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1. In the future, each country in the world produces its Olympic athletes via cloning and strict training
programs. Therefore, in the finals of the 200 m free, there are two indistinguishable athletes from each
of the four countries. How many ways are there to arrange them into eight lanes?

Answer: 2520

8!
(2!)4

=
7!
2

= 2520

2. Factor completely the expression (a− b)3 + (b− c)3 + (c− a)3.

Answer: 3(a− b)(b− c)(c− a)

The expression is zero when any two of a, b, and c are equal. So it must have (a− b)(b− c)(c− a) as a
factor. But the original polynomial is degree 3, and so is this one, so the remaining factor must be a
constant. The original polynomial contains a term 3ab2, but (a− b)(b− c)(c− a) only contains a term
ab2, so the constant must be 3.

3. If x and y are positive integers, and x4 + y4 = 4721, find all possible values of x+ y.

Answer: 13

Consider the equation modulo 5. All fourth powers are either 0 or 1 mod 5. So one of x and y must be
divisible by 5; suppose it’s x. Then we must in fact have x = 5, since x = 10 is too large. This gives
y = 8, and this is the only possible solution. So the answer is 13.

4. How many ways are there to write 657 as a sum of powers of two where each power of two is used at
most twice in the sum? For example, 256+256+128+16+1 is a valid sum.

Answer: 41

A recursion relationship describing this problem is
a1 = 1, a2 = 2, a2n = an + an−1, a2n+1 = an
where an is the number of valid sums for n. Thus,
a657 = a328 = a164 + a163 = a82 + 2a81 = a41 + 3a40 = 3a19 + 4a20

= 4a10 + 7a9 = 4a5 + 11a4 = 4a2 + 11a4 = 4 · 2 + 11 · 3 = 41.

5. Compute ∫ ∞
0

t5e−tdt

Answer: 120

Define Γ(n) =
∫∞
0
tn−1e−tdt. Using integration by parts,

Γ(n+ 1) =
∫ ∞

0

tne−tdt

= −tne−t|∞0 +
∫ ∞

0

ntn−1e−tdt

= 0 + n

∫ ∞
0

tn−1e−tdt

= nΓ(n).

Next we evaluate Γ(1) =
∫∞
0
e−tdt = −e−t|∞0 = 0−−1 = 1. Thus, Γ(n+ 1) = nΓ(n) = . . . = n!Γ(1) =

n!. So for the problem, Γ(6) = 5! = 120.

6. Rhombus ABCD has side length 1. The size of ∠A (in degrees) is randomly selected from all real
numbers between 0 and 90. Find the expected value of the area of ABCD.

Answer: 2
π
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Area of Rhombus ABCD = 4 ∗ 1
2
∗ cos

θ

2
sin

θ

2

= 2 ∗ cos
θ

2
sin

θ

2
= sin θ

E[Rhombus ABCD] =
1

π
2 − 0

∫ π

2
0

sin θ dx

=
2
π
∗ 1

=
2
π
.

7. An isosceles trapezoid has legs and shorter base of length 1. Find the maximum possible value of its
area.

Answer: 3
√

3
4

Let the angle between the longer base and the leg be θ.
The Area of the Trapezoid ∆(θ) = sin θ + sin θ ∗ cos θ = sin θ + 1

2 sin 2θ
The area reaches extrema when its derivative is zero:
∆′ = cos θ + cos 2θ = 0
We use the formula cos 2θ = 2 ∗ cos2 θ − 1
2 ∗ cos2 θ + cos θ − 1 = 0

cos θ =
−1±

√
9

4
=

1
2

or −1 (omitted)

sin θ =
√

3
2

∆Max = 3
√

3
4

8. Simplify
n∑
k=1

k2(k − n)
n4

.

Answer: −n
2+1

12n2

n∑
k=1

k2(k − n)
n4

=
n∑
k=1

k3 − k2n

n4

=
n∑
k=1

k3

n4
−

n∑
k=1

k2

n3

=
1
n4

n∑
k=1

k3 − 1
n3

n∑
k=1

k2

=
(

1
n4

)(
n(n+ 1)

2

)2

−
(

1
n3

)(
n(n+ 1)(2n+ 1)

6

)
=

n4 + 2n3 + n2

4n4
− 2n3 + 3n2 + n

6n3

=
−n4 + n2

12n4

=
−n2 + 1

12n2
.
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9. Find the shortest distance between the point (6,12) and the parabola given by the equation x = y2

2 .

Answer: 2
√

17

Find the point on the parabola closest to the point (6,12). Call it (x, y) This point is where the normal
line at x crosses the parabola. We find the derivative by:

x = y2

dx = ydy

dy

dx
=

1
y

The normal line will have slope of −y. It will contain (6, 12). Its equation is:

y − 12 = −y(x− 6)
y = −xy + 6y + 12

y = −y
3

2
+ 6y + 12

2y = −y3 + 12y + 24
0 = y3 − 10y − 24

The roots are 4 and two other imaginary answers, so 4 is the only one that works.

y − 12 = −y(x− 6)
−8 = −4(x− 6)

x = 8

Find the distance between (8, 4) and (6, 12). The answer is 2
√

17.

10. Evaluate
∞∑

n=2009

(
n

2009

)
2n

.

Answer: 2

More generally, define a function G by

G(m) =
∞∑
n=m

(
n
m

)
2n

.

Thus we wish to evaluate G(2009). Observe that for all m ≥ 1:

G(m) =
∞∑
n=m

(
n
m

)
2n

=
∞∑
n=m

(
n−1
m−1

)
+
(
n−1
m

)
2n

=
1
2

∞∑
n=m−1

(
n

m−1

)
2n

+
1
2

∞∑
n=m−1

(
n
m

)
2n

=
1
2

(G(m− 1) +G(m))
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And thus G(m) = G(m − 1). Thus it suffices to evaluate G(0). However, this is simply a geometric
series:

G(0) =
∞∑
n=0

1
2n

= 2.

NOTE: By noticing that
(
n

2009

)
is 1

2009!n
2009 asymptotically, one can see this summation as a discrete

analogue of the Euler Γ function, which is defined by Γ(x) =
∫ ∞

0

tx−1

et
dt. The solution above is similar

to the proof that Γ(n+ 1) = nΓ(n).

11. Let z1 and z2 be the zeros of the polynomial f(x) = x2 + 6x+ 11. Compute (1 + z2
1z2)(1 + z1z

2
2).

Answer: 1266

(1 + z2
1z2)(1 + z1z

2
2) = 1 + z2

1z2 + z1z
2
2 + z3

1z
3
2

= 1 + z1z2(z1 + z2) + (z1z2)3.

Since z1 + z2 = −6 and z1z2 = 11,

(1 + z2
1z2)(1 + z1z

2
2) = 1 + 11(−6) + 113

= 1266.

12. A number N has 2009 positive factors. What is the maximum number of positive factors that N2 could
have?

Answer: 13689

2009 = 72 × 41

We know for a number n = aα1
1 × a

α2
2 × . . .× aαn

n , it has (α1 + 1)× (α2 + 1)× . . . (αn + 1) factors.
Hence, for number N, we have the following options:
α1 = 7− 1 = 6, α2 = 7× 41− 1 = 289− 1 = 288
α1 = 7− 1 = 6, α2 = 7− 1 = 6, α3 = 41− 1− 40
By the same fact mentioned above, N2 has: (2 ∗ α1 + 1)× (2 ∗ α2 + 1)× . . . (2 ∗ αn + 1) factors.
Calculating this number for both, we get the 2nd option gets us a bigger number: 13 × 13 × 81 =
13689

13. Find the remainder obtained when 17289 is divided by 7?

Answer: 3

17289 ≡ (14 + 3)289 ≡
(

289
1

)
142883 + . . .+

(
289
n

)
13289−n3n + . . .

3289 ≡ 3289( mod 7)

Note that 33 ≡ 27 ≡ −1( mod 7). Then 3289 ≡ 339̇63̇1 ≡ (−1)963̇1 ≡ 3 mod 7. Thus, the remainder
is 3.

14. Let a and b be integer solutions to 17a+6b = 13. What is the smallest possible positive value for a−b?
Answer: 17

equation modulo 23, we get −6(a− b) ≡ −10 ( mod 23). Since -4 is an inverse of -6 modulo 23, then
we multiply to get (a− b) ≡ 17 ( mod 23). Therefore, the smallest possible positive value for (a-b) is
17. This can be satisfied by a = 5, b = −12.
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15. What is the largest integer n for which 2008!
31n is an integer?

Answer: 66

b 200831 c+ b 2008312 c+ b 2008313 c+ b 2008314 c+ · · · = 64 + 2 + 0 + 0 + · · · = 66.


