II. Real-space multiple-scattering theory of EXAFS and XANES & FEFF

J. J. Rehr, J. J. Kas and F. D. Vila
Talk:
- Real-space multiple-scattering (RSMS) Theory
 aka Real-space Green’s function (RSGF) theory
- Implementation of RSMS in FEFF

Key approximations and limitations
Effects of structure and disorder
Some advanced developments
Full spectrum XAS: Expt. Vs Theory

fcc Al

UV x-ray

μ (Ångstrom⁻¹)

ω (eV)
The devil is in the details: edges, fine-structure ...
Historical interpretation of EXAFS*
*Stern Sayers Lytle, UW 1971

Short range order theory → EXAFS Fourier Transform

→ X-ray Microscope!

BUT needed to calibrate experiment with “Standard”
Quantitative theory of EXAFS:

Theory behind FEFF6

J. J. Rehr & R.C. Albers
Rev. Mod. Phys. 72, 621 (2000)
Ab initio theory and calculations of X-ray spectra

John J. Rehr *, Joshua J. Kas, Micah P. Prange, Adam P. Sorini, Yoshinari Takimoto, Fernando Vila

Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
Available online 5 December 2008

Update of Rehr & Albers: Advanced techniques and ab initio treatment of many-body effects
Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure

A. L. Ankudinov
MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

B. Ravel
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

J. J. Rehr
Department of Physics, University of Washington, Seattle, Washington 98195-1560

S. D. Conradson
MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 26 September 1997; revised manuscript received 14 April 1998)

Parameter-free calculations of X-ray spectra with FEFF9

John J. Rehr,*a Joshua J. Kas,a Fernando D. Vila,a Micah P. Prange,bc and Kevin Jorissen*a

Received 15th December 2009, Accepted 27th April 2010
First published as an Advance Article on the web 6th May 2010
DOI: 10.1039/b926434c
Atomic models:
e.g. de Groot. Atomic cross-sections, multiplet theory with fitted parameters, crystal field model Hamiltonians

DFT (Density Functional Theory):
WIEN2k, ABINIT, VASP, CASTEP, StoBe, Orca ..., Accurate for ground-state properties, not reliable for excited states, Delta-SCF “Final State Rule” with core-hole

Quasi-particle Green’s Function Theory: FEFF9
Appropriate for excited states, NOT full potential

BSE (Bethe-Salpeter Equation):
Exc!ting, OCEAN, Al2NBSE. Accurate but demanding. Less user friendly. Misses excitations & satellites

QC methods:
MRCI, MRCC, CASPT2, QMC, etc, highly accurate but mostly intractable except in small molecules

RSGF in the hierarchy of spectroscopy methods
"Pretty good" spectra

Advantages:
- Real-space
- Fully relativistic, all-electron
- Semi-automated, user-friendly, easy to use
- Built for EXAFS and related x-ray spectroscopies
- Applicable to materials throughout the periodic table

Disadvantages: Not always the best tool:
- Spherical potentials – can lose accuracy near edges
- Quasi-particle theory only – ignores multiplets, satellites
FEFF quantitative XANES theory in one Feynman diagram
“Can you write an equation for the theory?”

P.A.M. Dirac
Answer: Exact EXAFS Equation*

\[\chi(k) = S_0^2 \sum_R \frac{|f_{\text{eff}}(k)|}{kR^2} \sin(2kR + \Phi_k) e^{-2R/\lambda_k} e^{-2\sigma^2 k^2} \]

Effective Scattering Amplitude \(f_{\text{eff}} \)

\(S_0^2 \) Many body amplitude factor

EXAFS measures local structure & disorder

Distance \(R \) Coordination \(N \) Disorder \(\sigma^2 \)

\(\lambda_k \) Mean free path

\(\sigma^2 \) Mean square vib amplitude

BUT: need many parameters!

Question: Can the EXAFS parameters $k, f_{\text{eff}}, \Phi_k, \sigma^2, \lambda_k, S_0^2$ be calculated theoretically?
FEFF: Many-body → effective single particle

Many-body Fermi’s Golden Rule

\[
\mu(\omega) \propto \sum_{F} |\langle I | \Delta | F \rangle|^2 \delta (E_F - E_I - \omega)
\]

Effective Single particle Fermi’s Golden Rule

\[
\mu(\omega) \propto \sum_{i,f} |\langle i | d | f \rangle|^2 \delta (E_f - E_i - \omega) S_0^2
\]

\[
H = -(1/2)\nabla^2 + V
\]

\[
H' = H + V_{ch} + \Sigma(E)
\]
Effective Single particle
Fermi’s Golden Rule

\[\mu(\omega) \propto \sum_{ij} \langle i | d^\dagger | f \rangle \langle f | d | i \rangle \delta(E_f - E_i - \omega) \, S_0^2 \]
Effective Single particle
Fermi’s Golden Rule

\[\rho(r, r', E) = \sum_f |f\rangle \langle f| \delta(E_f - E)\]

Density Matrix

\[\mu(\omega) \propto \sum_{ij} \langle i | d^\dagger | f \rangle \langle f | d | i \rangle \delta(E_f - E_i - \omega) S_0^2\]
FEFF: From sum-over-states to Green’s function

Effective Single particle

Fermi’s Golden Rule

$$\mu(\omega) \propto \sum_{i,j} \langle i | d^\dagger | f \rangle \langle f | d | i \rangle \delta(E_f - E_i - \omega) S_0^2$$

$$\rho(r,r',E) = \sum_f \langle f | \langle f | \delta(E_f - E)$$

$$\text{Im} \left[G(r,r',E) \right] = -\frac{1}{\pi} \rho(r,r',E)$$

$$G = [E - H + i\Gamma]^{-1}$$

Density matrix from Green’s function
Effective Single particle
Fermi’s Golden Rule

\[\rho(r, r', E) = \sum_f |f\rangle \langle f| \delta(E_f - E) \]

\[\text{Im} \left[G(r, r', E) \right] = -\frac{1}{\pi}\rho(r, r', E) \]

\[G = [E - H + i\Gamma]^{-1} \]

Substitute sum over final states with Green’s function

\[\mu(\omega) \propto \sum_{ij} \langle i|d^\dagger|f\rangle \langle f|d|i\rangle \delta(E_f - E_i - \omega) S_0^2 \]

\[\mu(\omega) \propto \text{Im} \sum_{i} \langle i|d^\dagger G(\omega + E_i)d|i\rangle \theta_1(\omega + E_i - E_{Fermi}) S_0^2 \]
What’s a Green’s function?

Wave function in QM \[H \Psi = E \Psi \]

\[\Psi(r) = \text{Amplitude to find particle at } r \]

Green’s function \[(H - E) G = - \delta(r-r') \]

\[G(r,r',E) = \text{aka Propagator} \]

= Amplitude to go from \(r \) to \(r' \)
\[\mu(\omega) \propto \text{Im} \sum_i \langle i | d^\dagger G(\omega + E_i) d | i \rangle \theta_{\Gamma}(\omega + E_i - E_{\text{Fermi}}) \quad S_0^2 \]

Insert complete set of states

\[1 = \sum_L |i, L \rangle \langle i, L| \]
FEFF: Local basis and matrix elements

\[\mu(\omega) \propto \text{Im} \sum_i \langle i | d^\dagger G(\omega + E_i) d | i \rangle \theta_\Gamma(\omega + E_i - E_{\text{Fermi}}) S_0^2 \]

Insert complete set of states

\[1 = \sum_L |i, L\rangle \langle i, L| \]

\[\mu(\omega) \propto \text{Im} \sum_{iLL'} \langle i | d^\dagger | i, L \rangle G_{LL'}(\omega + E_i) \langle i, L' | d | i \rangle \theta_\Gamma(\omega + E_i + E_{\text{Fermi}}) S_0^2 \]
FEFF: Local basis and matrix elements

\[\mu(\omega) \propto \text{Im} \sum_i \langle i | d^\dagger G(\omega + E_i) d | i \rangle \theta(\omega + E_i - E_{\text{Fermi}}) S_0^2 \]

Insert complete set of states

\[1 = \sum_L |i, L\rangle \langle i, L| \]

Matrix elements

\[\mu(\omega) \propto \text{Im} \sum_{iLL'} \langle i | d^\dagger | i, L \rangle G_{LL'}(\omega + E_i) \langle i, L' | d | i \rangle \theta(\omega + E_i + E_{\text{Fermi}}) S_0^2 \]

Green’s Function matrix
Getting G: Multiple Scattering Theory

Dyson’s equation:

\[G = G^0 + G^0 V G \]

Iterating:

\[G = G^0 + G^0 V G^0 + G^0 V G^0 V G^0 + \cdots \]
Dyson’s equation:
\[G = G^0 + G^0 V G \]

Iterating:
\[G = G^0 + G^0 V G^0 + G^0 V G^0 V G^0 + \cdots \]

\[G(r, r') = G_0(r, r') + \int d^3 r'' G_0(r, r'') V(r'') G_0(r'', r') + \cdots \]
Getting G: Multiple Scattering

Dyson’s equation: \[G = G^0 + G^0VG \]

Iterating: \[G = G^0 + G^0VG^0 + G^0VG^0VG^0 + \cdots \]

Atomic pot. partition

\[V = \sum_i v_i \]

\[G = G^0 + \sum_i G^0 v_i G^0 + \sum_{i,j} G^0 v_i G^0 v_j G^0 + \cdots \]
Getting G: Multiple Scattering

Dyson’s equation:

$$ G = G^0 + G^0 V G $$

Iterating:

$$ G = G^0 + G^0 V G^0 + G^0 V G^0 V G^0 + \cdots $$

Atomic pot. partition

$$ V = \sum_i v_i $$

$$ G = G^0 + \sum_i G^0 v_i G^0 + \sum_{i,j} G^0 v_i G^0 v_j G^0 + \cdots $$

Site scatt. matrix

$$ t_i = v_i + v_i G_0 t_i $$

$$ G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \cdots $$
Getting G: Multiple Scattering

Dyson’s equation: $G = G^0 + G^0 V G$

Iterating: $G = G^0 + G^0 V G^0 + G^0 V G^0 V G^0 + \cdots$

Atomic pot. partition $V = \sum_i v_i$

$G = G^0 + \sum_i G^0 v_i G^0 + \sum_{ij} G^0 v_i G^0 v_j G^0 + \cdots$

Site scatt. matrix $t_i = v_i + v_i G_0 t_i$

$G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \cdots$

$G_0 V G_0$

$G_0 T G_0$
Getting G: Multiple Scattering

$$G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \ldots$$
Getting G: Multiple Scattering

\[
G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \ldots
\]

Central atom contrib.

\[
G_c = G_0 + G_0 t_c G_0
\]

EXAFS

\[
G = G_c + G_c \sum_{i \neq c} t_i G_c + G_c \sum_{i \neq c} \sum_{j \neq c} t_i G_0 t_j G_c + \ldots
\]
Getting G: Multiple Scattering

\[G = G^0 + \sum_{i} G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \ldots \]

Central atom contrib.

\[G_c = G_0 + G_0 t_c G_0 \]

EXAFS

\[G = G_c + G_c \sum_{i \neq c} t_i G_c + G_c \sum_{i \neq c} \sum_{j \neq c} t_i G_0 t_j G_c + \ldots \]

Graphically: Path expansion

\[G = G_c + G_c T G_c + G_c T G^0 T G_c + G_c T G^0 T G^0 T G_c + \ldots \]
Getting G: Full Multiple Scattering

\[G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \ldots \]
Getting G: Full Multiple Scattering

$$G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + \ldots$$

Total scatt. matrix

$$T_{LL'}^{ij} = t_{LL'}^i \delta_{ij}$$

$$G = G^0 + G^0 T G^0 + G^0 T G^0 T G^0 + \ldots$$
Getting G: **Full Multiple Scattering**

$$G = G^0 + \sum_i G^0 t_i G^0 + \sum_{i \neq j} G^0 t_i G^0 t_j G^0 + ...$$

Total scatt. matrix

$$T_{LL'}^{i,j} = t_{LL'}^i \delta_{ij}$$

Sum and invert

$$G = G^0 + G^0 T G^0 + G^0 T G^0 T G^0 + ...$$

XANES

$$G = [1 - G^0 T]^{-1} G^0$$
Implementation: FEFF Code

Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure

A. L. Ankudinov
MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

B. Ravel
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

J. J. Rehr
Department of Physics, University of Washington, Seattle, Washington 98195-1560

S. D. Conradson
MST-11, Los Alamos National Laboratory, Los Alamos, New Mexico

Core-hole, SCF potentials

Essential!
Example: Pt EXAFS – path expansion

Path Expansion 15 paths

R

\(\chi(R) \)

Path Expansion 15 paths

No peak shift!

\(R_{nn} = 2.769 \)

fcc Pt

*Theoretical phases accurate distances to < 0.01 Å
Example: Pt XANES full multiple-scattering

Pt L₃-edge

Pt L₂-edge (S. Bare, UOP)

- **Relativistic** FEFF8 code reproduces all spectral features, *including absence of white line at L₂-edge*.

- **Self-consistency essential**: position of Fermi level strongly affects white line intensity.
Green’s Functions and Parallel Computation

Parallel calculation of electron multiple scattering using Lanczos algorithms

A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung

1Department of Physics, University of Washington, Seattle, Washington 98195
2National Institute of Standards and Technology, Gaithersburg, Maryland 20899

μ(E) \sim -\frac{1}{\pi} \text{Im} \langle i | \hat{\epsilon} \cdot r' G(r', r, E) \hat{\epsilon} \cdot r | i \rangle

Energy E is just a parameter!

“Natural parallelization”

Each CPU does one energy

FeffMPI Scaling with Cluster Size

Normalized time relative to single processor vs. Inverse number of nodes in cluster \frac{1}{N_{CPU}}
Self-consistent Densities and Potentials

\[\rho(r) = -\frac{1}{\pi} \int_{-\infty}^{E_{\text{Fermi}}} \text{Im}[G(r,r;E)] dE \]

\(\rho^{(0)} \)

\(V^{(i)}_{\text{eff}} \)

\(\psi^{(i+1)} / G^{(i+1)} \Rightarrow \rho^{(i+1)} \)

\(\rho^{(i)} \)

\(\rho^{(i+1)} = \rho^{(i)} ? \)

Spectrum: Golden Rule
Key approximations in FEFF

- Dirac-Fock relativistic atomic states; semi-relativistic scattering states
- Spherical overlapped muffin-tin potentials: Huge simplification of the problem
- Quasi-particle approximation: Electron propagates in lossy medium described by Approximate self-energy
- Core-hole treatment: RPA or DFT-Screened core-hole
The muffin-tin potential

Scattering potential partition into muffin-tins

\[V = \sum_{i} v_i \]
The overlapped muffin-tin potential (~10%)

Improved density:
Resembles “bonding”
Charge redistribution
Charge neutrality built in

? Spherical approximation?
FEFF Density of States vs full potential codes

NaNO$_2$

DOS (Arbitrary units)

E-E$_F$ (eV)

VASP

FEFF
FEFF electron density in real space vs full potential codes
Disorder and Debye-Waller factors

DW factors:
- **Crucial** for EXAFS
- Very little effect in XANES region
- Can be included anyway in single-scattering approx.
- Both *ab initio* and model forms

Static Disorder:
- May be important in XANES
- Need external input for FEFF simulations
- Methods **MD** trajectories, MC sampling ...
Quick intro to DW factors

Multiple Scattering Path

XAFS DW Factor

Average commonly expressed in terms of the cumulant expansion

\[
\left\langle e^{i2kr}\right\rangle \equiv e^{2ikR_0} e^{-W(T)}
\]

\[
W(T) = - \sum_{n=1}^{\infty} \frac{(2ik)^n}{n!} \sigma^{(n)}(T)
\]

Leading cumulants

\[
\begin{align*}
\sigma^{(1)} &= \left\langle r - R_0 \right\rangle \\
\sigma^{(2)} &= \left\langle (r - \bar{r})^2 \right\rangle \equiv \sigma^2(T) \\
\sigma^{(3)} &= \left\langle (r - \bar{r})^3 \right\rangle
\end{align*}
\]
EXAFS near-neighbor DW Factor of Cu

CD (Correlated Debye):
Standard FEFF

LDA, hGGA:
Ab initio DW

Isotropic bonding:
Good CD results

Expt: Fornasini et al. (2004)
EXAFS near-neighbor DW Factor of Ge

CD (Correlated Debye): Default in FEFF

LDA, hGGA: Ab initio DW

Directional bonding: Needs AIDW

Expt: Dalba et al. (1999)
Ab Initio DW factors: Lanczos algorithm

XAFS DW Factor for path R:

\[\sigma^2_R(T) = \frac{\hbar}{2\mu_R} \int_0^\infty \frac{1}{\omega} \coth \left(\frac{\beta \hbar \omega}{2} \right) \rho_R(\omega) \, d\omega \]

VDOS expressed as imaginary part of the phonon propagator

\[\rho_R(\omega) = -\frac{2\omega}{\pi} \text{Im} \langle 0 | \frac{1}{\omega^2 - D + i\varepsilon} | 0 \rangle \]

Seed state: Displacement along path

Dynamical Matrix: Calculated using ab initio methods (Abinit, Gaussian, VASP, etc)
Ab Initio DW Factors in Metal-Ligand Complexes

Ru(bpy)²(AP)(H₂O)²⁺

Good agreement for tight ligands (bpy)

Useful agreement for weak ligands (AP and H₂O)
Still within error margin

<table>
<thead>
<tr>
<th>Path</th>
<th>R_{M-L} (in Å)</th>
<th>σ^2 (in 10^{-3} Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td>Exp</td>
</tr>
<tr>
<td>Ru-N(bpy)</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.10</td>
<td>2.05±0.01</td>
</tr>
<tr>
<td></td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>Ru-N(AP)</td>
<td>2.14</td>
<td>2.10±0.03</td>
</tr>
<tr>
<td>Ru-O</td>
<td>2.22</td>
<td>2.06±0.05</td>
</tr>
</tbody>
</table>

Beyond DFT: Quasi-particle Self-Energy Effects

Quasi-particle (QP) effects:

\[G = \left[E - H - \Sigma \right]^{-1} \]

BN 89 atom cluster

Ground state potential:
Usually insufficient
Need QP effects
and SCF potentials
Treatment of the core hole:
 - Screening DFT or RPA
 - Chemical shifts

Self-energy approximations:
 - Need more than single-pole self-energy

Many-body effects:
 - Multi-electron excitations S_0^2
 - Charge transfer excitations:
Quick overview of other FEFF capabilities:

- XES
- RIXS
- Compton Profiles
- Reciprocal space: EELS and impurity GF
- Hubbard U method
Non-resonant X-ray Emission (XES)

Vila et al., J. Phys. Chem. A 2011, 115, 3243
Real-space Green’s function approach to resonant inelastic x-ray scattering

\[
\frac{d^2\sigma}{d\Omega d\omega} = \frac{\omega}{\Omega} \sum_F \left| \sum_M \frac{\langle F | \Delta_2 | M \rangle \langle M | \Delta_1 | \Psi_0 \rangle}{E_M - \Omega - E_0 + i \Gamma_M} \right|^2 \\
\times \delta(\Omega - \omega + E_0 - E_F)
\]

\[
\frac{d^2\sigma}{d\Omega d\omega} \propto \frac{\omega}{\Omega} \int d\omega_1 \frac{\mu_e(\omega_1) \mu(\Omega - \omega - \omega_1 + E_b)}{|\omega - \omega_1 - i \Gamma_b|^2}
\]

TiO\textsubscript{2} (Ti K\textalpha)
Real-space Green’s function calculations of Compton profiles

Brian A. Mattern, Gerald T. Seidler, Joshua J. Kas, Joseph I. Pacold, and John J. Rehr
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
(Received 2 February 2012; revised manuscript received 16 March 2012; published 29 March 2012)

Finite-temperature calculations of the Compton profile of Be, Li, and Si

E. Klevak, F. D. Vila, J. J. Kas, J. J. Rehr, and G. T. Seidler
Department of Physics, University of Washington, Seattle, Washington 98195, USA
(Received 3 August 2016; published 2 December 2016)

\[S(q,\omega) = \sum_F \left| \langle F | \sum_j \exp(i q \cdot r_j) | I \rangle \right|^2 \delta(E_F - E_I - \hbar \omega) \]

\[S(q,\omega) = (m/\hbar q) J(p_q) \]

\[J(p_q) \equiv \int d^3 r \rho(p) \delta(p_q - (\omega m/q - \hbar q / 2)) \]
Strongly correlated systems: Hubbard GW+U

U calculated using constrained RPA within RSMS

(Nearly) parameter free

Further information

The FEFF Project website:
URL: feffproject.org

The FEFF Users Guide:
URL: feffproject.org/feffproject-feff-documentation.html

Developers contact:
URL: feffproject.org/feffproject-contact.html.html
Take away messages

Know the basics of RSMS/RSGF theory
Understand the key approximations in FEFF
Know some of FEFF’s advanced capabilities
Acknowledgments: the FEFF group

Ken Nagle Yoshi Takimoto Kevin Jorissen
Towfiq Ahmed Hadley Lawler Aleksi Soininen
Fernando Vila Adam Sorini Alex Ankudinov
Micah Prange John Vinson Shauna Story
John Rehr Josh Kas Egor Clevac

• Supported largely by DOE BES Grant DE-FG02-97ER45623