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Abstract

Currently, most analytical methods assume all observed genotypes are correct; however, it is clear that errors may reduce statistical power

or bias inference in genetic studies. We propose procedures for estimating error rate in genetic analysis and apply them to study the GeneChip

Mapping 10K array, which is a technology that has recently become available and allows researchers to survey over 10,000 SNPs in a single

assay. We employed a strategy to estimate the genotype error rate in pedigree data. First, the ‘‘dose–response’’ reference curve between error

rate and the observable error number were derived by simulation, conditional on given pedigree structures and genotypes. Second, the error

rate was estimated by calibrating the number of observed errors in real data to the reference curve. We evaluated the performance of this

method by simulation study and applied it to a data set of 30 pedigrees genotyped using the GeneChip Mapping 10K array. This method

performed favorably in all scenarios we surveyed. The dose–response reference curve was monotone and almost linear with a large slope.

The method was able to estimate accurately the error rate under various pedigree structures and error models and under heterogeneous error

rates. Using this method, we found that the average genotyping error rate of the GeneChip Mapping 10K array was about 0.1%. Our method

provides a quick and unbiased solution to address the genotype error rate in pedigree data. It behaves well in a wide range of settings and can

be easily applied in other genetic projects. The robust estimation of genotyping error rate allows us to estimate power and sample size and

conduct unbiased genetic tests. The GeneChip Mapping 10K array has a low overall error rate, which is consistent with the results obtained

from alternative genotyping assays.

D 2004 Elsevier Inc. All rights reserved.
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Genotyping error, defined as the proportion of mistyp- still remains unknown when inconsistency is observed, and
ings in all called genotypes, may occur due to nonspeci-

ficity of experimental assay, inappropriate allele calling, or

simply random assay instability. It can lead to (1) incorrect

inference of allele frequency, map order, linkage disequi-

librium, and marker distance [1,3,8] and (2) biased results

or reduced statistical power of genetic linkage and associ-

ation studies [1,3,4,8,9,11,13–16,21]. However, the geno-

type error rate is hard to estimate directly. Repeating the

assays may confirm the reproducibility but is unable to

rule out systematic errors. An alternative approach is to

employ an alternative assay method, but the true genotype
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the inconsistency rate cannot be treated directly as geno-

typing error rate.

Because the knowledge of genotyping error rate is

valuable for sample size estimation [9] and unbiased

genetic testing [21], statistical methods detecting errors in

pedigree data have been proposed [6,10,22,23]. A natural

approach is to check consistency with the Mendelian

inheritance law. The detection rate of genotyping error

using Mendelian law has been estimated to be 13–75%

conditional on allele frequency and pedigree structure

[5,7,11,12]. It has been suggested that true error rate can

be estimated from the detection rate [7]. A likelihood

approach was proposed by Gordon and Ott to estimate

the average error rates [15].



K. Hao et al. / Genomics 84 (2004) 623–630624
The recently released GeneChip Mapping 10K array

offers the ability to genotype over 10,000 SNPs on a single

array [17,19]. This technology uses an innovative assay

that eliminates the need for locus-specific PCR and requires

only 250 of ng DNA for each sample [17,19]. The potential

application includes linkage analysis, fine mapping, ge-

nomic control against population admixture, and loss of

heterozygosity (LOH) study. To validate the accuracy of the

technology, 538 SNPs across 40 individuals were randomly

selected and genotyped by single-base extension and cap-

illary sequencing. The genotypes were compared to the re-

sults generated by the GeneChip Mapping 10K array, and

the inconsistency rate was found to be <0.4% (http://www.

affymetrix.com/support/technical/datasheets/10k_datasheet.

pdf ). This result suggested a fairly high degree of accuracy;

however, the number should not be considered as genotyping

error rate since it did not take the inherent error rate of the

other technologies into account.

In this report, we estimated genotyping errors by Men-

delian inheritance law and likelihood of recombination

events. We achieved this goal by systematically capturing

the ‘‘dose–response’’ relationship between error rate and

observable number of errors conditional on the given

pedigree structures and genotypes. Once the reference

dose–response curve was derived, the error rate could be

estimated by calibrating observed error number to the

reference curve. The performance of this method was first

validated by simulation. The simulation results showed that

the error rate estimate was accurate independent of the error

model and the pedigree structure. The same accuracy is

achieved whether we check Mendelian error only or both

Mendelian error and unlikely genotypes. Finally, we applied

this method to evaluate the average error rate of the

GeneChip Mapping 10K array. The estimation was based

on genotype data of 30 trio families. Our results suggested

that the error rate of this technology was close to 0.1%, and

this error rate was not affected by whether the SNP was

frequent or rare or whether it was a transition or transversion

polymorphism.
Results

Simulation results

Our simulation results showed that the relationship

between E(N) and q was monotone and nearly linear, with

a substantial slope in all three pedigree structures surveyed

(Fig. 1). As expected, we observed more errors when we

checked for unlikely genotypes in addition to Mendelian

errors. Interestingly, the dose–response in the two cases

(Mendelian error only versus both Mendelian error and

unlikely genotypes) turned out to be nearly parallel. Thus

it is sufficient to estimate the error rate by using only the

Mendelian errors. We also found that the observed error

numbers were almost the same under the random and the
directed error models (Fig. 2), except in cases of extremely

high error rate (i.e., >5%). Finally, we examined the ability

of this method to estimate the average error rate in a

population of SNPs with heterogeneous error rates and

found it could still accurately estimate the average error

rate in most cases (Fig. 3).

Error rate of GeneChip mapping 10K array

After validating the performance of the method by

simulation, we applied it to evaluate the average error rate

of the GeneChip Mapping 10K array. In total 30 trios were

genotyped on 10,043 SNP markers, with an overall call rate

of 96.4%. In this data set 8916 SNPs were polymorphic.

Because a trio pedigree does not provide sufficient infor-

mation to identify unlikely genotypes, we checked only for

Mendelian inconsistency. N = 210 errors were observed in

this data set. There was no SNP that had significantly more

errors than the rest: 5 SNPs showed 2 errors, and the

remaining SNPs showed 1 or no error. We surveyed several

possible values of q (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,

and 0.0001) and calculated the E(N) by simulation (Table 1).

E(N) was sensitive to q in a wide range of parameter values.

In the log–log plot, the dose–response curve was almost

linear and had a slope that significantly deviated from 0.

Calibrating N = 210 to this curve, we obtained an estimated

genotyping error rate of 0.001. Moreover, we stratified the

SNPs by their allele frequencies and mutation types and

found no detectable difference in term of error rate between

high- and low-frequency SNPs (Table 2) or between tran-

sitions and transversions (Table 3).
Discussion

In this report, we proposed a strategy utilizing pedigree

information to estimate genotyping error rate through a

simulation-based calibration. The method performed favor-

ably in various scenarios of different pedigree structures,

different error models, and heterogeneous error rates. We

applied this method to a large data set of SNP genotypes

obtained by using the GeneChip Mapping 10K array and

estimated the error rate of this new technology.

Only a proportion of genotyping errors can lead to

disagreement with the Mendelian inheritance law, especially

in the case of SNP markers. But by conditioning on the

given pedigree structure and genotypes, our method is

sufficient to estimate validly the genotyping error rate. In

our data set, there was a nearly linear relationship between

error rate and Mendelian error number. The slope of the

curve was fairly steep, which indicated that the variance in

genotyping error rate estimation could be small. Detecting

unlikely genotypes did not contribute greatly in estimation

of error rate but required intensive computation and an

arbitrary cutoff in claiming mistypings. Therefore, we

suggest not utilizing unlikely genotypes in the current
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Fig. 1. The dose– response curves between error rate and number of observed errors. Base 10 was used in log transformation. Mendelian, detect only

Mendelian inconsistency; All Error, both Mendelian inconsistency and unlikely genotype ( pcutoff = 0.0001).
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setting with parental genotypes available. On the other hand,

when parental genotypes are not available, SNPs become

uninformative in Mendelian checking, and it is necessary to

consider unlikely genotypes. If a SNP carries an extremely

high error rate, it usually can be identified directly (i.e.,

extremely large number of Mendelian errors associated with

this SNP). Hence, we studied only moderate error rate

heterogeneity among multiple SNPs. In the current study,

we estimated the average error rate of a group of SNPs, but

this method can be applied directly to a single or a few

markers if a sufficient number of pedigrees were genotyped.

An appealing feature of this method is that the estimation

is achieved by conditioning on the structure of every

pedigree in the given data set. In generating the dose–

response reference curve, we corrected the observed errors

and left most genotypes untouched. We noted there are

multiple solutions to correct the Mendelian errors. If only

one corrected genotype set was used for all simulation loops
to derive the reference curve, the arbitrary choice could lead

to unstable estimation, although it is still unbiased. In this

report, we performed independent correction in each itera-

tion. An alternative strategy is to remove the genotypes of a

particular marker in a certain pedigree, if this marker shows

Mendelian inconsistency in this family. However, this

approach may reduce the number of total genotypes in the

data set and lead to overestimation of the error rate. This

bias could be more severe in the case of many Mendelian

errors in the data set.

Two commonly used SNP genotyping error models were

considered in this report. We found in the case of low-to-

moderate error rate that the choice of error model did not

affect the estimation very much. However, it ought to be

noted that the error model depends on the chemistry of the

genotyping assay and calling scheme and should be speci-

fied appropriately. For example, due to incomplete digestion

in restriction fragment length polymorphism, the digested



Fig. 2. Comparison of the dose– response curves between random and directed error models. Base 10 was used in log transformation. In the middle (pedigree

B) and bottom (pedigree C) graphs, curves lie in two groups. The higher groups are the curves using All Errors, and the lower groups are the curves using

Mendelian errors only.
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Fig. 3. Comparison of the dose– response curves between homogeneous and heterogeneous error rates. Base 10 was used in log transformation. R = 1 indicates

homogeneous error rate and R = 2 or 4 indicates heterogeneous error rate. When R = 2, half of the SNPs do not carry genotyping errors, and the other half have

errors with 2 times the specified error rate (x axis). When R = 4, three-quarters of the SNPs do not carry genotyping errors, and the other quarter have errors

with 4 times the specified error rate (x axis).
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allele is more likely to be misclassified as an undigested

allele, for which a directed error model becomes more

reasonable. Our method relies on the monotone relationship

between the error rate and the number of observable errors.

In the case of very high error rate (i.e., over 20%), we may

no longer observe the monotonic pattern, and therefore the

method becomes inapplicable. Moreover, at the current

setting, the method cannot accommodate complicated error

models containing more than one parameter [5,16,22].

In deriving the dose–response reference curves, we

applied the observed allele frequency of the marker. When

the genotyping error rate is small, as in the data set used in

this paper, the estimation should be trustworthy. However,

when error rate increases, the dose–response curve is biased

due to incorrectly estimated allele frequency. One solution is
to use known allele frequency of the marker in the given

population. When such information is not available, we may

partially overcome this problem by applying the estimation

procedure twice. At the second time, we can recalculate the

allele frequency according to the estimated error rate (from

the first run) and the specified error model and simulate the

genotypes using corrected allele frequency to draw the

dose–response curve again. A simulation study was carried

out to demonstrate that this recursive correction could

somewhat alleviate the bias (Table 4). Under high error rate

(i.e., >3%), the observed allele frequencies deviated from

the true values and so did the initial estimations of the error

rate (ê(1) in Table 4). Fortunately, the relative bias of ê(1) was

only small to moderate in magnitude, even under 10% error

rate. Furthermore, we corrected the allele frequency accord-



Table 1

Number of Mendelian errors on CEPH data set

Number of Mendelian errorsa (SNP = 8916, error = 210)

Error rate Random error model Directed error model

0.1 21,628 17,633.3

0.05 10,866 9,774.0

0.01 2,162 2,129.7

0.005 1,069 1,074.3

0.001 216 214.4

0.0005 111 106.8

0.0001 26 22.0

a The average number of Mendelian errors was calculated over 1000

iterations.

Table 3

Estimation of error rate on CEPH data set stratified by polymorphism type

Number of Mendelian errorsa

Transition

(SNP = 6049, error = 149)

Transversion

(SNP = 2867, error = 61)

Error rate Random Directed Random Directed

0.1 14,724.8 11,977.0 6943.9 5638.4

0.05 7,416.4 6,624.4 3449.5 3175.2

0.01 1,458.6 1,450.9 692.5 685.9

0.005 724.8 725.2 344.7 341.3

0.001 145.0 148.8 66.8 70.6

0.0005 75.6 76.2 35.4 36.3

0.0001 17.5 16.8 7.7 8.5

a The average number of Mendelian errors was calculated over 1000

iterations.

Table 4

Bias in error rate estimation and recursive correctiona

a e ã ê(1) ê(2)

(A) Random error model

0.2 1% 0.203 1.00% 1.00%

3% 0.209 3.04% 3.01%

5% 0.215 5.00% 5.00%

10% 0.230 10.20% 10.05%

0.4 1% 0.401 1.00% 1.00%

3% 0.403 3.01% 3.00%

5% 0.404 4.99% 5.00%

10% 0.410 10.04% 10.00%

(B) Directed error model

0.2 1% 0.205 1.01% 1.00%

3% 0.215 3.06% 3.00%

5% 0.225 5.08% 5.01%
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ing to ê(1) and specified error model and obtained the second

estimation ê(2). We found ê(2) was very close to the truth,

thus in this case, a two-step recursive procedure was able to

correct the estimation bias.

In addition to the point estimation, the confidence

interval of the genotyping error rate is also of interest.

Gordon and Ott observed a wide confidence interval when

using maximum likelihood approaches [15]. Under the

setting of this report, each CEPH (Centre d’Etude du

Polymorphisme Humain) trio pedigree on one marker shows

either 0 or 1 Mendelian error, which gives a Bernoulli

distribution. Considering that all pedigrees on all markers

are identical and independently distributed, the observed

error number N follows a binomial distribution with Var(N)

= p(1 � p)N. Under this assumption, we found that the 95%

confidence interval of N and genotyping error rate were

(181, 239) and (0.083%, 0.110%), respectively.

A caveat on our finding concerning the GeneChip

Mapping 10K array is that the small error rate is demon-

strated only on an application for which ample and high-

quality DNA is available. This is true for many linkage and

association studies but is unlikely to be true for some

applications such as studies of genome amplification, dele-

tion, or LOH in preserved tissue samples. Additional studies

are necessary to assess the error rate in these situations.

High-resolution SNP array has the potential to accelerate
Table 2

Estimation of error rate on CEPH data set stratified by allele frequency

Number of Mendelian errorsa

Low-frequency SNPs

(SNP = 3134, error = 60)

High-frequency SNPs

(SNP = 5782, error = 147)

Error rate Random Directed Random Directed

0.1 6907.1 6001.1 14,361.9 11,870.0

0.05 3492.6 3114.1 7,107.2 6,538.5

0.01 706.2 675.0 1,427.5 1,390.5

0.005 348.7 342.0 706.8 714.3

0.001 69.1 72.8 146.6 146.7

0.0005 37.5 33.5 76.1 71.4

0.0001 7.9 8.4 14.0 17.8

a The average number of Mendelian errors was calculated over 1000

iterations. A low-frequency SNP was defined as a SNP with minor allele

frequency less than or equal to 0.2, and a high-frequency SNP was defined

as a SNP with minor allele frequency more than 0.2.
greatly the genetic studies of complex traits. We found the

accuracy of this technology to be rather high (around

99.9%). This feature is very important since genotyping

errors could bias results or reduce statistical power of

genetic studies [1,3,4,9]. It is especially critical in linkage

studies, in which 1% error may double the required sample

size to achieve a given power [20]. Finally, we found the

technology to perform equally well on low- or high-fre-
10% 0.250 10.40% 9.95%

0.4 1% 0.405 1.00% 1.00%

3% 0.415 3.03% 2.99%

5% 0.425 5.02% 5.00%

10% 0.450 10.45% 9.99%

0.6 1% 0.605 1.00% 1.00%

3% 0.615 2.96% 3.00%

5% 0.625 4.92% 4.98%

10% 0.650 9.92% 10.00%

0.8 1% 0.805 1.00% 1.00%

3% 0.815 3.00% 3.00%

5% 0.825 5.01% 5.00%

10% 0.850 10.75% 9.99%

a The simulation was carried out using the trio pedigree structure, and 1000

iterations were conducted for each set of parameters. Under high error rate,

the estimation of allele frequency and error rate could be biased when the

true allele frequency is unknown. A recursive procedure is applied to

correct the estimation. a and ã denote the true and observed allele

frequencies; e, ê(1), and ê(2) denote the true, first, and second estimations,

respectively, of the error rate.



K. Hao et al. / Genomics 84 (2004) 623–630 629
quency SNPs and on transitions or transversions. A com-

puter software package, Genotype Error Rate Estimator on

Pedigree Samples, has been developed for researchers to

estimate the error rate on their data sets. This package is

freely available via written request to the authors.
Fig. 4. The structures of pedigrees used in the simulation study. (A) Trio,

(B) nuclear family with multiple offspring, and (C) extended pedigree.
Methods

Mendelian inheritance error and unlikely genotypes

Checking for Mendelian transmission in a pedigree is a

routine procedure in gene mapping studies [5]. However,

only a fraction of the genotyping errors can lead to disagree-

ment with the Mendelian inheritance law. Detection rate,

among biallelic markers, is 13–75% in nuclear families [5].

Another strategy is to detect mistypings among tightly linked

markers by considering the fact that recombination is a very

rare event among these markers [23]. The methods can

further identify errors that display Mendelian consistency,

but an arbitrary cutoff is required to call an unlikely genotype

as an error. In the current paper, we considered both

Mendelian inconsistency and unlikely genotypes (using a

p-value cutoff of 0.0001) as errors. The genetic distances

among the SNPs were calculated based on the nearby short

tandem repeat markers with accurate genetic map position

[18] by assuming the genetic distance was proportional to

physical distance in a small chromosomal region.

Error model

We used two error models to describe the relationship

between allelotyping error rate (s) and genotyping error rate

(q). These models were used in the simulation to propagate q
to s, based on which allelotyping errors were randomly

introduced.

For simplicity, we denote the average probability of

misclassifying allele A to allele a as P(A ! a). In the

random error model, it is assumed P(A ! a) = P(a ! A) =

s. It follows that P(AA ! Aa) = P(aa ! Aa) = 2s� 2s2,
P(Aa ! AA) = P(Aa ! aa) = s � s2, and P(AA ! aa) =

P(aa ! AA) = s2. Let p denote allele frequency of A, then

the genotyping error rate q satisfies the equation

e ¼ p2ð2sÞ þ 2pð1� pÞð2sÞ þ ð1� pÞ2ð2sÞ þ Oðs2Þ:

When s is small, we can ignore the O(s2) term and obtain

the relationship

sce=2: ð1Þ

In the directed error model, we assume P(A ! a) = s and
P(a! A) = 0. Then P(AA! Aa) = 2s � 2s2, P(Aa! aa) =

s, P(AA ! aa) = s2, and the probabilities of any other

transmissions are 0, resulting in the equation

e ¼ p2ð2sÞ þ 2pð1� pÞs þ Oðs2Þ
and

sce=2p: ð2Þ

Simulation studies

We studied three types of pedigrees: trio, nuclear family

with multiple offspring, and extended pedigree. The struc-

tures of the three types of pedigrees are illustrated in Fig. 4. In

each replication of the simulation, we performed the follow-

ing computation: (1) simulating the genotypes of 8916 SNPs,

(2) introducing genotyping errors on these SNPs, and (3)

applying our method to estimate the average error rate. The

allele frequencies of these 8916 SNPs were obtained from 30

CEPH trios genotyped by the GeneChip Mapping 10K array

(see below). The allele frequency distribution was symmetric

with respect to 0.5. We introduced genotyping errors under

both random and directed error models and under a range of

error rates (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001).

In the analysis of pedigrees, the software package MERLIN

was called to detect unlikely genotypes [2]. We performed

1000 replicates of the simulation for each set of parameters.

Evaluation of the impact of heterogeneous error rates

As mentioned earlier, this method estimates the average

error rate. When the error rates are different among SNPs,

we want to know whether this method can still accurately

estimate the average error rate. We addressed this issue by

randomly selecting 50 or 75% of the SNPs to be free of

genotyping errors, and for the remaining 50 or 25% SNPs,

we introduced errors using two or four times the specified

error rate, respectively.

Estimation of the genotype error rate of GeneChip mapping

10K array

Thirty independent pedigrees from the CEPH research

laboratory were used in the current study. In each pedigree
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we genotyped one trio (father, mother, and one offspring)

using GeneChip Mapping 10K arrays, and only autosomal

genotypes were examined for error rate.

Genomic DNA (250 ng) was digested with XbaI at 37jC
for 4 h. The DNA fragments underwent ligation to a

universal adaptor and then PCR amplification with a com-

mon primer. The amplicon was cleaved by partial DNase I

digestion to shorter fragments and labeled with biotinylated

ddATP using terminal deoxytransferase. The labeled DNA

was injected into the microarray cartridge and incubated

overnight. The hybridized microarray was washed and

stained following a three-step protocol and scanned under

the manufacturer’s directions (Affymetrix, Santa Clara, CA,

USA). Finally, the genotypes were determined using an

automated calling software (Affymetrix). The detailed gen-

otyping procedure used has been previously described [17].

Because only one offspring is typed in each pedigree, we

cannot identify unlikely genotypes among tightly linked

markers [23], and thus only Mendelian consistency checking

was employed. We first counted the number of Mendelian

inconsistencies in the data set and recorded it as N. Then we

derived the reference dose–response curve between error rate

and number of observed errors through simulation condition-

al on real data. In each iteration of the simulation, we (1)

corrected the existing errors, (2) introduced genotyping errors

according to q and the error model, and (3) counted the

number of observable errors and recorded it as n. Finally, we

estimated the error rate by comparing N to the reference

curve. Furthermore, we stratified the SNPs by allele frequen-

cy using a cutoff of 0.2 to study if the error rate was different

in common and rare SNPs. We also stratified the SNPs by

types of SNP (transition or transversion) and examined if the

SNP type affected error rate.
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