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Population-based association design is often compromised by false or nonreplicable findings, partially due
to population stratification. Genomic control (GC) approaches were proposed to detect and adjust for this
confounder. To date, the performance of this strategy has not been extensively evaluated on real data.
More than 10 000 single-nucleotide polymorphisms (SNPs) were genotyped on subjects from four
populations (including an Asian, an African-American and two Caucasian populations) using GeneChips

Mapping 10 K array. On these data, we tested the performance of two GC approaches in different
scenarios including various numbers of GC markers and different degrees of population stratification. In
the scenario of substantial population stratification, both GC approaches are sensitive using only 20–50
random SNPs, and the mixed subjects can be separated into homogeneous subgroups. In the scenario of
moderate stratification, both GC approaches have poor sensitivities. However, the bias in association test
can still be corrected even when no statistical significant population stratification is detected. We
conducted extensive benchmark analyses on GC approaches using SNPs over the whole human genome.
We found GC method can cluster subjects to homogeneous subgroups if there is a substantial difference in
genetic background. The inflation factor, estimated by GC markers, can effectively adjust for the
confounding effect of population stratification regardless of its extent. We also suggest that as low as
50 random SNPs with heterozygosity 440% should be sufficient as genomic controls.
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Introduction
In theory, for equivalent sample size, association test is far

more powerful than pedigree-based linkage studies in

searching for genomic regions underlying human diseases.1

The basic idea behind association test is that the disease

alleles are more frequent in ascertained cases than in

controls. Markers physically close to the disease loci will

also be detected because of linkage disequilibrium (LD).

However, the application of this approach is compromised

by false or nonreplicable findings,2 partially due to

population stratification, which causes unlinked markers

to show association with the phenotype.3,4 Recent popula-

tion admixture also bias association test, and an example is

the spurious finding between immunoglobulin haplotypeReceived 18 February 2004; revised 11 June 2004; accepted 22 July 2004

*Correspondence: Dr WH Wong, Department of Biostatistics, Harvard

University, Harvard School of Public Health, 655 Huntington Ave.,

Building II, Room 441, Boston, MA 02115, USA. Tel: þ1 617 432 4912;

Fax: þ1 617 739 1781; E-mail: wwong@hsph.harvard.edu

European Journal of Human Genetics (2004) 12, 1001–1006
& 2004 Nature Publishing Group All rights reserved 1018-4813/04 $30.00

www.nature.com/ejhg



Gm3,5,13,14 and NIDDM in the Gila River Indian Commu-

nity.5 The study was confounded by the subjects’ degree of

Caucasian genetic heritage.6

To overcome this serious danger, a correction strategy

has been proposed.6,7 It requires to genotype additional

unlinked markers, often called ‘genomic control (GC)

markers’, as the cost of detecting and correcting possible

confounders. Under the assumption of no association

between GC markers and phenotype and no population

stratification, the w2 statistics of association test between

the ith GC marker and case–control status, denoted as Yi
2,

follows a w2 distribution with one degree of freedom if

using additive genetic model. And the sum of the w2

statistics of n GC markers, denoted as Yn
2, follows a w2

distribution with n degree of freedom, where we can easily

test whether the population stratification is present.

Furthermore, we assume the test statistic is inflated by a

factor l, Yn
2/lBwn

2. If we assume l is constant for all loci, we

can then use it to adjust the population stratification. One

robust way to estimate the inflation factor is:

l ¼ Median ðY2
i Þ=0:456;

where 0.456 is simply the median of w2 distribution with

one degree of freedom.8 We denote this method as the

combined w2 approach in this paper. An alternative

method, proposed by Pritchard et al,9 tackles this problem

in two steps. Firstly, the GC markers are used to separate

the study subjects into genetically homogeneous sub-

groups, and second, the association tests will be conducted

within each subgroup.

To date, the performance of the GC approaches has not

been examined extensively in real genotype data. Previous

researches were based on simulated data or small number

of GC markers. The Affymetrix Mapping 10 K array has

recently become available, offering the ability to genotype

more than 10 000 single-nucleotide polymorphisms (SNPs)

across the human genome in a timely manner.10 Using this

technology, we evaluated the current genomic control

approaches in testing and controlling for population

stratification.

Methods
Study subjects

Four groups of subjects were used in the current study, (1)

20 Asians, (2) 42 African-Americans, (3) 42 Caucasian

collected by Coriell Institute, and (4) 54 Caucasian subjects

collected from Utah, USA. The DNA samples of group (1–3)

were purchased from Coriell Institute, and the group (4)

samples were collected by Centre d’Etude du Polymor-

phisme Humain (CEPH) research laboratory. All subjects

were unrelated individuals and remained anonymous to

the authors.

Genotyping

A measure of 250 ng genomic DNA of each subject was

digested with XbaI at 371C for 4 h. The DNA fragments

undergo ligation to a universal adaptor and then PCR-

amplification with a common primer. The amplicon was

cleaved by partial DnaseI digest to shorter fragments, and

labeled with biotinylated ddATP using terminal deoxy-

transferase. The labeled DNA was injected into the

microarray cartridge and incubated overnight. The hybri-

dized microarray was washed and stained following a

three-step protocol, and was scanned under the manufac-

turer’s directions (Affymetrix). Finally, the genotype was

determined using an automated scoring software (Affyme-

trix). The detailed genotyping procedure used has been

previously described elsewhere.10 This data set has

been made available to the public at http://www.

affymetrix.com/support/developer/resource_center/index.

affx?terms¼no.

Statistical analysis

Only autosomal markers were used in the analysis. We

firstly compared the allele frequencies and heterozygosities

of the genotyped SNPs among populations. Second, we

evaluated the performance of genomic control method in

detecting population stratification through an iterative

procedure. We pooled genotypes from different groups

together, that is, Asian and African Americans, and

attempted to detect this mixture using GC approach. In

each iteration loop, we randomly selected n¼20 or 50

SNPs from the data set, calculated Yn
2 in the combined w2

approach, and conducted test for population stratification.

Overall, 10 000 iterations were carried out, and we

summarized the power as P (Po0.05). Furthermore, we

assessed the degree of bias it would cause in association

tests if we ignored the underlying population stratification.

The Armitage’s trend test for additive model was used.8 We

randomly assigned a fraction (0, 25, 50, 75 and 100%) of

each ethnic group to be disease affected, pooled two groups

together, and tested for disease–SNP association. This

simulation procedure was repeated 10 000 times, and we

recorded the rejection rate at 0.05 level. Upon observed

substantial population stratification, we also estimated the

inflation factor (l), and calculated the rejection rate again

with controlling for population stratification.

We also applied the Pritchard’s approach, which is a

model-based clustering method using unlinked SNPs to

infer population structures, and assign individuals to

clusters.9 The method is implemented in a software,

STRUCTURE (version 2), which was downloaded from

http://pritch.bsd.uchicago.edu. We evaluated this method

by pooling two ethnic groups together, and run STRUC-

TURE to detect the population structure using 50 or 500

GC SNPs.
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Results
A total of 158 unrelated individuals from four ethnic

groups were genotyped on 10 043 SNP markers by the array,

with an overall call rate of 96.4%. These SNPs are fairly

polymorphic in our study samples, and the average

heterozygosity (440%) and allele frequency (420%) of

the SNPs were similar across all four ethnic groups (Table 1).

Using the combined w2 approach, we found 10–20 SNPs

were sufficient to detect population stratification in the

scenarios of Asian-Caucasian, Asian-African American and

Caucasian-African American mixture at the nominal 0.05

level (Table 2). The power in rejecting the null (no

population stratification) was over 95% in these cases by

only using 10 genomic control SNPs. However, when

mixing the Caucasian subjects collected by Coriell Inc. and

those collected by CEPH, we have limited power to detect

the stratification even using 50 random SNPs (Table 2).

One possibility stands as there was no significant popula-

tion stratification between these two groups of Caucasian

subjects, so that we can conduct association test without

adjustment. However, we observed substantial bias in the

test if we mix any two ethnic groups together (Table 3). In

the cases of mixing the two groups of Caucasian subjects,

the rejection rate could be more than 20% under the null

hypothesis (Table 3). It should be noted, that in the 0.5/0.5

situation of Table 3, we simulated case–control studies

matched on ethnicity. When sample size is small-to-

moderate, using asymptotic w2 distribution tends to yield

overestimated P-value and result into conservative test.11

Only when sample size becomes large, the asymptotic

P-value is accurate.11 As a consequence, in the 0.5/0.5

column of Table 3, the rejection rates were slightly less

than a level except when mixing the two Caucasian groups

where population stratification was less severe. Upon

observing strong bias in marker–disease association testing

if ignoring the population stratification, we used the

estimated inflation factor (l) to adjust the association

tests, and obtained correct rejection rate (Table 4). In

addition, we simulated situations of mixing two ethnic

groups (eg Asian and African-American), where one group

was matched in cases and controls but the other group was

mismatched. In this case, we also observed elevated false-

Table 1 Mean heterozygosity and allele frequency of the SNPs among study subjects

Groups Caucasian (n¼42) Utah (n¼54) Asian (n¼20) African-American (n¼ 42)

Heterozygosity (%) 45.9 45.8 41.3 46.8
Allele frequency (%) 25.3 25.0 22.8 25.2

Table 2 Power of testing for population stratification at 0.05 level*

10 random SNPs 20 random SNPs 50 random SNPs

Ethnic groups Power M(p) Power M(p) Power M(p)

Asian vs Caucasian 97.2% 3.5�10�5 100% 3.3�10�5 100% o10�15

Utah vs Caucasian 9.0% 0.424 23.2% 0.192 38.8% 0.091
African-American vs Caucasian 99.2% 2.9�10�11 100% o10�15 100% o10�15

Asian vs Utah 97.4% 2.8�10�8 100% o10�15 100% o10�15

African-American vs Asian 99.4% 3.6�10�9 99.9% o10�15 100% o10�15

African-American vs Utah 99.8% 6.5�10�13 100% o10�15 100% o10�15

*Power is estimated on 10 000 iterations; M(p), median P-value.

Table 3 Rejection rate of association test under the null hypothesis at 0.05 levela

Case/control ratio 1/0 (%) 0.75/0.25 (%) 0.5/0.5 (%) 0.25/0.75 (%) 0/1 (%)

Asian vs Caucasian 55.4 28.1 4.1 28.0 56.8
Utah vs Caucasian 23.1 9.4 5.1 9.1 22.0
African American vs Caucasian 62.2 37.0 4.4 37.2 62.3
Asian vs Utah 57.5 28.9 4.2 27.2 57.6
African American vs Asian 60.9 32.5 4.3 32.5 60.2
African American vs Utah 66.2 40.0 4.3 40.7 65.4

aEstimation was based on 10 000 iterations. Caucasian, Caucasian samples collected by Coriell Institute. Utah, Caucasian samples collected by
CEPH lab.
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positive rate caused by population stratification, which

could be appropriately adjusted for by using w2 genomic

control methods.

In the cases of Asian-Caucasian, Asian-African American

and Caucasian-African American pooling, the STRUCTURE

software can easily separate the two groups using 50

random SNPs. In contrast, when we combine the two

groups of Caucasian samples, the software failed to detect

the population stratification even using 500 SNPs. Because

the computation time of this method is fairly long, we

carried out only 20 runs using different sets of 500 random

SNPs, but in none of the 20 occasions the subpopulations

were detected.

Discussion
In this paper, we evaluated two different strategies in

detecting and controlling for population stratification

using real data. We surveyed the cases of (1) pooling

genetically distant populations, such as Asians and Cauca-

sians, and (2) pooling genetically similar populations, such

as two groups of Caucasian samples. In case (1), both

strategies were able to detect the stratification with a small

number of GC SNPs, however, in case (2), the sensitivity is

low in both strategies even with hundreds of SNPs. The

inflation factor (l) in the combined w2 approach can

correctly adjust the confounding effect even when the

population stratification was statistically nonsignificant. In

contrast, no adjustment can be attempted in Pritchard’s

approach when subpopulation structure is not detected.

In the past decade, we have witnessed the rise of family-

based designs as an alternative to population-based study.8

The motivation is that family-based designs are protected

from population stratification by its nature.12 This protec-

tion comes with a cost: (1) family-based samples are more

difficult to collect, and (2) conditioning on the same

number of genotypes, family-based tests are less powerful

than their population-based counterparts.13 Furthermore,

the genomic control approaches made population-based

study at least comparable to family-based tests.

We can generally consider two scenarios. (1) In the

situation of substantial population stratification, Pritch-

ard’s method appears to be the most attractive. It can

cluster subjects into homogeneous groups, and tests can be

conducted within these groups. We should note that, in

this case, the gene–disease association could be quite

different among ethnic groups in terms of both magnitude

and direction due to the distinct genetic backgrounds.

Family-based approach can only detect the average genetic

effect, which could miss the association if its directions are

opposite among subpopulations. (2) In the situation of

subtle population stratification, such as two groups of

Caucasian subjects collected from different geological

regions, Pritchard’s method showed limited sensitivity in

detecting the stratification. Fortunately, the combined w2

approach can still appropriately adjust for the confounding

effect using estimated l. Our results suggest that the

adjustment is fairly accurate in various degrees of popula-

tion stratification. Simulation studies also showed, in this

case, population-based study with GC adjustment is

statistically more powerful than family-based tests.8

The degree of population stratification varies among

genetic markers. Some markers carry similar allele frequen-

cies across populations, and in contrast, some markers are

ethnic specific. When the two underlying populations are

not separable (ie, the scenario of mixing two Caucasian

samples), we have to estimate the l on a number of random

Table 4 Controlling for population stratification with 50 unlinked markers*

Case/control ratio 1/0 0.75/0.25 0.6/0.4 0.5/0.5 0.4/0.6 0.25/0.75 0/1

(a) Adjusted rejection rate in association test under the null hypothesis at 0.05 level
Asian vs Caucasian 4.4% 4.3% 4.2% 3.5% 4.0% 4.3% 4.1%
Utah vs Caucasian 4.4% 4.1% 4.0% 3.8% 4.0% 4.0% 4.4%
African-American vs Caucasian 3.5% 3.9% 4.4% 3.6% 4.2% 4.0% 3.5%
Asian vs Utah 4.6% 4.6% 4.2% 3.6% 4.0% 4.5% 4.7%
African-American vs Asian 3.4% 4.0% 3.9% 3.4% 3.9% 3.1% 3.4%
African-American vs Utah 3.3% 3.9% 4.4% 3.5% 4.2% 4.0% 3.1%

(b) Mean (variance) of the inflation factor, l
Asian vs Caucasian 5.67 (3.63) 2.20 (0.46) 1.26 (0.10) 1.14 (0.05) 1.24 (0.30) 2.07(0.40) 5.84 (3.93)
Utah vs Caucasian 1.22 (0.08) 1.17 (0.06) 1.16 (0.06) 1.18 (0.06) 1.16 (0.06) 1.16(0.05) 1.21 (0.08)
African-American vs Caucasian 8.62 (7.12) 2.92 (0.82) 1.38 (0.14) 1.12 (0.04) 1.39 (0.17) 2.91 (0.77) 8.62 (7.12)
Asian vs Utah 6.49 (4.83) 2.23 (0.50) 1.27 (0.10) 1.12 (0.04) 1.24 (0.09) 2.14 (0.41) 6.52 (4.73)
African-American vs Asian 7.51 (5.39) 2.42 (0.56) 1.29 (0.11) 1.11 (0.04) 1.34 (0.12) 2.95 (0.87) 7.72 (6.83)
African-American vs Utah 10.1 (9.93) 3.24 (1.10) 1.36 (0.12) 1.12 (0.04) 1.44 (0.18) 3.25 (1.09) 10.5 (12.1)

Estimation was based on 10 000 iterations, the rejection rates were summarized in panel (a). In panel (b), we presented the mean value and variance of
the 10 000 ls obtained in the 10 000 times simulation. Caucasian, Caucasian samples collected by Coriell Institute. Utah, Caucasian samples collected
by CEPH lab.
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SNPs and apply it as a constant. By these means,

we controlled the overall false-positive rate on all

SNPs. However, for each individual SNP, its degree of

population stratification could be under- or overestimated.

The advantage of the w2 approach is that it can adjust

for population stratification even when the underlying

populations are not separable. Its drawback is, when we

are able to separate the underlying populations, this

method is not the most efficient way to adjust for the

stratification, on the other hand, the STRUCTURE strategy

is more reasonable in this scenario. The disadvantage of

the STRUCTURE strategy is, when the underlying popula-

tions are not separable, it simply cannot provide any

adjustment.

It should be noted that, in the situation of subtle

population stratification, both the combined w2 approach

and the Pritchard’s method showed limited power in

detecting it. However, we may still suffer from severe

biases if the association test was performed without

adjustment. In this study, we found the inflation factor

can solve this potential danger, even when no significant

subpopulations are detected. Hence, adjusting the test

using l is recommended in a population-based association

study if GC data are available. In addition, we set lZ1,

which partially caused that, Table 4a, the corrected

rejection rate under the null hypothesis is slightly less

than 5%.

‘How many GC markers should we use?’ is always an

intriguing question, and different suggestions have been

made.7 – 9 Actually, the answer to this question highly

depends on the population structure, sample size and

heterozygosity of genomic control makers, and these

parameters varies greatly across studies. Thus, no simply

cutoff can be suggested. In this study, we investigated the

impact of allele frequencies of genomic control SNPs to the

power in detecting the stratification. We found frequent

SNPs provide much larger power than infrequent SNPs. In

our data, SNPs with minor allele frequency less than 15%

offer nearly no power. Here, 50 SNPs with an average

heterozygosity around 40% provided great power to detect

population stratification and to make appropriate adjust-

ment. As demonstrated in Table 4b, the variance of l is

fairly small, which means no matter which 50 SNPs on the

genome we choose as GC marker they will lead to similar

estimations of l. With the rapid progress of biotechnology,

the cost of SNP genotyping has been reduced greatly. To

genotype a set of 50 SNPs in a population-based study is no

longer a major financial or technological hurdle (in

comparison to collecting family samples); moreover, GC

methods will provide valuable and often necessary adjust-

ments. GC approach can also be applied to family-based

tests. When the direction of association is opposite among

subpopulations, family-based tests may lead to a mistaken

null finding. Since GC markers can separate sample to

genetically homogeneous subgroups, conducting family-

based test within these groups is arguably more appropriate

and powerful.

In another setting, where we would like to examine

whether a group of individuals belongs to a certain

population (eg Asian), using known ethnic-specific mar-

kers would be more powerful and efficient than random

markers. To date, numbers of these ethnic-specific markers

have been characterized on many populations.14

After our initial submission to the European Journal of

Human Genetics, two papers on this topic were published in

the Nature Genetics.11,14 Here, we take the opportunity of

manuscript revision to compare the designs and results of

these studies. Freedman et al14 utilized multiple popula-

tions of moderate-to-large sample size, but only typed a few

dozen markers on each sample. They observed similar

results as ours, that subtle population stratification is not

detectable with adequate power by using w2 methods.

However, in this situation, the subtle population stratifica-

tion still increases the likelihood of false positives.

Unfortunately, Freedman et al looked at neither the usage

of l in adjusting association test or the STRUCTURE

strategy in detail. Similar to our study, Marchini et al11

typed large number of SNPs on small-to-moderate sample

sizes. Using a Bayesian method,11,15 they found substantial

stratification among Asian, White and Black subjects, and

much smaller difference between Chinese and Japanese.

Furthermore, Marchini et al11 simulated large cohorts and

investigated the impact of sample size on association tests

in the context of population stratification. Their results

agree well with our findings.
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