answer: 2

More generally, define a function G by

$$G(m) = \sum_{n=m}^{\infty} \frac{\binom{n}{m}}{2^n}.$$

Thus we wish to evaluate G(2009). Observe that for all $m \ge 1$:

$$G(m) = \sum_{n=m}^{\infty} \frac{\binom{n}{m}}{2^{n}}$$

=
$$\sum_{n=m}^{\infty} \frac{\binom{n-1}{m-1} + \binom{n-1}{m}}{2^{n}}$$

=
$$\frac{1}{2} \sum_{n=m-1}^{\infty} \frac{\binom{n}{m-1}}{2^{n}} + \frac{1}{2} \sum_{n=m-1}^{\infty} \frac{\binom{n}{m}}{2^{n}}$$

=
$$\frac{1}{2} (G(m-1) + G(m))$$

And thus G(m) = G(m-1). Thus it suffices to evaluate G(0). However, this is simply a geometric series:

$$G(0) = \sum_{n=0}^{\infty} \frac{1}{2^n}$$
$$= 2.$$

NOTE: By noticing that $\binom{n}{2009}$ is $\frac{1}{2009!}n^{2009}$ asymptotically, one can see this summation as a discrete analogue of the Euler Γ function, which is defined by $\Gamma(x) = \int_0^\infty \frac{t^{x-1}}{e^t} dt$. The solution above is similar to the proof that $\Gamma(n+1) = n\Gamma(n)$.

11. Let z_1 and z_2 be the zeros of the polynomial $f(x) = x^2 + 6x + 11$. Compute $(1 + z_1^2 z_2)(1 + z_1 z_2^2)$. Answer: 1266

$$(1+z_1^2z_2)(1+z_1z_2^2) = 1+z_1^2z_2+z_1z_2^2+z_1^3z_2^3$$

= 1+z_1z_2(z_1+z_2)+(z_1z_2)^3.

Since $z_1 + z_2 = -6$ and $z_1 z_2 = 11$,

$$(1+z_1^2z_2)(1+z_1z_2^2) = 1+11(-6)+11^3$$

= 1266.

12. A number N has 2009 positive factors. What is the maximum number of positive factors that N^2 could have?

Answer: 13689

 $2009 = 7^2 \times 41$

We know for a number $n = a_1^{\alpha_1} \times a_2^{\alpha_2} \times \ldots \times a_n^{\alpha_n}$, it has $(\alpha_1 + 1) \times (\alpha_2 + 1) \times \ldots (\alpha_n + 1)$ factors. Hence, for number N, we have the following options: $\alpha_1 = 7 - 1 = 6, \ \alpha_2 = 7 \times 41 - 1 = 289 - 1 = 288$ $\alpha_1 = 7 - 1 = 6, \ \alpha_2 = 7 - 1 = 6, \ \alpha_3 = 41 - 1 - 40$ By the same fact mentioned above, N^2 has: $(2 * \alpha_1 + 1) \times (2 * \alpha_2 + 1) \times \ldots (2 * \alpha_n + 1)$ factors. Calculating this number for both, we get the 2nd option gets us a bigger number: $13 \times 13 \times 81 = 13689$

13. Find the remainder obtained when 17^{289} is divided by 7?

Answer: 3

$$17^{289} \equiv (14+3)^{289} \equiv \binom{289}{1} 14^{288} 3 + \ldots + \binom{289}{n} 13^{289-n} 3^n + \ldots$$
$$3^{289} \equiv 3^{289} \pmod{7}$$

Note that $3^3 \equiv 27 \equiv -1 \pmod{7}$. Then $3^{289} \equiv 3^{396} \dot{3}^1 \equiv (-1)^{96} \dot{3}^1 \equiv 3 \mod{7}$. Thus, the remainder is 3.

14. Let a and b be integer solutions to 17a + 6b = 13. What is the smallest possible positive value for a - b? Answer: 17

equation modulo 23, we get $-6(a-b) \equiv -10 \pmod{23}$. Since -4 is an inverse of -6 modulo 23, then we multiply to get $(a-b) \equiv 17 \pmod{23}$. Therefore, the smallest possible positive value for (a-b) is 17. This can be satisfied by a = 5, b = -12.

15. What is the largest integer n for which $\frac{2008!}{31^n}$ is an integer?

Answer: 66

 $\lfloor \frac{2008}{31} \rfloor + \lfloor \frac{2008}{31^2} \rfloor + \lfloor \frac{2008}{31^3} \rfloor + \lfloor \frac{2008}{31^4} \rfloor + \dots = 64 + 2 + 0 + 0 + \dots = 66.$