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ABSTRACT

Microarray data should be interpreted in the context of existing biological knowledge. Here
we present integrated analysis of microarray data and gene function classification data us-
ing homogeneity analysis. Homogeneity analysis is a graphical multivariate statistical method
for analyzing categorical data. It converts categorical data into graphical display. By si-
multaneously quantifying the microarry-derived gene groups and gene function categories,
it captures the complex relations between biological information derived from microarray
data and the existing knowledge about the gene function. Thus, homogeneity analysis pro-
vides a mathematical framework for integrating the analysis of microarray data and the ex-
isting biological knowledge. 

INTRODUCTION

MICROARRAY HAS BECOME a powerful tool for biomedical research. It detects the expression levels of
thousands of genes simultaneously. Huge amount of genome-wide gene expression data have been

generated using microarrays. However, microarray data by themselves tell us very little about the underly-
ing biological processes. On the other hand, a lot of biological knowledge have been obtained by conven-
tional biochemical or genetic methods and have been stored in public databases, such as MIPS Functional
Classification Catalogue (Mewes et al., 2002), KEGG pathway database (Kanehisa et al., 2002) and Gene
Ontology (The Gene Ontology Consortium, 2000). These functional classification systems represent well-
organized knowledge about gene functions. In this paper, we use homogeneity analysis to integrate the
analysis of microarray data and existing knowledge about gene function. Homogeneity analysis is a graph-
ical multivariate method. It reveals the complex relations between microarray-derived gene groups and gene
functional categories, and provides a global view of patterns of the correlations between gene groups de-
rived from multiple types of data. It may help investigators to gain insights into the biological processes
underlying microarray data by systematically connecting new data to existing biological knowledge.

Homogeneity analysis is mathematically equivalent to Multiple Correspondence Analysis under some
conditions* (Michailidis and de Leeuw, 1998; Greenacre and Hastie, 1987), which is not satisfied in the in-
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tegrated analysis of microarray data and gene function information. Simple correspondence analysis (Ben-
zecri, 1973; de Leeuw and van Rijckevorsel, 1980; Greenacre, 1993) has been applied to microarray data
to analyze the associations between genes and samples (Waddell and Kishino, 2000; Kishino and Waddell,
2000; Fellenberg et al., 2001). The previous works focus only on microarray data. Gene function informa-
tion and other biological knowledge have not been integrated into the analysis. Homogeneity analysis is a
more general and flexible framework that can accommodate multiple types of data and utilize them in an
integrated analysis. It allows us to analyze and visualize microarray data and gene function information si-
multaneously. This work is a new attempt to integrate the analysis of microarray data and existing biolog-
ical knowledge in a single mathematical framework.

MATERIALS AND METHODS

Indicator table: unified coding of the microarray-derived gene groups and gene 
function categories

Microarrays are often used for identifying genes that are differentially expressed among different condi-
tions. The groups of genes that are up-regulated or down-regulated in the testing sample (relative to the ref-
erence sample) can be selected. Thus, for each experimental condition, we can create two categories—one
contains genes that are up-regulated under the condition and the other contains genes that are down-regu-
lated under the condition.

Many computational methods have been developed for analyzing microarray data. Sophisticated analy-
sis of large microarray dataset often results in overlapping gene groups such as transcriptional clusters (Wu
et al., 2002; Lazzeroni and Owen, 2002; Lee and Batzoglou, 2003), biclique (Tanay et al., 2002), tran-
scriptional modules (Ihmels et al., 2002; Segal et al., 2003), and genetic modules (Stuart et al., 2003). These
gene groups are also microarray-derived categorical data.

Gene function classification systems assign genes to function categories. Gene classification data is also
categorical data. We use an indicator table to code the different types of categorical data (Table 1). Each
row contains the information of a gene—its membership to the gene groups and the function categories.
Only 1 and 0 can occur in the indicator table. A “1” means a gene belongs to the corresponding category
while a “0” means it does not.

Homogeneity analysis

Homogeneity Analysis is a graphical multivariate method for analyzing categorical data. It has been used
to display the main structures and regularities of complex data sets (de Leeuw and van Rijckevorsel, 1980;
de Leeuw, 1984; Michailidis and de Leeuw, 1998). Points in p-dimensional space (p is the number of di-
mensions) are used to represent categories and genes. Let X be the N � p matrix containing the coordinates
of the N genes, and Y the M � p matrix containing the coordinates of the M categories, a loss function is
defined as:

�(X;Y) � �
N

i�1
�
M

j�1
�Gij �

p

k�1
(Xik � Yjk)2� (1)

where G is indicator table. If edges are used to connect each category and the genes belonging to that cat-
egory, the loss function is the total squared length of the edges. We used an alternating least squares (ALS)
algorithm (Michailidis and de Leeuw, 1998) to minimize the loss function. The minimization is subject to
two restrictions:

X�X � N Ip (2)

u�X � 0 (3)

where u is the vector of ones. The first restriction is for avoiding the trivial solution corresponding to 
X � 0 and Y � 0. The second one requires the points to be centered around the origin.
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The ALS algorithm iterates the following steps until it converges. First, the loss function is minimized
with respect to Y for fixed X. The normal equation is

CY � G�X (4)

where G� is the transpose matrix of G, C is the diagonal matrix containing the column sums of G. The so-
lution of Eq. 4 is

Ŷ � C�1G�X (5)

Second, the loss function is minimized with respect to X for fixed Y. The normal equation is

RX � GY (6)

where R is the diagonal matrix containing the row sums of G. Therefore, we get that

X̂ � R�1GY (7)

Third, the coordinates of the genes are centered and orthonormalized by the modified Gram-Schmidt pro-
cedure (Golub and van Loan, 1989),

X � �N�GRAM(W) (8)

where

W � X̂ � u(u�X̂/N) (9)

This solution is called the HOMALS (homogeneity analysis by means of alternating least squares) 
solution. Here we list some basic properties of the HOMALS solution, which are useful for inter-
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TABLE 1. INDICATOR TABLES

A

Sample1.up Sample1.down Sample2.up Sample2.down . . . Function1 Function 2 . . .

Gene1 1 0 0 1 . . . 0 0 . . .
Gene2 0 1 0 0 . . . 0 0 . . .
Gene3 0 0 0 1 . . . 1 0 . . .
Gene4 1 0 1 0 . . . 0 1 . . .
Gene5 1 0 0 0 . . . 1 0 . . .
Gene6 1 0 1 0 . . . 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

B

Module1 Module2 Module3 Module4 . . . Function1 Function2 . . .

Gene1 1 1 0 1 . . . 1 1 . . .
Gene2 0 1 1 0 . . . 0 1 . . .
Gene3 0 0 0 1 . . . 1 0 . . .
Gene4 0 1 1 0 . . . 0 1 . . .
Gene5 1 0 0 0 . . . 1 0 . . .
Gene6 1 0 1 1 . . . 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

“SampleX.up” represents the group of genes that are up-regulated in sample X (comparing to the reference sample);
“SampleX.down” denotes the groups of genes that are down regulated in sample X; “FunctionX” denotes gene function
categories; ModuleX is the Xth transcriptional module. A “1” means a gene belongs to the corresponding category, while
a “0” means it does not.
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preting of the result of homogeneity analysis (Greenacre and Hastie, 1987; Michailidis and de Leeuw,
1998):

1. Category points and gene points are represented in a joint space.
2. A category point is the centroid of genes belonging to that category.
3. Genes with the same response pattern (i.e., identical rows in the indicator table) receive identical posi-

tions. In general, the distance between two genes points is related to the “similarity” of their profiles.
4. Genes with a “unique” profile will be located further away from the origin, whereas genes with a pro-

file similar to the “average” one will be located closer to the origin.

RESULTS AND DISCUSSION

In this section, we will use two microarray datasets and two gene function classification systems to il-
lustrate the applications of our method.

Rosetta Compendium dataset

We applied homogeneity analysis to the yeast gene expression data from the Rosetta Compendium
(Hughes et al., 2000a), which includes 300 mutations and chemical treatment experiments. We excluded
the mutant strains that are aneuploid for chromosomes or chromosomal segments because the aneuploidy
often leads to chromosome-wide expression biases (Hughes et al., 2000b). The data was filtered to include
only experiments with 20–100 genes up- or down-regulated greater than twofold, and significant at p �
0.01 (according to the error model described in Hughes et al., 2000a); and only genes that are up- or down-
regulated at greater than twofold, and at p � 0.01, in two or more selected experiments. The filtered dataset
includes 494 genes and 48 experiments.

Two groups of genes were selected from each experiment: (1) genes that are up-regulated at greater than
twofold, and at p � 0.01; (2) genes that are down-regulated at greater than twofold, and at p � 0.01. The
microarray-derived gene groups are encoded using an indicator table. Each experiment has two categories
(up- and down-regulation). The selected genes are represented by “1”s in the indicator table. The categories
(columns) with less than two “1”s and genes (rows) with less than two “1”s were deleted. Now we have
416 genes and 46 categories. We call these categories “expression categories.” Seventeen MIPS functional
categories (Fig. 1) were added to the indicator table. The indicator table contains 416 genes and 63 cate-
gories. We performed homogeneity analysis based on the indicator table. The result is shown in Figure 1.
The red (green) category points represent the groups of genes that are up–(down)–regulated in the corre-
sponding experiments and the blue points represent functional categories. A category point is located at the
centroid of the genes that belong to it. The small gray points represent genes, each of them may represent
one gene or a group of genes with same “response pattern,” which means the genes have the same 0 and
1 strings in their rows in the indicator table. Because the total squared lengths of the edges are minimized,
the categories that have large intersection set are likely to be pulled together by the common genes they
share. The distances between the category points reflect the similarities between the gene contents of the
categories. The plot shows the patterns of correlations between the groups of differentially expressed genes
under various conditions and groups of genes with various functions.

The categories shown in Figure 1 approximately form four groups. Group A (left) contains ste12.down
(40),** ste18.down (41), ste7.down (42), fus3_kss1.down† (32), rad6.down (35), hog1.up (10), dig1_dig2.up
(7), sst2.up (20), pheromone response, mating-type determination, sex-specific proteins (47), cell differen-
tiation (48), cell fate (50), chemoperception and response (52). Here we see the following functional cate-
gories: pheromone response, mating-type determination, sex-specific proteins (47) (a subcategory of cell

**“ste.down” denotes the group of genes that are down-regulated in the mutant in which ste12 is knocked out. In
Figure 1, the category is labeled by the number in the parenthesis, see the legend for Figure 1.

†Double mutant in which both fus3 and kss1 are knocked out.
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differentiation (48) and cell fate (50)) and chemoperception and response (52). This is consistent with the
expression categories we observed in this region. Ste7, ste12, ste18, fus3 and kss1 belong to the pheromone
signaling pathway (http://genome-www.stanford.edu/Saccharomyces/), removing these genes turns off the
expression of pheromone-response genes. Ste7.down (42), ste12.down (40) and ste18.down (41) represent
the groups of genes that are down-regulated when ste7, ste12 and ste18 are knocked out respectively. It is
known that dig1 dig2 double mutants show constitutive mating pheromone specific gene expression and in-
vasive growth and sst2 null mutants exhibit increased sensitivity to mating factors (http://genome-www.stan-
ford.edu/Saccharomyces/). Consistently, we see dig1_dig2.up (7) and sst2.up (20) in this region. The ex-
pression of rad6 is induced early in meiosis and peaks at meiosis I, the mutant shows repression of
retrotransposition, meiotic gene conversion and sporulation (http://genome-www.stanford.edu/Saccha-
romyces/). Hog1 is in the signaling pathway that responds to high osmolarity glycerol (Robberts et al.,
2000), the presentation of hog1.up (10) in this region reflects the crosstalks between the HOG (high os-
molarity glycerol) pathway and the pheromone pathway (Sprague, 1998). This method reveals positive cor-
relations and negative correlations between the gene expression profiles of the samples simultaneously by
displaying up- and down-regulation categories together. Clustering analysis failed to reveal the correlation
between the dig1 dig2 double mutant and the mutants of the pheromone signaling pathway genes (ste7,
ste12, ste18, fus3_kss1), the dig1 dig2 double mutant is located far away from the pheromone signaling
pathway genes in the clustering dendrogram (Hughes et al., 2000a; http://download.cell.com/supplemen-
tarydata/cell/102/1/109/DC1/Tbl3ClnB.jpg). This is because the double knockout of dig1 and dig2 lead to
constitutive mating pheromone specific gene expression (up-regulation) while the knockouts of pheromone
signaling pathway genes turn off mating pheromone specific gene expression (down-regulation).

Group B (lower right) contains clb2.up (5), hda1.up (9), yhl029c.up (25), ckb2.down (30), gcn4.down
(33), vps8.down (43), amino acid biosynthesis (46), amino acid metabolism (49), nitrogen and sulfur me-
tabolism (56). Most of the genes involved in amino acid metabolism (the small light gray points in Fig. 1)
are located in this region. The expression categories (clb2.up (5), hda1.up (9), yhl029c.up (25), ckb2.down
(30), gcn4.down (33), vps8.down (43)) are enriched by the genes of two functional categories (amino acid
biosynthesis (46), amino acid metabolism (49)) at very significant levels, (p � 10�5).¶ This means the knock-
outs of these genes (clb2, hda1, yhl029c, ckb2, gcn4, and vps8) impact many more genes involved in amino
acid biosynthesis/metabolism than that could happen by chances. Gcn4 is a transcriptional activator of amino
acid biosynthetic genes (http://genome-www.stanford.edu/Saccharomyces/). As far as we know, there is no
literature describing the roles of the other five genes (clb2, hda1, yhl029c, ckb2, and vps8) in amino acid
biosynthesis/metabolism. This result provides hints to some possible new functions of these genes.

Group C (middle) contains cup5.up (6), fks1(haploid).up (8), med2(haploid).up (14), swi6(haploid).up
(21), vma8.up (23), homeostasis of cations (51), ionic homeostasis (53), regulation of / interaction with cel-
lular environment (54), cell wall (57), plasma membrane (61). Null mutant of cup5 is copper sensitive. Fks1
is involved in cell wall organization and biogenesis (http://genome-www.stanford.edu/Saccharomyces/).
There are 57 and 61 genes in the expression categories cup5.up and vma8.up, respectively, the intersection
set of these two categories contains 46 genes. The overlapping is very significant (p � 2 � 10�37). The
knockout of cup5 or vma8 makes largely the same group of genes over-express. Med2(haploid).up (14) and
swi6(haploid).up (21) do not significantly overlap with other categories in this region. This may reflect the
limitation of the two-dimensional visualization of high dimension data.

CUI ET AL.

110

¶The P value is the probability of observing at least k genes in the intersection set of an expression category of size
n and a function category of size f, assuming there is no association between the expression category and the function
category,

P � 1�
� f
i � �g � f

n � i �
� g

n�
where g is the total number of genes in the indicator table.

�
k�1

i�0
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Group D (upper right) contains ade2(haploid).up (0), aep2.up (1), afg3(haploid).up (2), cem1.up (3),
msu1.up (15), top3(haploid).up (22), ymr293c.up (26), lovastatin.up (28), dot4.down (31), c-compound and
carbohydrate metabolism (55), lipid, fatty-acid and isofenoid metabolism (58), cell rescue, defense and vir-
ulence (59), energy (60), detoxification (62). All the function categories in this region belong to three su-
per-categories: (a) energy (60), (b) cell rescue, defense, and virulence (59), which includes detoxification
(62), and (c) metabolism, which includes c-compound and carbohydrate metabolism (55) and lipid, fatty-
acid and isofenoid metabolism (58). Ade2 is a purine-base metabolism gene (http://genome-www.
stanford.edu/Saccharomyces/). Aep2 mutant is non-conditional respiratory mutant and unable to express the
mitochondrial OLI1 gene afg3. Cem1, msu1, ymr293c are mitochondrial genes (http://genome-www.
stanford.edu/Saccharomyces/) and are involved in energy generation and processing.

Yeast transcription modules

Ihmels et al. identified 86 context-dependent and potentially overlapping transcription modules by min-
ing yeast microarray data of more than 1,000 experiments (Ihmels et al., 2002; www.weizmann.ac.il/
home/jan/NG/MainFrames.html). The genes in a module are co-regulated under some experimental condi-
tions. The modules reflect the modular organization of the yeast transcription network. Here we use Ho-
mogeneity Analysis to present a global view of the relations between the modules and their connections to
the underlying biological processes.

We selected 72 modules that contain more than 20 genes and overlap with at least one other selected
modules. Altogether, the 72 modules contain 2,159 genes. The modules and 18 biological processes de-
fined by Gene Ontology (The Gene Ontology Consortium 2000) are quantified using Homogeneity Analy-
sis and displayed in two-dimensional space (Fig. 2). The graph reveals the relations between the genes
(small gray dots), modules (big black dots) and the biological processes (big blue dots). The modules re-
lated to nitrogen and sulfur metabolism (78, 84) are in the lower left corner of the plot; modules related to
cellular fusion (74), conjugation with cell proliferation (76), sporulation (77), response to DNA damage
stimulus (81), nucleobase, nucleoside, nucleotide and nucleic acid metabolism (82), signal transduction (89)
are in the lower right corner; the upper area of the plot is related to electron transport (80), oxidative phos-
phorylation (73), and aldehyde metabolism (85); the middle area are related to carbohydrate metabolism
(86), response to oxidative stress (87), oxygen and reactive oxygen species metabolism (88), alcohol me-
tabolism (79), transport (83), lipid metabolism (75), protein metabolism (72).

The function categories that are closely located show strong associations. For example, electron trans-
port (80) and oxidative phosphorylation (73) contain 17 and 25 genes respectively, the intersection set of
these two categories contains 12 genes. The p-value associated with the overlapping is 1.5 � 10�21. It is
well known that electron transport and oxidative phosphorylation are closely related biological processes.
Similar examples include response to oxidative stress (87) and oxygen and reactive oxygen species metab-
olism (88) (p � 1.4 � 10]�41), cell proliferation (76) and response to DNA damage stimulus (81) (p �
7.0 � 10�14). This indicates that arrangement of the genes and categories is biologically meaningful.

The similar modules are grouped together. Module 26 (22),	 Module 35 (29), Module 48 (40), Module
54 (45), Module 70 (59) and Module 75 (63) are clustered together near the origin. The sizes of these mod-
ules are 60, 73, 88, 66, 69, and 72, respectively. The six modules share 45 common genes, more than 50%
of the largest module.

The associations between modules and biological processes are also readily to be found in Figure 2. We
can see that Module 5 (4), Module 55 (46) and Module 74 (62) are closely related to the biological process
“oxidative phosphorylation” (73). The p-value associated with the overlapping between “oxidative phos-
phorylation” and the three modules are 2.0 � 10�41, 2.9 � 10�33, and 2.2 � 10�5 respectively. Module 1
(0), Module 51 (42) and Module 57 (48) are grouped with “protein metabolism” (72). The p-value associ-
ated with the overlapping between “protein metabolism” and the three modules are 1.9 � 10�72, 4.0 �
10�4, and 5.7 � 10�51, respectively.

	In Figure 2, the module is labeled by the number in the parenthesis.
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FIG. 1. Homogeneity analysis for the Rosetta Compendium data and MIPS functional catalogue. In this bipartite plot,
the small gray dots represent genes; the red (up-regulation) and green (down-regulation) dots represent expression cat-
egories, and the blue dots represent MIPS gene function categories. The categories are labeled by numbers:

0: ade2 (haploid).up

1: aep2.up

2: afg3 (haploid).up

3: cem1.up

4: cka2.up

5: clb2.up

6: cup5.up

7: dig1_dig2 (haploid).
up

8: fks1 (haploid).up

9: hda1.up

10: hog1(haploid).up

11: isw1_isw2.up

12: kim4.up

13: kin3.up

14: med2 (haploid).up

15: msu1.up

16: qcr2 (haploid).up

17: rrp6.up

18: rtg1.up

19: spf1.up

20: sst2 (haploid).up

21: swi6 (haploid).up

22: top3 (haploid).up

23: vma8.up

24: yar014c.up

25: yhl029c.up

26: ymr293c.up

27: HU.up

28: Lovastatin.up

29: Terbinafine.up

30: ckb2.down

31: dot4.down

32: fus3,kss1 (haploid).
down

33: gcn4.down

34: med2 (haploid).down

35: rad6 (haploid).down

36: rpl12a.down

37: rtg1.down

38: sir4.down

39: sod1 (haploid).down

40: ste12 (haploid).
down

41: ste18 (haploid).
down

42: ste7 (haploid).down

43: vps8.down

44: yel033w.down

45: ymr014w.down

46: AMINO ACID 
BIOSYNTHESIS

47: PHEROMONE RESPONSE,
MATING-TYPE 
DETERMINATION, SEX-
SPECIFIC PROTEINS

48: CELL DIFFERENTIATION

49: AMINO ACID 
METABOLISM

50: CELL FATE

51: HOMEOSTASIS OF
CATIONS

52: CHEMOPERCEPTION AND
RESPONSE

53: IONIC HOMEOSTASIS

54: REGULATION OF / IN-
TERACTION WITH 
CELLULAR ENVIRONMENT

55: C-COMPOUND AND CAR-
BOHYDRATE METABOLISM

56: NITROGEN AND SULFUR
METABOLISM

57: CELL WALL

58: LIPID, FATTY-ACID
AND ISOPRENOID 
METABOLISM

59: ENERGY

60: CELL RESCUE, DEFENSE
AND VIRULENCE

61: PLASMA MEMBRANE

CONCLUSION

Homogeneity analysis is a powerful method that is capable of integrating the analysis of microarray-de-
rived gene groups and categorical gene function information. It is a useful mathematical framework for in-
terpreting microarray data in the context of existing biological knowledge.

Homogeneity analysis can be used for analyzing the relations between any gene groups regardless how
they are derived. For example, we can group genes according to the DNA-binding motifs occurring in their
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FIG. 2. Homogeneity analysis for yeast transcription modules and the biological processes defined by gene ontology.
In this bipartite plot, the small gray dots represent genes; the black dots represent modules, and the blue dots represent
biological processes defined by gene ontology. The categories are labeled by numbers:

0: Module 1

1: Module 2

2: Module 3

3: Module 4

4: Module 5

5: Module 6

6: Module 7

7: Module 8

8: Module 10

9: Module 11

10: Module 12

11: Module 13

12: Module 15

13: Module 16

14: Module 17

15: Module 18

16: Module 19

17: Module 20

18: Module 21

19: Module 22

20: Module 24

21: Module 25

22: Module 26

23: Module 27

24: Module 28

25: Module 29

26: Module 30

27: Module 32

28: Module 34

29: Module 35

30: Module 36

31: Module 37

32: Module 40

33: Module 41

34: Module 42

35: Module 43

36: Module 44

37: Module 45

38: Module 46

39: Module 47

40: Module 48

41: Module 50

42: Module 51

43: Module 52

44: Module 53

45: Module 54

46: Module 55

47: Module 56

48: Module 57

49: Module 58

50: Module 59

51: Module 61

52: Module 62

53: Module 63

54: Module 64

55: Module 65

56: Module 66

57: Module 67

58: Module 68

59: Module 70

60: Module 71

61: Module 73

62: Module 74

63: Module 75

64: Module 76

65: Module 77

66: Module 80

67: Module 81

68: Module 82

69: Module 84

70: Module 85

71: Module 86

72: protein metabolism

73: oxidative phosphor-
ylation

74: conjugation with
cellular fusion

75: lipid metabolism

76: cell proliferation

77: sporulation

78: sulfur metabolism

79: alcohol metabolism

80: electron transport

81: response to DNA
damage stimulus

82: nucleobase, nucleo-
side, nucleotide
and nucleic acid
metabolism

83: transport

84: nitrogen metabolism

85: aldehyde metabolism

86: carbohydrate 
metabolism

87: response to 
oxidative stress

88: oxygen and reactive
oxygen species 
metabolism

89: signal transduction
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up-stream regions, the protein domains they encode or the sub-cellular locations of the products of the genes.
The relations between various classifications of genes can be revealed using this method.

We developed a computer program to implement the method. It is free for nonprofit research and is down-
loadable at http://compbio.utmem.edu/Gifi.php.
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