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Abstract: Many microarray experiments have factorial designs. But there are few 

statistical methods developed explicitly to handle the factorial analysis in these 

experiments. We propose a bootstrap-based non-parametric ANOVA (NANOVA) 

method and a gene classification algorithm to classify genes into different groups 

according to the factor effects. The proposed method encompasses one-way and two-way 

models, as well as balanced and unbalanced experimental designs. False discovery rate 

(FDR) estimation is embedded into the procedure, and the method is robust to outliers. 

The gene classification algorithm is based on a series of NANOVA tests. The false 

discovery rate of each test is carefully controlled. Gene expression pattern in each group 

is modeled by a different ANOVA structure. We demonstrate the performance of 

NANOVA using simulated and real microarray data.  
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1. Introduction 

Microarray technology is a powerful tool to monitor gene expression levels on a 

genome scale. An important question in microarray experiments that has been studied 

extensively is the identification of differentially expressed genes across two or more 

biological conditions. Many statistical methods have been developed to address this 

problem, for instance, Baldi & Long (2001), Efron, Tibshirani, Storey & Tusher (2001), 

Tusher, Tibshirani & Chu (2001), Dudoit, Yang, Callow & Speed (2002), Newton, 

Noueiry, Sarkar & Ahlquist (2004). Typically a summary statistic is constructed for each 

gene and genes are ranked in order of their test statistics. Genes with test statistics above 

a chosen threshold are called significant. Empirical Bayes method treats genes arising 

from different populations (Efron, Tibshirani, Storey & Tusher 2001). A gene is called 

significant if its estimated posterior odds of having differential expression is larger than 

the threshold. The significant analysis of microarray (SAM) (Tusher, Tibshirani & Chu 

2001) employs a permutation approach to simulate null distribution of test statistic and 

estimate false discovery rate (FDR). A threshold is then chosen based on the estimated 

FDR.  

However a microarray experiment often has a factorial design and involves several 

experimental factors. For example, in one experiment, a growth factor (FGF) was 

withdrawn from two proliferating stem cell lines (neuron and glia) to accelerate the 

differentiation process (Goff, Davila, Jornsten, Keles & Hart 2007). Gene expressions 

were measured at different times after FGF withdrawn. Investigators were interested in 

how genes in two cell lines responded to FGF withdrawal along time. In this experiment, 

cell-line and time course can be treated as two factors. Most current methods were not 



designed to handle such factorial experiments. There have been a few studies proposing 

using the analysis of variance (ANOVA) or its modified versions in microarray data 

analysis (Pavlidis & Noble 2001; Gao & Song 2005).  ANOVA is a classical method for 

factorial data analysis. It decomposes data variation into variations accounted by different 

factors. Contribution of each factor is assessed by F -statistic. Applying ANOVA to the 

stem cell experiment allows one to identify gene having cell-line effect or time effect, as 

well as ‘interaction genes’. These genes are often of great interest to biologists. In the 

above example, interaction genes are those having different response patterns along the 

time course in different cell lines. However, direct application of standard ANOVA to 

microarray data could be problematic. First, F -test makes normality assumption about 

the data distribution, which is often untenable in microarray studies; Second, an 

appropriate cutoff based on computed F -statistics or p-values is difficult to choose. In 

multiple-testing problems, error rate should be controlled based on FDR rather than p-

values; Third, presence of outliers in microarray data could deteriorate statistical power, 

in which case a robust statistical procedure may be required. To relax distributional 

assumptions, rank-based non-parametric ANOVA have been proposed (Friedman 1937; 

Conover & Iman 1979; Gao & Song 2005). Empirical p-values are computed by 

permuting the data. It has been pointed out that the permutation approach may not lead to 

the appropriate null distribution (Pan 2003; Gao 2006). When the microarray data contain 

a large proportion of non-null genes, permutation distribution is the mixture of 

permutation distribution under null hypothesis and permutation distribution under 

alternative hypothesis, which is not a good approximation of true null distribution. Jung, 

Jhun & Song (2007) proposed an exact permutation test which permutes residuals of data 



instead of observed data. Their method is restricted to balanced experimental designs. A 

carefully schemed subpartition procedure has also been proposed in non-parametric 

ANOVA to simulate null distributions (Gao 2006). But the procedure requires at least 

four replicates in each biological condition and assumes symmetric noise distribution.  

Motivated by factorial microarray experiments and limitations of existing ANOVA 

methods, we develop a non-parametric ANOVA method (NANOVA), which constructs 

null distributions by bootstrap re-sampling. FDR estimation is naturally embedded into 

the procedure. NANOVA encompasses one-way and two-way models as well as balanced 

and unbalanced experimental designs. A robust test is proposed to protect against outliers 

when enough replicates are available. For two-way factorial experiments, we propose a 

gene classification algorithm which classifies genes into different groups by how their 

expressions are influenced by factors. The gene classification algorithm is based on a 

series of NANOVA tests with the error rate of each test controlled by FDR.  

The proposed method was applied to two microarray studies. In the first study, we 

analyzed gene expression data from two human lymphoblastioid cell lines growing in an 

unirradiated state or in an irradiated state, and compared our method to the SAM method 

(Tusher, Tibshirani & Chu 2001) and a linear model with moderated F-statistics (‘limma’) 

(Yang & Speed 2002; Diaz et al. 2002; Smyth 2004). The second microarray data were 

from six brain regions in two mouse strains (Sandberg et al. 2000). We analyzed the 

effects of strain and brain region on the gene expression and compared with the results 

obtained from the standard ANOVA method (Pavlidis & Noble 2001).  

 

2. Method 



We first introduce some notations for two-way factorial experiments. Let 

( 1,..., )i i Iα = and ( 1,..., )j j Jβ =  denote the two factors of interest at level i  and j  

respectively. Let ,g ijky  be the expression of gene g  under condition ( , )i jα β . Here 

( 1,..., )ijk k n=  is a subscript for replicates. We model the gene expressions as a response 

variable and factors as explanatory variables. In two-way factorial experiments, gene 

expression can be summarized by one of the following ANOVA models. For simplicity, 

subscript g  will be dropped.  

Model (1): ijk i j ij ijky eμ α β γ= + + + +                                        (2.1) 

Model (2): ijk i j ijky eμ α β= + + +                                               (2.2) 

Model (3): ijk i ijky eμ α= + +                                                       (2.3) 

Model (4): ijk j ijky eμ β= + +                                                      (2.4) 

Model (5): ijk ijky eμ= +                                                              (2.5)    

Model (1) is an interactive model. μ  represents the baseline gene expression level. ijγ  is 

the interaction term. Genes of model (1) are influenced by both factors, and the effect of 

one factor is dependent on the level of the other factor. Model (2) is an additive model. 

Genes of model (2) are affected by both factors, but factor effects are independent. Genes 

of model (3) and (4) have only α  or β  effect. Genes of model (5) are not influenced by 

either factor. We assume the random error ijke  is independent identically distributed from 

a gene specific distribution. Constraints 0i
i
α =∑ , 0j

j

β =∑  and  0ij ij
i j

γ γ= =∑ ∑  are 

imposed for identifiability.   



We will classify genes into five groups ( 1 2 3 4, , ,C C C C and 5C ). Each group 

corresponds to one of the above models. The classification will be based on a series of 

NANOVA tests. 

2.1 NANOVA test 

The proposed NANOVA method includes tests for one-way ANOVA, interaction and 

main effects of two-way ANOVA. Details are given in the following section.  

(1) One-way NANOVA test 

In this test we treat (2.5) as the null hypothesis and test it against the alternatives that 

the mean expression of the gene is not constant across all combinations of the two 

factors. The null hypothesis ijk ijky eμ= +  implies gene expression is not influenced by 

either factor. We choose as our test statistic the standard one way ANOVA F  

statistic 2 2
1 . .

1 1 1 1 1 1

[ ( ...) /( 1)] /[ ( ) /( )]
ij ijn nI J I J

ij ijk ij
i j k i j k

F y y IJ y y N IJ
= = = = = =

= − − − −∑∑∑ ∑∑∑ , 

where .
1

1 ijn

ij ijk
kij

y y
n =

= ∑ , ...
1 1 1

1 ijnI J

ijk
i j k

y y
N = = =

= ∑∑∑ and ij
i j

N n=∑∑ . The dot. used as a subscript 

indicates that the summation is taken over the corresponding subscript and an average is 

taken by dividing by the number of terms in the sum. The numerator and denominator of 

1F  are estimations of between group variance and within group variance. Under the 

normality assumption, null distribution of 1F  is the F  distribution with degrees of 

freedom ( 1, )IJ N IJ− − . Instead of replying on the normality assumption, we simulate the 

null distribution of 1F  by bootstrap re-sampling as follows:  



1. Sampling *
ijkε  ( 1, 2,... ; 1, 2,... ; 1, 2,... )iji I j J k n= = =  with replacement 

from .ijk ijk ijy yε = − .  

2.      Let * *
...ijk ijky y ε= +  and compute null statistic *

1F  using the null data *
ijky .  

3.      Repeat step 1 and 2 B times to get (1)* (2)* ( )*
1 1 1, ,... BF F F . 

In step 1, bootstrap re-sampling of  *
ijkε  is used to simulate the random error 

distribution. We estimate the random error by not assuming any specific model form but 

utilizing the replicated micoarray samples. In step 2, *
ijky  is generated from the null model 

by adding the re-sampled residuals to the estimated mean under the null model (2.5). Step 

3 repeats bootstrap B  times to simulate the null distribution of 1F . NANOVA allows an 

unspecified random error distribution, and constructs null data by adding the bootstrap re-

sampled residuals to the null model. The same idea will be applied to interaction and 

main effect tests. 

(2) Interaction effect NANOVA test 

The null hypothesis of no interaction effect is 0 :H  0ijγ = ( 1,... , 1,...i I j J= = ) in 

model (1). For balanced experimental designs, interaction effect is estimated by 

. .. . .ˆ ...ij ij i jy y y yγ = − − + . The test statistic is defined as 

2
. .. . . ...

2 2
.

( ) /[( 1)( 1)]

( ) /[ ( 1)]

ij i j
i j

ijk ij
i j k

k y y y y I J
F

y y IJ k

− − + − −
=

− −

∑∑
∑∑∑

, where k  is the number of replicates in 

each condition. The denominator of 2F  is an estimation of the random error variance. The 

numerator of  2F  estimates the sum of squares of the interaction effect. When 

experimental designs are unbalanced, ijγ  cannot be estimated as above. We use the idea 



of ‘un-weighted cell mean’ (Searle, Casella & Mcculloch 1992) to estimate ijγ . 

Specifically, let .ij ijx y= (cell mean), then ijγ  is estimated by . . ..îj ij i jx x x xγ = − − −  , 

where . .
1 1

/ , /
J I

i ij j ij
j i

x x J x x I
= =

= =∑ ∑  and ..
,

/ij
i j

x x IJ=∑ . Test statistic for unbalanced 

experimental design is defined 

as 2 2
2 . . .. .

1 1 1 1 1

( ) /[ ( ) /( )]
ijnI J I J

ij i j ijk ij
i j i j k

F x x x x y y N IJ
= = = = =

= − − + − −∑∑ ∑∑∑  . The null distribution of 

the test statistic is simulated as follows:  

1.   Sampling *
ijkε  ( 1,... ; 1,... ; 1,... )iji I j J k n= = = with replacement from    .ijk ijk ijy yε = − .  

2.  Let * *ˆˆˆijk i j ijky μ α β ε= + + + , where ˆˆˆ( , , )i jμ α β  are the least square estimates from the 

null model ijk i j ijky eμ α β= + + + .  Compute null statistic *
2F  by using the null 

data *
ijky .  

3.   Repeat step 1 and 2 B times to get (1)* (2)* ( )*
2 2 2, ,... BF F F .  

(3) Main effect NANOVA test 

The main effect iα  is estimated by .. ...ˆi iy yα = −  if the experimental design is balanced. 

For unbalanced design, we use ‘un-weighted cell mean’ to estimate iα . The estimate is 

.. ...ˆi ix xα = −  , where ..ix  and ...x are defined as above.  The test statistic is defined as 

2 2
3 .. ... .( ) /( 1) /[ ( ) / ( 1)]i ijk ij

i j i j k

F k y y I y y IJ k= − − − −∑∑ ∑∑∑  or 

2 2
3 . .. .

1 1 1

( ) /[ ( ) /( )]
ijnI J

i ijk ij
i i j k

F x x y y N IJ
= = =

= − − −∑ ∑∑∑  for balanced or unbalanced design 

respectively. The null distribution of 3F  is simulated as follows:  



1.   Sampling *
ijkε  ( 1,... ; 1,... ; 1,... )iji I j J k n= = = with replacement from .ijk ijk ijy yε = −  

2. Let * *ˆˆijk j ijky μ β ε= + + , where ˆˆ( , )jμ β  are the least square estimates from the null   

model ijk j ijky eμ β= + + .  Compute *
3F  by using the null data *

ijky .  

3.   Repeat step 1 and 2 B times to get (1)* (2)* ( )*
3 3 3, ,... BF F F .  

2.2 Robust NANOVA test 

Standard ANOVA test is susceptible to poor performance in the presence of outliers. 

Since outliers are unavoidable in large microarray data sets, we guard against them by 

using robust estimators for mean and variance estimations in test statistics. For example, 

in the one-way ANOVA test 

2 2
1 . .

1 1 1 1 1 1

( ...) /( 1) /[ ( ) /( )]
ij ijn nI J I J

ij ijk ij
i j k i j k

F y y IJ y y N IJ
= = = = = =

= − − − −∑∑∑ ∑∑∑ , the mean estimator .ijy  

and ...y  are replaced by trimmed means. The between variance estimator 

2
.

1 1 1

( ...)
ijnI J

ij
i j k

y y
= = =

−∑∑∑  is replaced by the trimmed mean taken over 

2
.( ...) ( 1,.., ; 1,.., ; 1,.., )ij ijy y i I j J k n− = = =  times the number of items (

,
ij

i j

n∑ ). Similar 

robust estimator is used for the within variance estimation in the denominator of 1F . Null 

distribution of the robust statistic does not have an analytical form, but its empirical 

distribution is easily obtained by the bootstrap re-sampling.  

2.3 FDR estimation 

In multiple testing problems, it is important to control the false discovery rate (FDR) 

which is defined as the expected proportion of false rejections among all rejections 

(Benjamini et al. 1995). The proposed NANOVA procedure provides a natural way for 



estimating FDR. Let ( 1,..., )gF g G=  be the statistic computed from the observed data, g  

is the gene index. Significance of gF  is assessed against the null distribution generated by 

the bootstrap re-sampling. At each bootstrap, we sample the array labels. The 

corresponding vector of residuals , , .{( ), 1,..., }g ijk g ijy y g G− =  from the same array is kept 

intact. Such bootstrap operation preserves correlations between genes. Empirical p-value 

for gene g  is computed by ( )*#{ : 1,..., }/j
g g gp F F j B B= ≥ = , where B is the number of 

bootstraps. FDR can be estimated from empirical p-values. However when the number of 

bootstraps or permutations is limited by the sample size or computation cost, the resulting 

p-values may be too granular to allow a sensible FDR estimation. We propose the 

following alternative approach to estimate FDR:  

1. Estimate a null distribution for each gene. In NANOVA, we fit a Gamma         

distribution to the null statistics (1)* ( )*,..., B
g gF F for each gene g . The reason to use 

Gamma distribution is because it is flexible enough to capture most of 

distributions with positive support. The parameters of Gamma distribution can be 

robustly estimated by using a few quantile points (for example, 10%, 25%, 50%, 

75% and 90% quantiles of (1)* ( )*,..., B
g gF F ). An alternative approach is to use an 

iterative fitting procedure, i.e. fit a Gamma distribution, trim off extreme data 

points (if any) and refit the rest data. The process is repeated a few times. Denote 

the cumulative function of Gamma distribution as gG .  

2. Transform test statistics and null statistics to z-scores by the transformation  

1( ( ))g g gz G F−= Φ , where ( )Φ ⋅  is the cumulative function of the standard normal 

distribution.  



3. Given a cut off *d , genes with *( 1,..., )gz d g G> =  are called significant. FDR is 

estimated as 0
1

ˆ ( ) /( )
B

j
V j RBπ

=
∑ , where *#{ : , 1,..., }gR g z d g G= > =  is the number 

of significant genes, and ( )* *( ) #{ : , 1,..., }j
gV j g z d g G= > =  is an estimate of the 

number of false rejections using j th bootstrapped data if all genes are null. 0π̂  is 

an estimation of the proportion of null genes. At j th bootstrap, let 

* ( )*{ }max j
j g

g
z z=  be the maximum ( )*j

gz  over G  genes. An overestimation for the 

number of null genes is *( ) #{ : }g jM j g z z= ≤ . 0π̂  is taken as the median of 

( ) / ( 1,..., )M j G j B= .  

The FDR estimation procedure does not assume the same null distribution for all 

genes, but instead transforms the significance measures of genes to the same scale and 

makes them comparable across genes. Genes are ranked by gz .  

2.4 Gene Classification algorithm 

Depending on how their expressions are influenced by factors, genes can be classified 

into different groups ( 1 2 3 4, , ,C C C C  and 5C ). Each corresponds to an ANOVA model. 1C  

is an interaction group, whose genes are affected by both factors, and factor effects are 

dependant (model (1)). 2C  is an additive group. Genes in  2C  are affected by factors, but 

factor effects are independent (model (2)). Genes from 3C  or 4C have only α (model (3)) 

or β effect (model (4)). Genes in 5C  are not affected by either factor (model (5)). The 

classification is based on a series of NANOVA tests. Error rate of each test is controlled 

by FDR. The algorithm is as follows:  



1 First identify genes whose expressions are affected by factor α  or β .  This is 

done by treating each condition ( , )i jα β  as a group, and performing one-way 

NANOVA. Denote this group of genes as S .  

2 Within S , identify interaction genes by interaction NANOVA test. The       

resulted gene set is 1C .  

3 Among the remaining genes ( 1S C− ), use main effect NANOVA tests to identify   

genes having α and β effect respectively. Denote these two sets as Sα  and Sβ . 

Then 3 ( )C S S Sα β α= − ∩  and 4 ( )C S S Sβ β α= − ∩ .  

4 Genes in 1 3 4S C C C− − −  are classified to 2C .  

5  The rest of genes are classified to  5C  

 

3. Simulation Studies 

3.1 Bootstrapped null distribution  

The key part of NANOVA tests is the simulation of null distribution. To test how well 

the bootstrapped null distributions approximate true nulls, we simulated expressions of 

1000 genes in a two-way factorial experiment. Genes 1-100 were generated from model 

(1), 101-200 from model (2), 201-300 from model (3), and 301-400 from model (4). The 

rest genes were from model (5). Each factor has two levels. There are 7 replicates under 

each condition ( , )i jα β . Parameters ( , , , )i j ijμ α β γ  were independently drawn from 

uniform[ 5,5]− , and subjected to the constraints 0i
i
α =∑ , 0j

j

β =∑ , 0ij ij
i j

γ γ= =∑ ∑ . 

The random error was generated from standard normal (0,1)N . We first constructed null 



statistics for one-way NANOVA test. The number of bootstraps is set to be 100B = . 

Kolmogorov-Smirnov (KS) test was used to test the deviation of the bootstrapped null 

distribution of each gene from the true null (3,24)F . The numbers in parenthesis are 

degrees of freedom of  the F distribution. If the bootstrapped nulls were consistent with 

the true null, the p-values resulted from KS tests should follow the uniform distribution. 

We can apply again KS test to verify if these p-values are uniformly distributed. This 

nested-KS test has been used by Leek & Storey (2007). After applying the nested-KS 

test, we obtained a p-value of 0.25, indicating the bootstrapped null distributions were 

consistent with the true null. The tail of null distribution is important for assessing 

statistical significance. The left panel of Figure 1 compares the tail density of the 

bootstrapped nulls and the true null.  

Next we tested if the empirical p-values obtained from one-way NANOVA were 

correct. The correct p-values corresponding to null genes should be uniformly distributed 

between zero and one. KS test on the empirical p-values of the null genes (genes 401-

1000) (compared with the uniform distribution) yielded a p-value of 0.29, indicating the 

empirical p-values of the null genes were uniformly distributed. Right panel of Figure 1 

shows a Q-Q plot of these empirical p-values versus the uniform distribution.  

Similar comparisons were done on the interaction and main effect NANOVA tests.  P-

values of 0.22 and 0.87 were obtained from the nested-KS tests for the interaction and 

main effect tests respectively. Empirical p-values of the null genes (genes 101-1000 for 

interaction effect; genes 301-1000 for main effectα ) were uniformly distributed in [0,1]  

(Figure 1) with the p-values of 0.35 and 0.22 by the KS test.  

3.2 Statistical power and FDR estimation 



To test the ability of NANOVA to identify true positive genes, we simulated three data 

sets. Each data set consists of 1000 genes, and was generated as in section 3.1. The three 

data sets had different error distributions: (1) normal (0,1)N ; (2) uniform  [ 3,3]− ; (3) 

Cauchy distribution. Genes were ranked by gz (section 2.4). Given a cut off *d , genes 

with *
gz d> were called significant. Proportions of identified true positives (power) 

versus proportions of false positives (ROC curves) are shown in Figure 2, 3 and 4. All 

three tests showed good statistical power for selecting true positive genes when the 

random error was normally or uniformly distributed. However, in the Cauchy case, a 

large fraction of outlier deteriorated statistical power.  

We also compared estimated FDR and true false positive rates with varied cut offs 

(Figure 2, 3 and 4). The estimated FDR was in a good agreement with the true false 

positive rate in normal and uniform cases. In Cauchy case, the outliers made the FDR 

estimation inaccurate.  

3.3 Robust NANOVA test 

Outliers commonly exist in microarray data. They could potentially deteriorate 

statistical power and make FDR estimation inaccurate as in the above simulations. When 

there are enough replicates, NANOVA procedure can be robustified by using robust 

estimators for the mean and variance estimations in the test statistic. We applied robust 

NANOVA tests on the same data sets in 3.2 and compared statistical power and FDR 

estimation. Trimmed mean which discards 20 percent data of both ends was used. As 

shown in Figure 2, 3 and 4, robust NANOVA tests greatly improved statistical power 

when the data were noisy (Cauchy case). FDR was also more accurately estimated by 

robust NANOVA.   



 

4. Applications to Biological Data 

4.1 Ionizing radiation data 

To demonstrate the utility of NANOVA method, we analyzed the microarray data 

measuring transcriptional response of lymphoblastoid cells to ionizing radiation (IR) 

(Tusher, Tibshirani & Chu 2001, data were downloaded from http://www-

stat.stanford.edu/~tibs/SAM/). The experiments were performed for two wild-type human 

lymphoblastioid cell lines (1 and 2) growing in an unirradiated state (U) or in an 

irradiated state (I). There are two replicates in each condition (A and B). The data set 

consists of expressions of 7129 genes in eight samples (U1A, U1B, I1A, I1B, U2A, U2B, 

I2A and I2B). To assess the biological effect of IR, SAM used a restricted permutation 

approach which balanced the two cell lines to avoid confounding effects from differences 

between the cell lines. To achieve the same goal, we treated the cell lines and IR states as 

two factors and applied NANOVA main effect test to identify genes responding to IR. 

Another approach is to fit a linear model g gY Xθ ε= + for each gene g . gY  is a vector of 

expressions from the eight samples, X is the design matrix, gθ  is a vector of parameters 

of interest, and ε is the error. The elements of ( )1 2, , , 'g m c r rθ =  represent intercept, 

cell line effect, IR effect in cell line 1 and IR effect in cell line2 respectively. Genes 

responding to IR in either cell line can be identified by computing a moderated F-statistic 

derived from the linear model (Yang & Speed 2002; Diaz et al. 2002; Smyth 2004). We 

used ‘limma’ software for the computation (Smyth 2004). Limma controls FDR by 

adjusting p-values using the Benjamini and Hochberg (BH) method. The significance 

results are displayed in Table 1. It can be seen NANOVA method offers a sizeable 



increase in statistical power over SAM or limma. The restricted permutation in SAM 

analysis failed to identify genes responding to IR in one cell line but not the other (Figure 

5) and has limited power in analyzing factorial data. The linear model is able to handle 

factorial designs, but the moderated F-statistic derived from normal theory may result 

incorrect p-value when microarray data are not normally distributed. Limma does not 

offer a sensible FDR control mechanism. Its use of conservative ‘BH’ approach may lose 

statistical power in discovering significant genes.   

To confirm the improvement of statistical power of NANOVA over SAM or limma, 

we simulated expression profiles of 1000 genes based on the IR data. We fitted a two-

way ANOVA model for every gene in the IR data and chose 200 genes with significant 

IR effect (p-value<0.05) but no cell line effect (p-value>0.2) as well as 800 genes without 

significant IR effect (p-value>0.8). Let  ijky  denote expression of a gene in the IR data.  

,i j  and k indicate cell line, IR state and replicates respectively. Let .ijk ijk ijy yε = − We 

simulated random error of gene expression by *
ijkε , where *

ijkε  is a permutation of ijkε . For 

the first 200 genes, we estimated the IR effect by . . ...jy y−  and simulated their expression 

by * *
... . . ...( )ijk j ijky y y y ε= + − + . For the rest 800 genes, the simulated expressions were set 

to * *
... .. ...( )ijk i ijky y y y ε= + − + . Therefore, we generated a data set with the error distribution 

close to the real microarray data. The first 200 genes were known to be IR responsive and 

we compared the performance of NANOVA, SAM and limma to identify them. We also 

computed the false positive rate (FPR) and true positive rate (TPR), defined as: 

{#false rejected genes}
{# rejected genes}

FPR = and {#correctly rejected genes}
{# true positive genes}

TPR = . Table 2 shows the 

significant results under different FDR cutoffs. Although the simulation setting was in 



favor of SAM, NANOVA still outperformed SAM in terms of statistical power. Limma 

had the least power on this data set. Instead of BH adjustment limma uses, a less 

conservative approach for FDR control is to use the q-value method (Storey & Tibshirani 

2003). A FDR cutoff was chosen based on the computed q-values. As can bee seen from 

Table 2, the q-value method offered a slight improvement over BH adjustment but still 

excluded many true positive genes. This suggests the p-values computed by limma may 

not be correct as the data distribution were not normal.  

4.2 Mouse brain data 

We applied the proposed method to analyze gene expression data of six brain regions 

(amygdala, cerebellum, cortex, entorhinal cortex, hippocampus and midbrain) in two 

mouse strains (C57BL/6 and 129SvEv) (Sandberg et al. 2000). Data were obtained from 

Pavlidis & Noble (2001). Gene expression profiles were measured by using 

oligonucleotide arrays (Mu11KsubA and Mu11KsubB). The dataset consists of duplicate 

measurements of 13067 probe sets, providing a rich source to study the genetic causes 

responsible for neurophysiological differences in two mouse strains. Factors of interest 

are strains and brain regions. It is interesting to identify strain specific and region specific 

genes  

We applied the gene classification algorithm to the dataset (log2 transformed). FDR 

was controlled at 0.05 for the NANOVA tests. Probe sets were classified into five groups 

according to the factor effects. As a result, 1 2 3, ,C C C  and 4C  have 126, 167, 31 and 742 

probe sets respectively. Figure 6 shows the expression pattern of two representative probe 

sets from gene set 1C  and 2C . Figure 7 and 8 are heat maps of 3C  and 134 probe sets of 



4C  (filtered by CV (coefficient of variation) > 0.2) generated by dChip (Li & Wong 

2001).  

1C  probe sets had interaction effect and potentially contribute to neurobehavioral 

difference of mouse strains. One example is gene Cks2, which was highly expressed in 

midbrain of C57BL/6 mice but not in other brain regions or in 129SvEv mice. Protein 

encoded by Cks2 binds to the catalytic subunit of the cyclin dependent kinases and is 

essential for their biological function. Probe sets in 2C  were influenced by both factors, 

but factor effects were independent. Expressions over six brain regions were parallel for 

two mouse strains, but their values had a vertical shift. Gas5 gene from 2C  is known to 

harbor mutations in 129SvEv strains that alter mRNA stability (Sandberg et al. 2001). 

This stability difference is likely to account for the 2 fold decrease in mRNA abundance 

in 129SvEv compared with C57BL/6. Since it was in 2C , all six brain regions were 

uniformly affected by the mutation. 2C  genes could cause neurobehavioral difference in 

strains by influencing the gene expression levels. Expressions of 3C  probe sets varied 

between strains but not over brain regions. As shown in Figure 7, these 31 gene 

expressions were uniformly highly or lowly expressed in one strain, and had an opposite 

pattern in the other strain. Hnrpc and Txnl4 are genes involved in mRNA metabolic 

process. 4C  genes were brain region specific, but equivalently expressed in both strains. 

The heat map reveals cerebellum is the most distinct region among the six brain regions. 

A large proportion of genes were up or down regulated in cerebellum but not in other 

regions. Pcp2, a known cerebellar specific gene (Sandberg et al. 2001) had about 3 fold 

increased expression in cerebellum compared with other regions. We did functional 



enrichment analysis on gene set 4C  using the web tool built by Dennis et al. (2003) 

(http://david.abcc.ncifcrf.gov/). The most significant functional groups (Category: 

GOTERM_BP_5) include: neurite morphogenesis (27 genes, p-value: 1.7E-9), neuron 

development (31 genes, p-value: 2.8E-9), neuron differentiation (35 genes, p-value: 4.6E-

9), cellular morphogenesis during differentiation (27 genes, p-value: 2.2E-8) and 

neurogenesis (38 genes, p-value: 2.4E-8).  

In the analysis of Sandberg et al. (2001), they identified 24 probe sets showing 

expression variation between strains and about 240 probe sets differentially expressed 

over brain regions. They used an ad hoc approach of ‘fold change’ and ‘absent/present’ 

calls for gene selection, which was rather insensitive to detect significant genes. In a 

more elaborate analysis, Pavlidis and Noble (2001) applied standard two-way ANOVA to 

the same data set. They tested interaction effect as well as main effects (strains and brain 

regions). Under the cutoff of p-value< 510− , they identified 65 strain specific probe sets, 

approximately 600 region specific probe sets and 1 probe set with interaction effect. The 

choice of p-value< 510−  is arbitrary and may be too conservative to include many 

interesting genes. Our analysis yielded 324 strain dependant probe sets (probe sets 

from 1C , 2C and 3C ) which includeded all 24 probe sets identified by Sandberg et al. and 

65 probe sets identified by Pavlidis and Noble (2001).  

 

5. Discussion  

In this paper we proposed a bootstrap-based non-parametric ANOVA (NANOVA) 

method and a gene classification algorithm for the analysis of factorial microarray data. 

We have used simulated and real data sets to demonstrate the utility of our method. There 



have been a number of non-parametric methods for microarray data analysis in literature. 

Most of them are restricted to two-sample or multi-sample comparisons. When the 

experiment involves multiple factors, these methods are less powerful than NANOVA. In 

the IR example, in order to identify IR responsive genes, SAM uses restricted 

permutation which sacrifices statistical power comparing with explicitly dealing with the 

multiple factors. More importantly, NANOVA allows identifying genes with interaction 

effects, which are often of great interest to biologists. A major innovation of NANOVA is 

in the estimation of null distributions based on bootstrap. The random error is estimated 

by utilizing replicated microarray samples and is free of model assumptions. The 

permutation approach estimates the null distribution by treating all samples equally and 

does not use the information provided by the replicated samples. As a consequence, the 

bootstrap approach better estimates the null distribution in the presence of a large 

proportion of non-null genes compared to the permutation approach. NANOVA offers a 

sensible FDR control which enables the method more powerful in multiple testing over 

other methods such as standard ANOVA or limma. The gene classification nicely 

summarizes effects of multiple factors in a rather complicated experimental design as 

demonstrated in the analysis of mouse data.  
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FDR cutoff  NANOVA SAM  limma 

0.05 206 36 29 

0.1 236 69 55 

0.2 311 118 136 

 

Table 1. A comparison of the number of genes called significant as found by a NANOVA 

test, a SAM test and a moderated F test from linear model (limma). Shown is a 

comparison of the proposed method (NANOVA) to a SAM test and a limma test. IR 

responsive genes were identified under different FDR cutoffs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FDR cutoff  NANOVA 

(FPR/TPR) 

SAM 

(FPR/TPR) 

Limma (BH) 

(FPR/TPR) 

Limma (qvalue) 

(FPR/TPR) 

0.01 131 (0/0.655) 97 (0/0.485) 12 (0/0.06) 14 (0/0.07) 

0.05 161 (0/0.805) 135(0.02/0.665) 49 (0/0.245) 57 (0/0.285) 

0.1 186 (0.03/0.91) 157(0.04/0.755) 74 (0/0.31) 85 (0/0.425) 

0.2 216 (0.09/0.99) 188 (0.10/0.85) 128 (0/0.64) 143 (0.02/0.7) 

 

Table 2. A comparison of the number of genes called significant as found by a NANOVA 

test, a SAM test and a limma test with BH and q-value adjustment. Shown is the number 

of IR responsive genes identified under different FDR cutoffs as well as false positive 

rate and true positive rate.  
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Figure 1. Left panels: comparisons of bootstrapped null densities with theoretical null 

densities for one-way NANOVA, interaction NANOVA and main effect NANOVA. The 

theoretical nulls are (3,24), (1,24)F F  and (1,24)F  respectively. Dotted line: theoretical 

null density; solid line: simulated null density. Right panels: Q-Q plots of empirical p-

values of null genes versus uniform [0,1] quantiles.  
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Figure 2. Statistical power and FDR estimation of one-way NANOVA and robust one-

way NANOVA. Left panels: true positive rate versus false positive rate. Solid line: 

Gaussian noise (0,1)N ; dashed line: uniform noise [ 3,3]U − ; dotted line: Cauchy noise. 

Right panels: estimated FDR versus true false positive rate. Circle: Gaussian 

noise (0,1)N ; square: uniform noise [ 3,3]U − ; triangle: Cauchy noise.   
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Figure 3. Statistical power and FDR estimation of interaction NANOVA and robust 

interaction NANOVA. Left panels: true positive rate versus false positive rate. Solid line: 

Gaussian noise (0,1)N ; dashed line: uniform noise [ 3,3]U − ; dotted line: Cauchy noise. 

Right panels: estimated FDR versus true false positive rate. Circle: Gaussian 

noise (0,1)N ; square: uniform noise [ 3,3]U − ; triangle: Cauchy noise.   

 



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Main effect NANOVA

FALSE Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

Main effect NANOVA

FALSE Positive Rate

E
st

im
at

ed
 F

D
R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Robust main effect NANOVA

FALSE Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

Robust main effect NANOVA

FALSE Positive Rate

E
st

im
at

ed
 F

D
R

 

Figure 4. Statistical power and FDR estimation of main effect NANOVA and robust main 

effect NANOVA. Left panels: true positive rate versus false positive rate. Solid line: 

Gaussian noise (0,1)N ; dashed line: uniform noise [ 3,3]U − ; dotted line: Cauchy noise. 

Right panels: estimated FDR versus true false positive rate. Circle: Gaussian 

noise (0,1)N ; square: uniform noise [ 3,3]U − ; triangle: Cauchy noise.   

 

 



 

 

 

 

Figure 5. Hierarchical clustering of genes identified as IR responsive by SAM (top left), 

moderated F-statistic (top right) and NANOVA main effect test (bottom) using FDR<0.1 

as the cutoff . Red and blue colors indicate high and low expression respectively.  
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Figure 6. Expression patterns of two probe sets from 1C  (upper panel) and 2C  (lower 

panel). Each point represents an averaged log2-expression value over replicates. Solid 

lines: 129SvEv mice; dotted lines: C57BL/6 mice. X-axis: 1: amygdala; 2: cerebellum; 3: 

cortex; 4: entorhinal cortex; 5: hippocampus; 6: midbrain 
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Figure 7. Heat map of 3C . Array labels: A for 129SvEv, B for C57BL/6. 1 and 2 are two 

replicates. Ag : amygdala; Cb: cerebellum; Cx: cortex; Ec: entorhinal cortex; Hp: 

hippocampus; Mb: midbrain. Red and blue colors indicate high and low expression 

respectively.  
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Figure 8. Heat map of 134 filtered probe sets of 4C . Array labels: A for 129SvEv, B for 

C57BL/6. 1 and 2 are two replicates. Ag : amygdale;Cb: cerebellum; Cx: cortex; Ec: 

entorhinal cortex; Hp: hippocampus; Mb: midbrain. Red and blue colors indicate high 

and low expression respectively.  

 

 


