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1. Introduction

Suppose y1, . . . , yn are independent random variables. The den-
sity pθi(·) of yi is supposed to be known up to a parameter θi. Let

θ̂θθ =
(
θ̂1(yyy), . . . , θ̂n(yyy)

)
be an estimate of θθθ constructed from the sample

yyy = (y1, . . . , yn). Note that the estimate of θi can depend on yj , j 6= i. Let

`i(·, ·) be a loss function so that `i(θi, θ̂i) represents the loss of using θ̂i as
the estimate of θi. The purpose of the present paper is to introduce some

methods for the estimation of the average loss L(θθθ, θ̂θθ) = 1
n

n∑
1

`i(θi; θ̂i).

Let yyy(−i) = (y1, . . . , yi−1, yi+1, . . . , yn) be the sample with yi deleted,
and write

gi(yi) = θ̂i(yi;yyy(−i)),

then `i(θi, θ̂i) = `i

(
θi; gi(yi)

)
.

Conditional on yyy(−i), gi(·) is a known function. This leads us to a one-

dimensional estimation problem: Given the known functions `i(·, ·) and
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gi(·), and an observation yi from pθi
(·), find an estimate ˆ̀

i(yi) of the quan-

tity `i

(
θi, gi(yi)

)
. One obvious possibility is to estimate `i

(
θi, gi(yi)

)
by a

Bayes estimate, i.e. setting ˆ̀
i(yi) to be

∫
`(θi, gi(yi)pθi(yi)π(θi)dθi∫

pθi
(yi)π(θi)dθi

where π(θi) is a prior for θi. This would be a reasonable procedure if n is
small and each yi is strongly informative on θi.

In this paper, however, we are mainly interested in the situation when
n is large and each yi by itself is not strongly informative on θi. In this case,

it is desirable to require ˆ̀
i(yi) to be an unbiased estimator of `i

(
θi, gi(yi)

)
.

To cite a scenario where unbiasedness is clearly the appropriate re-
quirement, suppose

{θ̂i, i = 1, . . . , n} are weakly dependent random variables in the sense that

each θ̂i is approximately independent of most but a small fraction of the

other θ̂j ’s. Conditional on yyy(−i), let ti = t
(
yi; gi(·)

)
be an estimator of

`i

(
θi, gi(yi)

)
, and

ri = ti − `i

(
θi, gi(yi)

)
,

then {ri, i = 1, . . . , n} are also weakly dependent variables. Hence

Var
(

1
n

n∑
1

ri

)
→ 0, and

E

(
1
n

n∑
1

ti − 1
n

n∑
1

`i(θi, θ̂i)
)2

= Var
(

1
n

n∑
1

ri

)
+

(
1
n

n∑
1

E(ri)
)2

will be determined by the average biases of the ti’s. In this case, unbi-
asedness is clearly desirable if it can be achieved. Otherwise, we should try

to keep the bias of ˆ̀
i small over a reasonable range of values of θi. It is,

however, important to note that the variance of 1
n

n∑
1

ri can be small under

much more general conditions than weak dependency of the θ̂i’s. This will
be discussed in section 6.
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Thus, for each i, we need to find unbiased or approximately unbiased
estimator of `i

(
θi, gi(yi)

)
. If there is more than one unbiased estimator, we

choose the one giving, in some sense, the smallest value for Eθi

(ˆ̀
i(yi) −

`i(θi, gi(yi)
)2.

In many applications, we are interested in the loss of θ̂i only to com-

pare it to the loss of another estimator θ̃i. It is clear that in this case it

suffices to compare `i(θi, θ̂i)+k(θi) to `(θi, θ̃i)+k(θi) where k(·) is a constant

function of θi. We call such a function `i(θi, θ̂i) + k(θi) a comparative loss
function. For comparison among estimators, it is enough to find unbiased
estimates of their comparative losses (corresponding to a common k(·)).
We then have the freedom of choosing k(·) to make it easy to construct
unbiased estimates.

As a final remark, we note that if the family of densities {pθi(·)} is a
complete family as θi vary in its range, then an unbiased estimator of the
loss (or a comparative loss), must be unique if it exists.

2. Kullback-Leibler loss and exponential families

Suppose yi has density pθi(·) and gi(·) is a given function of yi as
defined in the introduction. To simplify notations, we will suppress the
subscript i in the rest of this section. The Kullback-Leibler pseudo-distance
between two densities p(·) and q(·) are defined by

K(p, q) =
∫

p log
p

q
dy.

The Kullback-Leibler loss (KL loss) of the estimator g(y) is then defined
by

`
(
θ, g(y)

)
= K(pθ, pg(y)).

Let pθ(z) be an exponential family distribution, then

log pθ(z) = φ(θ)t(z) + α(θ) + m(z)

for some functions φ(·), α(·) of θ and t(·), m(·) of z, and `
(
θ, g(y)

)
=

φ(θ)µ(θ)+α(θ)−φ
(
g(y)

)
µ(θ)−α

(
g(y)

)
, where µ(θ) = Eθt(z). Even though

the exponential family structure leads to a relatively simple form for the KL

loss, in most cases it is still not possible to find exactly unbiased estimate
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of this loss. We will discuss the construction of approximately unbiased es-
timates in a later section. However, a corresponding comparative loss func-
tion `

(
θ, g(y)

)− φ(θ)µ(θ)− α(θ) = −φ
(
g(y)

)
µ(θ)− α

(
g(y)

)
is particularly

simple.

To estimate this comparative loss, we only need to solve the following
problem:

• (i) Find a function h(y) so that

Eθh(y) = µ(θ)Eθφ
(
g(y)

)
for all θ. (∗)

• (ii) If there exist more than one solution to (∗), choose the one that
minimizes

∫
Eθ

(
h(y)− µ(θ)φ

(
g(y)

))2
π(θ)dθ

where π(·) is an appropriate weight function.

If a function h(·) satisfying (∗) can be found, then−h(y)−α
(
g(y)

)
will be an

unbiased estimator of the comparative KL loss `(θ, g(y)
)−φ(θ)µ(θ)−α(θ).

Exact solutions to the above problem can be found in several important
exponential family models. We list two examples.

Example 1. (Poisson distribution)

Suppose y has a Poisson distribution with mean θ, then log pθ(y) =
y log(θ)− θ − y!

Hence µ(θ) = Eθ(y) = θ, φ(θ) = log(θ), α(θ) = −θ. To obtain an
unbiased estimate of the comparative KL loss, notice that

µ(θ)Eθφ
(
g(y)

)
= θ

∞∑
y=0

log
(
g(y)

) · e−θθy/y!

=
∞∑

z=1

z log
(
g(z − 1)

)e−θθz

z!
(z = y + 1)

= Eθy log
(
g(y − 1)

)
.

It follows that y log
(
g(y − 1)

)
is an unbiased estimate of µ(θ)φ

(
g(y)

)
, and

g(y)− y log
(
g(y− 1)

)
is an unbiased estimator of the comparative KL loss
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K(pθ, pg(y))− θ log(θ) + θ. It is the unique unbiased estimator because the

Poisson family is complete.

Example 2. (Gamma scale family)

Suppose y has a Gamma distribution with a known shape parameter
k and an unknown scale parameter θ, then

log pθ(y) = −y

θ
− k log(θ) + log

(
yk−1/Γ(k)

)
.

Hence

µ(θ) = Eθ(y) = kθ, φ(θ) = −1
θ
, α(θ) = −k log(θ).

To obtain an unbiased estimate of µ(θ)Eθφ
(
g(y)

)
, notice that

µ(θ)Eθφ
(
g(y)

)
= −kθEθ

(
1

g(y)

)

= − k

Γ(k)θk−1

∫ ∞

0

(
yk−1

g(y)

)
(e−

y
θ ) dy

= − k

Γ(k)θk−1

{[
v(y)e−

y
θ

]∞
0
−

∫ ∞

0

v(y)
(
−1

θ
e−

y
θ

)
dy

}

where v(y) =
∫ y

0
zk−1

g(z) dz. We assume that g(z) does not converge to zero

faster than zk as z → 0, so that v(y) exists and
[
v(y)e−

y
θ

]
→ 0 as z → 0

or z →∞. Then it follows that

Eθµ(θ)φ
(
g(y)

)
= Eθ

(−ky−(k−1)v(y)
)
.

Hence ky−(k−1)v(y)+k log
(
g(y)

)
is an unbiased estimate of the comparative

KL loss

K(pθ, pg(y)) + 1 + k log(θ).

It is the unique unbiased estimate because of the completeness of the
Gamma scale family.
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3. Mean square error loss

The mean square error loss (MLE loss) of an estimator θ̂θθ(yyy) is defined
by

L(θθθ, θ̂θθ) =
1
n

n∑
1

(
θ̂i(yyy)− θi

)2
.

Write θ̂i(y) = gi(yi) where gi(·) is the (random) function of yi defined in

the introduction, then each term in L(θθθ, θ̂θθ) is of the form
(
g(y)− θ)2 = g(y)2 − 2θg(y) + θ2,

where, for simplicity, the subscript i has been suppressed from gi and θi.
Hence, g(y)2 − 2θg(y) is a comparative MSE loss for g(·) and an unbiased
estimator of it is of the form g(y)2 − 2e(y) where e(·) satisfies the equation

Eθe(y) = θEθg(y) (3.1)

for all θ. If, furthermore, there is an unbiased estimator f(y) of the term
θ2, then

g(y)2 − 2e(y) + f(y)

is an unbiased estimate of the MSE.

Example 3.

Suppose y has a Poisson distribution with mean θ. By the same
argument as used in Example 1, it is seen that e(y) = yg(y − 1) is an
unbiased estimator of θEθg(y). Furthermore, it is easy to check that f(y) =
y2 − y is an unbiased estimator of θ2. Hence

g(y)2 − 2yg(y − 1) + y2 − y

is the unique unbiased estimator of
(
g(y)− θ

)2.

Example 4.

Suppose y has a Gamma(k, θ) distribution with a known shape para-
meter k. The arguments used in examples 2 and 3 can be used to calculate

an unbiased estimate of
(
g(y)− θ

)2. The resulting estimate is

g(y)2 − 2y−(k−1)v(y) +
y2

k + k2
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where

v(y) =
∫ y

0

zk−1g(z)dz.

4. Location families

Suppose yi has density pi(yi− θi) where, for each i, pi(·) is a known
density on R with mean zero. Suppressing the subscript i, we write

y = θ + ε

where ε has density p(·) and satisfies E(ε) = 0. It was observed in the last
section that to estimate the MSE of an estimator g(y), we need to construct
unbiased estimates of θg(y) and θ2. Unbiased estimation of θ2 is easy: we
may use f(y) = y2 − σ2 where σ2 = Var(ε) =

∫
ε2p(ε)dε. To construct an

unbiased estimator of θg(y), observe that

Eθg(y) = Eyg(y)− Eεg(θ + ε).

Thus it suffices to find an unbiased estimator h(y) of the term Eεg(θ + ε),
i.e. to find a function h(·) to satisfy the following equation for all θ

∫
h(θ + ε) p(ε)dε =

∫
g(θ + ε) εp(ε)dε. (4.1)

The solution to this integral equation, if it exists, can be obtained in the
following way.

Let H(·), P (·), G(·) be the Fourier transforms of h(·), p(·) and g(·)
respectively. For example,

P (s) = (Fp)(s) =
∫

p(ε)e−i2πεsdε.

Let q(ε) = p(−ε), then
∫

h(θ + ε) p(ε)dε = h ∗ q(θ)

where ∗ denotes the convolution operation. The Fourier transform of h∗q(θ)
is H(s) · Q(s) = H(s)P̄ (s) where P̄ (s) is the complex conjugate of P (s).
Similarly transforming the right hand side of (4.1), and using the fact that
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the Fourier transform of εp(ε) is (i/2π)P ′(s), it is seen that the integral
equation (4.1) is equivalent to

H(s)P̄ (s) = − i

2π
G(s)P̄ ′(s) (4.2)

In other words, a solution h(·) exists for (4.1) iff we can find a L1 function
H(·) which satisfies (4.2) for all s. In particular, if P (s) 6= 0 for all s then
h is determined uniquely as

h = − 1
2π
F−1(iGP̄ ′/P̄ ). (4.3)

In general, p(s) may vanish for some values of s and (4.3) cannot be used. In
this case, we can get approximate solutions of (4.1) by the following device:
first approximate p(·) by another density p1(·) which has a nonvanishing
Fourier transform, then compute h = − 1

2πF−1(iGP̄ ′1/P̄1) and regard it
as an approximate solution of (4.1). One possible choice of p1 is p1(ε) =
(1 − α)p(ε) + αφ(ε) where φ(·) is a normal density. The above choice of h

will then satisfy (4.1) with p replaced by p1:
∫

h(θ + ε)p1(ε)dε =
∫

g(θ + ε) εp1(ε) dε. (4.2)

[∫
h(θ + ε)p(ε)dε−

∫
g(θ + ε)εp(ε)dε

]
i.e.

=
α

(1− α)

[
−

∫
h(θ + ε)φ(ε)dε +

∫
g(θ + ε)εφ(ε)dε

]
.

Thus the bias of this choice of h(·) is of order α. Typically, if α is chosen too
small then h(·) will have high variance. In practice, one needs to choose each
αi (in estimating (gi−θi)2) carefully in order to achieve a good bias/variance

trade-off in the estimation of 1
n

∑
(θ̂i − θi)2.

Example 5. (Normal location model).

Let ε be N(0, 1), then

p(ε) = (2π)−
1
2 e−

1
2 ε2 and P (s) = e−2π2s2

.

Hence p′(s) = −(2π)2sP (s) and

H(s) = i(2π)sG(s) = (Fg′)(s).



October 18, 2005 9:43 WSPC/Trim Size: 9in x 6in for Review Volume Wong

Estimation of the Loss of an Estimate 9

It follows that h(x) = g′(x), which leads to the unique unbiased estimate

(of the MSE)

g(y)2 − 2
[
yg(y)− g′(y)

]
+ (y2 − 1) =

(
g(y)− y)2 +

(
2g′(y)− 1

)
.

If the variance of ε is σ2, then the term (2g′ − 1) should be multi-

plied by σ2. Returning to the whole vector θ̂θθ =
(
θ̂1(yyy), . . . , θ̂n(yyy)

)
=

(
g1(y1), . . . , gn(yn)

)
, the above result then leads to

1
n

n∑
1

(θ̂i − yi)2 +
2
n

n∑
1

∂

∂yi
θ̂i − σ2

as an unbiased estimator of the MSE loss 1
n

n∑
1

(θ̂i − θi)2. This estimate

was first obtained in Stein (1981) as an unbiased estimate of the MSE risk

1
n

n∑
1

E(θ̂i − θi)2.

Example 6. (Symmetric stable distributions)

Let p(·) be a symmetric stable density with a known scale parameter,
then its Fourier transform is given by

P (s) = e−c|s|α ,

where c depends on α and the scale parameter. We assume that the index

α is known and α ∈ (1, 2]. It follows that P ′(s) = −sign(s)αc|s|α−1P (s),

and, by (4.2),

H(s) = αc
(|s|−(2−α)

) ·
(

i

2π
sign(s)|s|G(s)

)

= αc
(|s|−(2−α)

) ·
(

i

2π
sG(s)

)
.

Hence h(x) = αc(g′ ∗ t)(x)

t(x) = F−1
(|s|−(2−α)

)
(x) where

=
[
22−απ−(α−1)Γ(α− 1) sin

(
(2− α)π/2)

] · |x|−(α−1).
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It is interesting to note that if α < 2 then θ2 cannot be estimated by
f(y) = y2 − Var(ε) because Var(ε) is infinite. However, the comparative

loss
(
g(y)− θ

)2 − θ2 can still be estimated by

g(y)2 − 2yg(y) + 2αc · g′ ∗ t(y).

5. Approximate solutions

In general, exactly unbiased approximation to the loss may not exist.
This typically happens when the family {pθ(·), θ ∈ Θ} is rich but the range
Y of the random variable y is small. In such cases, one has to be satisfied
with an estimator which is in some sense close to being unbiased for the

loss `i(θ, θ̂). For example, suppose we want to find a function e(·) to satisfy

(3.1). A generally applicable method is as follows: Let e(·) =
∞∑
1

cifi(·)

where {fi(·), i = 1, 2, . . . } is a set of basis functions in a certain space of
functions on Y. Let γ(θ) = θEθg(y). We can determine the coefficients ci’s
so that (3.1) is approximately satisfied in a certain sense. For example

• (a) Restricted unbiasedness: choose a subset Θ0 ⊂ Θ and requires
e(·) to satisfy (3.1) for all θ ∈ Θ0. In particular, if Θ0 is finite, we
may approximate e(·) by taking the first m terms in the expansion
and attempt to solve for the coefficients c1, . . . , cm in the linear
system

m∑
1

cj

(
Eθifj(y)

)
= γ(θi), θi ∈ Θ0 = {θ1, · · · , θm}.

• (b) Least squares solution: Suppose γ(θ) and φi(θ) = Eθfi(y) i =
1, 2, . . . are all elements of a L2 space with inner product 〈φ, γ〉 =∫

φ(θ)γ(θ) dµ(θ) where µ(·) is an appropriate measure on Θ. We
may then determine c1, . . . , cm by projecting γ(·) into the space
spanned by φ1(·), . . . , φm(·).

Although this approach can be implemented numerically in almost any
problem, the degree to which e(·) is “approximately unbiased” must be
investigated in each application. We give two examples.
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Example 7. (Location family with bounded error)

As discussed in section 4, the key to finding an unbiased approxima-
tion to the MSE is the solution of the integral equation (4.1), or equiva-

lently (4.2). Unfortunately, if the error density p(·) has bounded support,

then its Fourier transform P (·) may have isolated zeros and (4.2) may not

be satisfied by any H(·). For example, if p(·) is the triangular density, i.e.

p(x) = 1− |x|, |x| ≤ 1, then P (s) =
[
sin(πs)/π

]2, and for s 6= 0,

P ′(s)/P (s) = 2π
[
cot(πs)− 1/πs

]
.

In this case, the “formal” solution (4.3) will have singularities at s =
±1,±2, . . . .

Thus, in many applications the equation (4.1) cannot be satisfied for
all θ. A method for constructing approximate solutions has already been
given in section 4. We now describe another method which can often be
used to construct a function h(·) which satisfies (4.1) for all θ ∈ [−L, L]
where L is a suitably large constant.

Suppose the support of p(·) is contained in an interval [−δ, δ], and

T > L + 2δ. Let g̃(·) be a periodic function with period 2T such that

g̃(y) = g(y) for y ∈ [−L−δ, L+δ]. It is easy to check that Eθ g̃(y) = Eθg(y)

for all θ ∈ [−L, L]. Thus it suffices to consider the problem of finding a

periodic function h(·) (with period 2T ) to satisfy the equation

∫
h(θ + ε) p(ε) dε =

∫
g̃(θ + ε) εp(ε) dε

for all θ ∈ (−∞,∞). Since h(·) is periodic, we can expand it in Fourier
series:

h(x) =
∞∑

n=−∞
Hnei2πsnx

where sn = n
T , n = 0,±1,±2, · · ·

and Hn =
1

2T

∫ T

−T

h(x)e−i2πsnxdx.
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Similarly, g̃(x) =
∑
n

G̃nei2πsnx. Putting these into the integral equation and

equating coefficients, we have

Hn · P̄ (sn) = G̃n · R̄(sn) (5.1)

where P (sn) =
∫∞
−∞ p(ε)e−i2πsn·εdε and R(sn) =

∫∞
−∞ εp(ε)e−i2πsn·εdε =

i
2π P ′(sn) are the Fourier transforms of p(ε) and εp(ε). To solve (5.1) for

Hn, we must make sure that P (sn) 6= 0 ∀n. This is usually achievable by
choosing T appropriately. For example, if p(·) is the triangular density, then
P (s) vanishes only at s = ±1,±2, . . . . Thus, we need to make sure that, for
all integers n = ±1,±2, . . . , sn = n

T is not a non-zero integer. Theoretically,

any positive irrational T will do.

From the point of view of controlling bias, one would like to choose L,
(and hence T ) as large as possible. However, there is a price to be paid: if T

is too large then some of the values of sn = n
T will be very close to the zeros

of P (s) at s = ±1,±2, . . . . Consequently, the corresponding values of Hn

will be very large, leading to an estimator h(·) with very high conditional
variance. The choice of Ti from the considerations of bias/variance trade-

off in the estimation of the average MSE n−1
n∑
1

(θ̂i − θi)2 is an interesting

question which, however, will not be discussed further in this paper.

Example 8. (Binomial distribution)

Suppose each yi has a Binomial (mi, θi) distribution. From section 3,
we know that the construction of unbiased approximation to the MSE de-
pends on the solution of the following problem: Find e(·) such that

Eθe(y) = θEθg(y) ∀ θ ∈ [0, 1] (5.2)

where y is a Binomial (m, θ) variable.

We will see that for a large class of functions g(·), there are exact
solutions to (5.2). Furthermore, even when (5.2) is not exactly solvable, we
can often construct e(·)’s which satisfy (5.2) to a high degree of accuracy.

Let us represent the functions e(y) and g(y) by the vectors ve =
(e0, . . . , em) and vg = (g0, . . . , gm). Choosing e0 = 0 and dividing both
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sides of (5.2) by θ, we have

m−1∑

i=0

ei+1

(
m

i + 1

)
θi(1− θ)m−1−i =

m∑

i=0

gi

(
m

i

)
θi(1− θ)m−i (5.3)

The first term in the right hand side can be expanded in the following
manner:

g0(1− θ)m = g0

[
(1− θ)m−1 − θ(1− θ)m−1

]

= g0

[
(1− θ)m−1 − θ(1− θ)m−2 + θ2(1− θ)m−2

]
= · · ·

= g0

[
(1− θ)m−1 − θ(1− θ)m−2 + · · ·+ (−1)m−1θm−1 + (−1)mθm

]
.

Expanding the other terms similarly, we obtain after some calculation that

m∑

i=0

gi

(
m

i

)
θi(1−θ)m−i =

[m−1∑

i=0

〈ci, vg〉θi(1−θ)m−1−i

]
+ 〈cm, vg〉θm (5.4)

where 〈·, ·〉 is the inner product in Rm+1 and the vectors ci, i = 0, . . . ,m

are defined by the relations

〈ci, vg〉 =
i∑

j=0

(−1)j

(
m

i− j

)
gi−j .

It can be checked that 〈cm, v〉 = 0 if v is a vector representing any of the
monomials in y of degree ≤ m− 1. If g(y) is a polynomial in y of degree at
most m− 1, then 〈cm, vg〉 = 0 and it follows that (5.2) is satisfied if we set
e(0) = 0 and

e(i + 1) =
〈ci, vg〉(

m
i+1

) i = 0, . . . ,m− 1. (5.5)

Hence, we have the result that, if g(·) is a degree m − 1 polynomial, then

an unbiased estimate of E
(
g(y)− θ

)2 is g(y)2− 2e(y) + (y2− y)/(m2−m).

In general, for an arbitrary g(·), we have 〈cm, g〉 = ‖ug‖2 where ug is
the component of vg perpendicular to the vectors representing polynomials
of degree ≤ m− 1. If g(·) is any reasonable estimator of θ, this component
ug should be very small. In this general case, the estimator (5.5) can be
improved in the following way. Let ν(·) be an appropriate measure on [0, 1]

such that θm and θi(1−θ)(m−1)−i, i = 0, . . . ,m−1, are all square integrable
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w.r.t. ν(·). Let θm = s(θ)+r(θ) where s(θ) =
m−1∑
i=0

αiθ
i(1−θ)(m−1)−i is the

projection of θm onto the space spanned by θi(1−θ)m−1−i, i = 0, . . . ,m−1.
Then the expression (5.5) should be modified to

e(i + 1) =
(〈ci, vg〉+ 〈cm, vg〉αi

)/(
m

i + 1

)
. (5.6)

In this case, e(y) is not exactly unbiased for θEθg(y), the bias is ‖ug‖2θr(θ).
The L2 norm (w.r.t. ν) of this bias is often very small. For example, with
m = 3, ν(·) = Lebesque measure, exact calculation shows that the L2 norm
of r(θ) is 0.0189. If m is larger, the norm of r(·) would be much smaller.

6. Convergence of the loss estimate

In the preceeding sections we have provided constructions of unbi-

ased (or nearly unbiased) estimator of 1
n

n∑
1

`i(θi, θ̂i). The estimator is of

the form 1
n

n∑
1

ti(yyy) where ti(yyy) is determined by the form of θ̂i(y1, . . . , yn)

as an univariate function of yi. The error of this estimator of the loss is

1
n

n∑
1

(ti−`i) where, by construction, each term (ti−`i) has zero expectation.

We now argue that, under quite general conditions, the error 1
n

n∑
1

(ti − `i)

is expected to converge to zero.

One condition for 1
n

n∑
1

(ti − `i) to converge to zero can be stated

loosely as follows: The value of 1
n

n∑
1

(ti − `i) should not depend much on

(y1, . . . , ym) if n À m. Basically, we want events concerning the limiting

behavior of 1
n

n∑
1

(ti−`i) to belong to the tail σ-field generated by y1, y2, . . . .

If this is true, then the zero-one law implies that 1
n

n∑
1

(ti − `i) converges

to a constant which must necessarily be zero. Unfortunately, it is not easy
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to formulate the technical conditions on θ̂i(·, ·) and `i(·, ·) to ensure mea-

surability of 1
n

n∑
1

(ti − `i) with respect to the tail σ-field. Furthermore, the

zero-one law does not give any indication on the speed of the convergence.
For these reasons we will instead investigate the convergence of the loss
estimate by direct variance calculations. We will show that for a very large

class of estimators θ̂(yyy), the variance of 1
n

n∑
1

(ti − `i) is of order n−1. For

simplicity, we will only consider the case of mean square error loss.

Recall that we are estimating `i = gi(yi)2 − 2θigi(yi) + θ2
i by

ti = gi(yi)2 − 2ei(yi) + fi(yi) where ei(yi) and fi(yi) are constructed to
be unbiased estimators of θigi(yi) and θ2

i respectively. Hence

1
n

n∑
1

(ti − `i) = − 2
n

n∑
1

[
ei(yi)− θigi(yi)

]
+

1
n

n∑
1

[
fi(yi)− θ2

i

]
.

Since the functions fi(·) are (non-random) functions of yi alone, we have

Var
(

1
n

n∑
1

(fi − θ2
i )

)
≤ c

n

provided each Var(fi) =
∫

pθi(y)
(
fi(y) − θ2

i

)2
dy ≤ c. The analysis of the

variance of 1
n

∑
(ei − θigi) is considerably more complicated. The reason is

that both ei(·) and gi(·) are random functions, i.e. the values of gi(yi) and
ei(yi) depends not only on yi but also on yyy(−i). As a result, all terms in the
average are generally dependent on each other. To proceed further, let Ti

be the operator which maps the function gi(·) to the function ei(·), i.e. Ti

is constructed so that for any (non-random) function g(·) of yi, (Tig)(yi) is
unbiased for θig(yi). Ti is assumed to have the following properties:

• a) (Unbiasedness) For all g ∈ Gi where Gi is a large linear space of
(non-random) functions of yi (which is defined separately in each
application) we have

E
[
(Tig)(yi)− θig(yi)

]
= 0 (6.1)
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• b) (Linearity) For any f , g ∈ Gi, a, b ∈ R,

Ti(af + bg) = aTif + bTig (6.2)

• c) If g(y) ≡ c where c is a constant, then

(Tig)(y) = cui(y). (6.3)

where ui(y) is an unbiased estimate for θ.

The forms of Ti in several examples have been obtained in the pre-
ceeding sections:

(Tig)(yi) = yig(yi − 1) (Poisson example)

(Tig)(yi) = yig(yi)− g′(yi) (Normal)

(Tig)(yi) =
1

yk−1
i

∫ yi

0

zk−1g(z)dz (Gamma)

(Tig)(yi) = yig(yi) + 2αc(t ∗ g′)(yi) (Stable laws)

Ti can also be applied to a multivariate function h(y1, . . . , yn), in which
case (Tih)(y1, . . . , yn) is obtained by regarding h(y1, . . . , yn) as a univariate
function of yi, with yyy(−i) fixed, and then applying Ti to this univariate

function. For example, it follows from (6.3) that; if h is a function of yyy(−i),
then

(Tih)(y1, . . . , yn) = ui(yi)h(yyy(−i)). (6.4)

A function h(y1, . . . , yn) is said to belong to the domain of Ti

(
h ∈

D(Ti)
)

if E(h2) < ∞ and

E
[
(Ti − θi)h

]2
< ciE(h2) (6.5)

where ci is a constant which is typically equal to the squared norm of Ti

as an operator on the class Gi of univariate functions of yi. Also, let Rj be
the operator representing expectation over yj conditional on yyy(−j), i.e.

(Rjh)(y1, . . . , yn) = E(h | yyy(−j))

=
∫

h(y1, . . . , yn)pθj (yi)dyj .
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Suppose that θ̂i(y1, . . . , yn) has an ANOVA decomposition

θ̂i(yyy) = gi(yi) = µi +
n∑

j=1

αi
jH

i
j(yj) +

∑

{j1,j2}
βi
{j1,j2}H

i
{j1,j2}(yj1 , yj2) + · · ·

(6.6)

where Hi
j , Hi

j1,j2
etc. are orthogonal random variables satisfying the con-

ditions

RjH
i
{j1,...,jk} = 0 if j ∈ {j1, . . . , jk}. (6.7)

For the construction of such decompositions, see Efron and Stein (1976).

We assume that each θ̂i has an expansion (6.6) up to m terms where m is

independent of n, and that Hi
j , Hi

{j1,j2} etc. are in D(Ti) and all of them

have variance≤ M . Finally, the coefficients αi
j , βi

{j1,j2} etc. are non-negative

constants such that
∑

j

αi
j =

∑

{j1,j2}
βi
{j1,j2} = · · · = 1.

Theorem. Suppose Ti, i = 1, . . . , n satisfy (6.1)–(6.5) with ci ≤
c0 < ∞, and Ti commutes with Rj whenever j 6= i. Suppose θ̂i i = 1, . . . , n

have ANOVA decompositions satisfying the assumptions of the preceeding

paragraph, then there exists a constant c > 0 such that

Var
[
n−1

n∑
1

(
ei(yi)− θigi(yi)

)] ≤ c

n

Proof.
n∑
1

(ei − θigi) =
n∑

i=1

(Ti − θi)θ̂i

=
[ n∑

i=1

(Ti − θi)µi

]
+

[ n∑

i=1

∑

j

αi
j(Ti − θi)Hi

j

]

+
[ n∑

i=1

∑

{j1,j2}
βi
{j1,j2}(Ti − θi)Hi

{j1,j2}

]
+ · · · ,
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where there are m terms in this expansion. We will only demonstrate the
bound for the variance of, say, the third order interaction term. By (6.4),
this third order term can be written as A + B where

A =
n∑

i=1

∑

i 6∈{j1,j2,j3}
γi
{j1,j2,j3} (ui(yi)− θi)Hi

{j1,j2,j3},

B =
n∑

i=1

∑

{j2,j3}
γi
{i,j2,j3} (Ti − θi)Hi

{i,j2,j3}.

To bound the variance of A, consider

E
[
(ui − θi)Hi

{j1,j2,j3}(uk − θk)Hk
{`1,`2,`3}

]
. (6.8)

If k 6∈ {i, j1, j2, j3} we can replace (uk−θk) by Rk(uk−θk) = 0 in (6.8). Simi-
larly, if `2 6∈ {i, j1, j2, j3}, we can replace Hk

{`1,`2,`3} by R`2(H
k
{`1,`2,`3}) = 0.

Hence (6.8) is zero unless {k, `1, `2, `3} = {i, j1, j2, j3}. Also, by our as-
sumptions on the norm of Ti and the variance of Hi

{j1,j2,j3}, the absolute

value of (6.8) is bounded by c0M . It follows that

Var(A) ≤ c0M

n∑

i=1

∑

i 6∈{j1,j2,j3}
γi
{j1,i,j3} [γi

{j1,j2,j3} + γj1
{i,j2,j3} + γj2

{j1,i,j3} + γj3
{j1,j2,i}]

≤ 4c0M

n∑

i=1

( ∑

{j1,j2,j3}
γi
{j1,j2,j3}

)

≤ 4c0Mn.

To bound the variance of B, notice that by applying (6.1) with g(yi) =
Hi
{i,j2,j3}(yi, yj2 , yj3) where yj2 and yj3 are fixed, we have Ri(Ti −

θi)Hi
{i,j2,j3} = 0. Also, since j2 6= i, it follows that

Rj2(Ti − θi)Hi
{i,j2,j3} = (Ti − θi)Rj2H

i
{i,j2,j3} = 0.

Using these equalities and repeating the same type of arguments used to
bound Var(A), we have

Var(B) ≤ 3c0Mn.

This completes the derivation of the bound for the third order interaction
term. The same argument can be applied to bound the variance of any
other term.
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