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Abstract

We propose a general and highly efficient method for solving and estimating gen-
eral equilibrium heterogeneous-agent models with aggregate shocks in discrete time.
Our approach relies on the rapid computation of sequence-space Jacobians—the deriva-
tives of perfect-foresight equilibrium mappings between aggregate sequences around
the steady state. Our main contribution is a fast algorithm for calculating Jacobians
for a large class of heterogeneous-agent problems. We combine this algorithm with a
systematic approach to composing and inverting Jacobians to solve for general equilib-
rium impulse responses. We obtain a rapid procedure for likelihood-based estimation
and computation of nonlinear perfect-foresight transitions. We apply our methods to
three canonical heterogeneous-agent models: a neoclassical model, a New Keynesian
model with one asset, and a New Keynesian model with two assets.
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1 Introduction

A rapidly expanding literature in macroeconomics incorporates rich heterogeneity into dynamic
general equilibrium models. A central challenge in this literature is that equilibrium involves the
time-varying, high-dimensional distribution of agents over their state variables.

In this paper, we propose a general, systematic, and highly efficient method to deal with this
challenge. Our method follows Reiter (2009) by perturbing the model to first order in aggregates.
But, while the Reiter method writes equilibrium as a system of linear equations in the state space,
we instead write it as a system of linear equations in the space of perfect-foresight sequences—the
sequence space. Since the size of this system is independent of the size of the state space, it becomes
feasible to solve and estimate models that feature very rich heterogeneity. Our sequence-space ap-
proach builds on Boppart, Krusell and Mitman (2018), who solve for nonlinear impulse responses
to small shocks, but we obtain a much faster solution by directly exploiting linearity.

We demonstrate the power of our method by solving and estimating three models, with in-
creasing degrees of complexity, at unparalleled speed. A code repository accompanies this paper
and provides general-purpose routines that automate the new algorithms we introduce.1

The central objects in our method are sequence-space Jacobians: the derivatives of equilibrium
mappings between aggregate sequences around the steady state. These Jacobians summarize ev-
ery aspect of the model that is relevant for general equilibrium. For example, consider a standard
incomplete markets model. That model features a Jacobian J C,r that maps, to first order, changes
in the sequence of real interest rates {rt} to changes in the sequence of aggregate consumption
{Ct}. Under the hood, this mapping includes the heterogeneous responses of households to
changes in r, as well as the evolution of the distribution of agents over time that it induces. But
to know the aggregate effect of r on C, all we need to know is J C,r: it is a sufficient statistic. Our
method exploits this property. We compute all relevant sequence-space Jacobians, and then com-
pose and invert these Jacobians to obtain the model’s full set of impulse responses.

Our main contribution is a fast algorithm for computing Jacobians for a large class of hetero-
geneous-agent problems, truncated to a horizon of T × T. A direct approach to calculating these
Jacobians is quite costly. For instance, calculating column s of J C,r, the response to a shock to rs,
requires iterating backward to obtain the consumption policy at each date, then iterating forward
to obtain the distribution at each date. The direct approach repeats this procedure for each column
s = 0, . . . , T − 1. Our method, by contrast, exploits the structure of the linearized heterogeneous-
agent problem around the steady state, which we capture formally in proposition 1. It requires
only a single backward iteration from T− 1 to obtain the consumption policy and impulses to the
distribution. These objects are then efficiently combined with information from the steady-state
solution to form the full Jacobian, lowering the cost by a factor of about T relative to the direct
approach. Our algorithm therefore provides a dramatic speed improvement, since T is typically

1See https://github.com/shade-econ/sequence-jacobian, which provides routines written in Python, as well as
pedagogical notebooks. A separate replication archive uses these routines to produce all figures and tables presented
in this paper.
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equal to at least 300 in practice, and sometimes as large as 1000.
We combine this algorithm with a systematic approach to composing and inverting Jacobians

to solve for general equilibrium impulse responses. Equilibrium in the sequence space can always
be expressed as a solution to a nonlinear system

F (X, Z) = 0, (1)

where X represents the time path of endogenous variables (usually aggregate prices and quan-
tities) and Z represents the time path of exogenous shocks. Obtaining the impulse responses of
unknowns to shocks, dX = −F−1

X FZdZ, requires computing the Jacobians FX and FZ, which are
formed by combining Jacobians from different parts of the model. Starting from the heterogeneous-
agent Jacobians computed using our fast algorithm, this can be achieved by any method that sys-
tematically applies the chain rule. We propose one such method, forward accumulation along a
directed acyclic graph (DAG). This procedure can be automated, and it usually only takes a few
milliseconds.

We verify that our method is accurate by showing that it delivers exactly the same solution as
the Reiter method, for models where the Reiter method is feasible. Like all perturbation methods,
both our method and the Reiter method are subject to error in taking derivatives; to allow for
a precise comparison, we therefore use automatic differentiation to take error-free derivatives in
both methods. We then demonstrate accuracy in two ways. First, we show that in response to spe-
cific 1% shocks, impulse responses under the two methods differ everywhere by less than 10−9%.
Second, we provide a method to recover the state-space law of motion from our sequence-space
solution, and show that matrices in this law of motion differ from the same matrices obtained
using the Reiter method by a maximum of less than 10−8. With accuracy established, we ad-
ditionally discuss how varying the truncation horizon T, or replacing automatic with numerical
differentiation, can affect these errors.

In sum, our method enables researchers to obtain model Jacobians and linearized general equi-
librium impulse responses, accurately and rapidly, in models with heterogeneous agents that can
potentially be very complex. To show how these objects can be used in practice, we cover two
applications that are very common in applied research: estimation on time-series data, and com-
putation of nonlinear perfect-foresight transitions.

To build toward estimation, we first summarize the Boppart, Krusell and Mitman (2018) sim-
ulation procedure. As they point out, the linearized impulse responses to shocks truncated to a
horizon of T form an MA (T − 1) representation of the model with aggregate shocks, which yields
a straightforward simulation procedure. These sample paths can be used to calculate approximate
time-series moments, which in principle can then be used for estimation.

We next provide an alternative route, which is to use analytical formulas to calculate the
model’s time-series moments directly from impulse responses. From here, we can directly com-
pute the likelihood function of any empirical time series. Given a prior over parameters, we can
then find the posterior mode and trace out the posterior distribution via Markov Chain Monte
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Table 1: Summary of computing times.

Computing times for: req. Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Steady state (s.s.) 0.42 s 52.08 s 1.88 s 16.16 s

Heterogeneous-agent Jacobians (J ) s.s. 0.09 s 10.47 s 0.32 s 3.50 s

One impulse response J 0.0009 s 0.0009 s 0.0136 s 0.0263 s

All impulse responses (G) J 0.0033 s 0.0033 s 0.0506 s 0.1735 s

Simulation (100,000 periods) G 0.0040 s 0.0050 s 0.0219 s 0.1047 s

Bayesian estimation (shocks) G
single likelihood evaluation 0.0007 s 0.0007 s 0.0024 s 0.0140 s
obtaining posterior mode 0.06 s 0.06 s 0.66 s 16.22 s
RWMH (200,000 draws) 132 s 132 s 568 s 2900 s

Bayesian estimation (shocks + model) J
single likelihood evaluation — — 0.056 s 0.227 s
obtaining posterior mode — — 14 s 522 s
RWMH (200,000 draws) — — 11218 s 42564 s

Nonlinear impulse responses J 0.32 s 27.85 s 1.17 s 14.63s

No. of idiosyncratic states 3,500 250,000 3,500 10,500
Time horizon (T) 300 300 300 300
No. of shock parameters in estimation 3 3 6 14
No. of model parameters in estimation 0 0 3 5

Notes. The times given are incremental, with the “req.” column denoting the prerequisite step for each computation. RWMH refers
to Random Walk Metropolis Hastings. Our Krusell-Smith model and its “high-dimensional” (HD) version are described in Section 2.
Our one-asset HANK model is described in Appendix B.2. Our two-asset HANK model is described in Appendix B.3. All calculations
in this paper were performed on a laptop with a 2.6GHz Intel Core i7-10750H processor with six cores.

Carlo methods. Here, a critical benefit of our sequence-space method is that it makes it easy
to reuse Jacobians, especially heterogeneous-agent Jacobians, across multiple computations of the
likelihood function. This dramatically speeds up estimation, especially for the parameters of shock
processes, and also for model parameters that do not affect the steady state.

Finally, we demonstrate how to solve equation (1) nonlinearly by using our sequence-space
Jacobians in a quasi-Newton method. We consider two types of nonlinear transitions: large tem-
porary shocks, and transitions to a new steady state. We show how, for the examples we consider,
sequence-space Jacobians allow convergence to the nonlinear solution in just a few iterations.

Throughout the paper, we apply our methods to three canonical heterogeneous-household
models of increasing complexity: a neoclassical model in the spirit of Krusell and Smith (1998),
a one-asset New Keynesian model in the spirit of McKay, Nakamura and Steinsson (2016), and a
two-asset New Keynesian model in the spirit of Kaplan, Moll and Violante (2018). Table 1 illus-
trates the speeds that our algorithms are able to achieve on a laptop computer.2 For each of our
three models (including a high-dimensional version of the Krusell-Smith model), it takes less than
11 seconds to compute the heterogeneous-agent Jacobians J . Once these Jacobians are known,

2All computations were performed on a laptop with a 2.6GHz Intel Core i7-10750H processor with six cores.
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it is almost immediate to calculate impulse responses. Posterior-mode estimation takes less than
9 minutes for every model, and is, for simpler models, a matter of seconds or milliseconds. A
standard Random Walk Metropolis Hastings algorithm that traces out the posterior distribution
of parameters with 200,000 draws takes less than twelve hours for our most complex, two-asset
HANK model. By contrast, the leading computational techniques existing today find it challeng-
ing to estimate a two-asset HANK model at all.

Related literature. Since the early breakthroughs of Krusell and Smith (1998) and den Haan
(1997), the literature on solution methods for heterogeneous-agent models has grown tremen-
dously. Part of the literature has developed nonlinear methods, which are well-suited to ad-
dress questions that inherently involve higher-order aggregate moments, such as the aggregate
implications of risk premia or volatility shocks.3 However, when it comes to the distribution of
agents, these methods typically require either limited heterogeneity, or “approximate aggrega-
tion” (where only a few moments of the distribution matter for forecasting general equilibrium
dynamics).

Our paper, by contrast, follows Reiter (2009) by linearizing with respect to aggregates but pre-
serving nonlinearities with respect to idiosyncratic shocks. The Reiter method can be used to solve
models that do not feature approximate aggregation, and instead capture the rich interactions be-
tween the distribution of agents and macroeconomic outcomes that are the hallmark of the recent
heterogeneous-agent literature (see, for example, Krueger, Mitman and Perri 2016 and Kaplan and
Violante 2018). Its main limitation is that it involves a linear system that grows with the dimen-
sion of the state space of the heterogeneous-agent model. For many complex models, the Schur
(or equivalent) decomposition required to solve these models becomes too costly. This has led the
literature to turn to “model reduction” methods, which involve approximating the equilibrium
distribution, and sometimes also the value function.4 How accurately these methods match the
solution without model reduction varies depending on the application.5 Our method, by contrast,
solves the unreduced model, leaving all heterogeneity intact.

Boppart, Krusell and Mitman (2018) also propose a sequence-space method that solves the
unreduced model and avoids the need for a large state-space system. They solve nonlinearly for
impulse responses to one-time, unanticipated aggregate shocks (“MIT shocks”); when the shocks
are small, this gives approximately the model’s linear impulse responses. This method, however,
requires some way to solve for nonlinear impulse responses in the first place. Boppart, Krusell
and Mitman (2018) follow the typical approach by iterating over guesses for aggregate sequences,

3See the survey by Algan, Allais, Den Haan and Rendahl (2014) and recent work by Brumm and Scheidegger (2017),
Mertens and Judd (2018), Proehl (2019), and Fernández-Villaverde, Hurtado and Nuño (2019), among many others.

4See, for instance, Reiter (2010), Ahn, Kaplan, Moll, Winberry and Wolf (2018b), Winberry (2018), and Bayer and
Luetticke (2020).

5For instance, Ahn et al. (2018b) show that their model reduction technique works well for a one-asset model, but
that it is more difficult to achieve a good fit for a two-asset model; they are able to reduce the size of the state-space
system for the latter to 2445-by-2445, but further reduction degrades accuracy.
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but there is no general method for updating these guesses, nor any guarantee of convergence.6 By
exploiting linearity instead, we avoid the need for any iteration, achieving the stability and speed
required for advanced applications such as estimation.7

Layout. The rest of the paper proceeds as follows. Section 2 introduces our computational
method with an example. Section 3 provides our fast algorithm for computing the Jacobians of
heterogeneous-agent problems. Section 4 shows how to efficiently combine these Jacobians to
compute general equilibrium impulse responses. Section 5 provides our application to estima-
tion, and section 6 our application to nonlinear transitions. Section 7 concludes.

2 The sequence-space Jacobian: an example

We introduce our methods by means of an example: Krusell and Smith (1998)’s celebrated exten-
sion of the real business cycle model to heterogeneous households. This model is a natural starting
point, since it well-known and there exist many well-established methods for solving it.

We set up the model in the sequence space, that is, assuming perfect foresight with respect
to aggregates. We then show how to use the sequence-space Jacobian to solve for the impulse
response of the model to a total factor productivity (TFP) shock in a fraction of a second.

2.1 Model description

The economy is populated by a mass 1 of heterogeneous households that maximize the time-
separable utility function E

[
∑ βtu (ct)

]
, where u has the standard constant relative risk aversion

form, u (c) = c1−σ

1−σ . There exist ne idiosyncratic states, and in any period t, agents transition be-
tween any two such states e and e′ with exogenous probability P (e, e′). We denote by π the sta-
tionary distribution of P and assume that the mass of agents in each state e is always equal to
π (e).8 Agents supply an exogenous number of hours n, and earn wage income wten, where wt is
the wage per efficient hour. Agents can only trade in capital k, which pays a rental rate rt net of de-
preciation, and are subject to a no-borrowing constraint. The value function of an agent entering

6In section 6, we propose such a method for updating guesses using sequence-space Jacobians. It would be redun-
dant, however, to use this method to obtain linear impulse responses, since we can solve directly for these responses
from the Jacobians.

7We share with all aggregate linearization methods the drawback that the model does not generate risk premia,
portfolio choice is indeterminate, and optimal Ramsey policy is ill-defined. For these applications, higher-order pertur-
bations or global solution methods are more appropriate (see for example Fernández-Villaverde, Rubio-Ramírez and
Schorfheide 2016.)

8In the original Krusell and Smith (1998) model, the transition probabilities depend on the aggregate state, that is, P
takes the form P (e, e′, Zt). Our methods can be applied to this case as well (see the general formulation in appendix A).
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the period in income state e and with capital k− at time t is therefore

Vt (e, k−) = maxc,k u (c) + β ∑
e′

Vt+1
(
e′, k
)

P
(
e, e′
)

s.t. c + k = (1 + rt) k− + wten (2)

k ≥ 0

Denote by c∗t (e, k−) and k∗t (e, k−) the policy functions that solve the Bellman equation (2). Also
denote by Dt (e, K−) ≡ Pr (et = e, kt−1 ∈ K−) the measure of households in state e that own capital
in a set K− at the start of date t. The distribution Dt has law of motion

Dt+1
(
e′, K

)
= ∑

e
Dt

(
e, k∗−1

t (e, K)
)

P
(
e, e′
)

(3)

where k∗−1
t (e, ·) denotes the inverse of k∗t (e, ·). We assume that prior to t = 0, the economy is in a

steady state with constant wage wss and net rental rate rss, corresponding to a steady state of the
general equilibrium economy discussed momentarily. In this steady state, there is a unique value
function and decision rule solving (2), and a unique stationary distribution Dss solving (3). We
suppose that agents start in this stationary distribution at date 0, so that D0 = Dss.

Equation (2) shows that, for any t, the policy k∗t (e, k−) is a function of the future path {rs, ws}s≥t.
Given D0 = Dss, through (3), the distribution Dt (e, K) at any t is a function of the entire path
{rs, ws}s≥0.9 It follows that aggregate household capital holdings are characterized by a capital
function Kt

(
{rs, ws}s≥0

)
, where

Kt
(
{rs, ws}s≥0

)
= ∑

e

∫
k−

k∗t (e, k−) Dt (e, dk−) (4)

The ability to reduce interactions between heterogeneous agents to functions such as Kt, which
map aggregate sequences into aggregate sequences, is key to the sequence-space Jacobian method.
We now combine this Kt function with equations describing production and market-clearing con-
ditions to describe the entire Krusell-Smith economy. Production is carried out by a competitive
representative firm, which has a Cobb-Douglas technology Yt = ZtKα

t−1N1−α
t , rents capital and

labor from workers at rates rt + δ and wt, and faces the sequence of total factor productivity Zt.
The firm’s first-order conditions

rt = αZt

(
Kt−1

Nt

)α−1

− δ (5)

wt = (1− α) Zt

(
Kt−1

Nt

)α

(6)

9This can be shown recursively: given D0 = Dss, D1 is a function of {rs, ws}s≥0, and therefore so is D2, through
its dependence on D1. In section 3, we elicit explicitly the first-order dependence of Dt, k∗t , and Kt on the sequence
{rs, ws}s≥0.
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relate the paths of prices {rt, wt} to the exogenous paths {Zt, Nt = ∑ π (e) en} and the endogenous
path for capital {Kt}. Combining (4)–(6), we can express the capital market clearing condition at
each point in time as a function H,

Ht (K, Z) ≡ Kt

({
αZs

(
Ks−1

∑ π (e) en

)α−1

− δ, (1− α) Zs

(
Ks−1

∑ π (e) en

)α
}

s≥0

)
− Kt = 0 (7)

where K = (K0, K1, . . .)′. Given initial capital K−1 and the exogenous path for productivity, Z =

(Z0, Z1, . . .)′, equation (7) pins down the equilibrium path of capital.

2.2 Impulse responses

Applying the implicit function theorem to (7), the linear impulse response of capital to a transitory
technology shock dZ = (dZ0, dZ1, . . .)′ is given by

dK = −H−1
K HZdZ (8)

where HK and HZ denote the Jacobians of H with respect to K and Z, evaluated at the steady
state. Given dK, the impulse responses of other variables, e.g. {Ys, rs, ws}, follow immediately.
In practice, (8) is solved up to a given (large) horizon T such that K and Z have approximately
returned to steady state by time T.

We use the chain rule to relate the Jacobians HK and HZ to the derivatives of the K function
defined in equation (4), evaluated at the steady state. For example, differentiating equation (7)
with respect to Ks, we find that the t, s entry of HK is

[HK]t,s =
∂Kt

∂rs+1

∂rs+1

∂Ks
+

∂Kt

∂ws+1

∂ws+1

∂Ks
− 1{s=t} (9)

A similar expression applies to HZ. In addition, the derivatives ∂rs+1
∂Ks

, ∂ws+1
∂Ks

, ∂rs+1
∂Zs

and ∂ws+1
∂Zs

at
(Kss, Zss) can all be computed analytically: for example,

∂rs+1

∂Ks
= α (α− 1) Zss

(
Kss

Nss

)α−2

· 1
Nss

Hence, to obtain H−1
K HZ in (8), all we need are the Jacobians of the K function with respect to

its two inputs r and w. The key remaining challenge is to compute these Jacobians. In the next
section, we introduce a fast algorithm for doing so. As table 1 reveals, for a standard calibration of
the Krusell-Smith model detailed in appendix B.1, this algorithm takes 90 milliseconds to calculate
Jacobians of K, truncated to a horizon of 300× 300.10 In a “high-dimensional” calibration that
increases the dimensionality of the state space from 3,500 to 250,000, it still takes less than 11

10This is long enough to accurately compute the solution given the shocks considered in Figure 1. We discuss how to
choose an appropriate truncation horizon in section 4.2.
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Figure 1: Impulse responses of capital to 1% TFP shocks in the Krusell-Smith model

(a) AR(1) shock with persistence ρ
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(b) News shock at time s
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seconds.
Given these Jacobians, the underlying heterogeneity no longer matters: the Jacobians tell us

everything that we need to know, to first order, about the aggregate behavior of the model’s het-
erogeneous agents. This feature of our method is apparent in table 1, where we see that most other
computing times are identical between our two calibrations of the Krusell-Smith model, despite
the large disparity in the size of their underlying state spaces.

Impulse responses and news-shock interpretation. Once we have the Jacobians of K, we can
immediately calculate −H−1

K HZ. Given (8), applying this matrix to any path for dZ delivers the
impulse response dK of capital with a single matrix-vector multiplication. Panel (a) of figure 1
does this for a variety of dZ, representing 1% AR(1) shocks to TFP with different persistences ρ in
our high-dimensional Krusell-Smith model. Note that the same matrix is applied to all these dZ
vectors: once we have computed an impulse response, it is almost costless to compute others.

It is, in particular, immediate to obtain the effect of the “news” at date 0 that TFP will be higher
by 1% at time s, as in panel (b) of figure 1. By definition, the impulse responses to s-period ahead
news are equal to the sth column of the matrix −H−1

K HZ. This “news shock” interpretation of the
columns provides a useful way of understanding their role in the computation of generic impulse
responses. For example, the impulse responses to AR(1) TFP paths of persistence ρ in panel (a)
can be reinterpreted as the effect of the simultaneous news, at date 0, of an increase of ρs in TFP at
times s = 0, 1, . . .

3 Computing Jacobians for heterogeneous-agent problems

In the previous section we established the usefulness of knowing the Jacobians ∂K/∂r and ∂K/∂w
for computing the impulse responses of the Krusell-Smith model. In this section, we generalize the
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K function, to encompass the mapping from inputs to outputs in a broad class of heterogeneous-
agent problems. In this general case, inputs are the aggregates relevant to the decision-making of
individual agents, such as interest rates or wages, while outputs can describe aggregate savings,
consumption, investment, or other decisions by heterogeneous households or firms. We introduce
a fast algorithm, which we call the fake news algorithm, for computing the Jacobian of any output
with respect to any input.

3.1 General model representation

We begin by introducing a generic representation of a heterogeneous-agent problem as a mapping
between a time path of aggregate inputs Xt and a time path of aggregate outputs Yt. Assume that
there are nx inputs and ny outputs, and that the distribution is discretized on ng grid points. Let
Dt be the ng × 1 vector representing the distribution of agents at time t, and suppose that the ag-
gregate outputs of interest are the averages of individual “outcomes” against the distribution, that
is, Yt = y′tDt, with yt denoting the ng × ny matrix of individual outcomes (an outcome can be an
agent’s policy, e.g. consumption, or any other variable of interest defined at the individual level).11

We assume that there exists three functions v, Λ and y such that, for a given initial distribution
D0, Yt is the solution to the system of equations:

vt = v(vt+1, Xt) (10)

Dt+1 = Λ(vt+1, Xt)
′Dt (11)

Yt = y(vt+1, Xt)
′Dt (12)

Here, Xt is the nx × 1 vector of aggregate inputs. Equation (10) expresses how the vector repre-
senting the value function, vt, relates to Xt and to its own value in the next period. Equation (11)
updates the distribution, with Λ(vt+1, Xt) an ng× ng transition matrix representing the discretized
law of motion for this distribution. Finally, equation (12) defines the ny × 1 vector of aggregate
outputs Yt, with the ng × ny matrix of individual outcomes yt defined by y(vt+1, Xt). Later, we
will argue that many heterogeneous-agent models indeed take this form.

For given Xss, the steady state of the model is the fixed point (Yss, vss, Dss) of (10)–(12) that
obtains when Xt = Xss at all times. For convenience, we write Λss ≡ Λ(vss, Xss) and yss ≡
y(vss, Xss). We consider transitions of length T that end at this steady state, so that the terminal
values are XT−1 = Xss, and vT = vss. The initial distribution D0 is given, and our main result
assumes that it is also equal to Dss. Hence, this setting allows us to study transitory shocks around
a steady state.12

Given this setup, (10)–(12) define a mapping from the T× nx stacked vector of inputs X, to the

11As we show in appendix A, it is straightforward to extend our method to include higher order moments, such as
the variance of consumption, among the outputs of interest.

12Section 6 discusses how to solve for nonlinear transition dynamics with arbitrary initial distributions D0, including
the effects of permanent shocks that change the steady state.
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T × ny stacked vector of outputs Y, which we write

Y = h (X) (13)

We assume that the functions v, Λ and y are differentiable around (vss, Xss), so that the function
h is also differentiable around Xss. Our goal is to characterize the Jacobian J of h evaluated at
X = Xss. J represents the aggregate response of heterogeneous agents to perturbations to their
environment at different dates. This Jacobian can be of interest in its own right. But, critically, it is
the key object required to compute the general equilibrium solution.

Example: Krusell and Smith. In the model of section 2, the inputs are Xt = (rt, wt), and one
natural choice for outputs is Yt = (Kt, Ct). The model can be solved with value function iteration.
In this case, vt is the value function Vt in equation (2) at each point on the grid for states (e, k−),
and Dt is the fraction of agents at time t at each point on this grid. Given vt+1 and Xt, the solution
to (2) involves a maximized value function vt—equation (10)—and a policy function kt. We use
the Young (2010) lottery method to convert this policy into a transition matrix on the grid, and
compose this with the process for e to obtain the full transition matrix Λ′t from current states
(e, k−) to next-period states (e′, k)—equation (11). Finally, aggregate capital and consumption
are obtained by taking the dot product of the policies kt and ct with the distribution Dt: this is
equation (12), with yt ≡ (kt, ct).

An alternative approach, which is typically faster and more accurate in practice, is to use the
Euler equation, as in Carroll (2006). In this approach, vt is the derivative of the value function ∂Vt

∂k−
at each point on the grid for (e, k−). The Euler equation maps vt+1 and Xt to optimal capital and
consumption policies kt and ct, and the envelope theorem implies vt = (1 + rt) u′ (ct). Combining
these, we obtain equation (10). Again, combining kt with the exogenous law of motion for the
state e delivers Λ in equation (11), and yt ≡ (kt, ct) aggregates individual policies into Kt and Ct

in equation (12).
Beyond this example, many other heterogeneous-agent problems can also be cast into the

framework of equations (10)–(12). The scope and limitations of our framework will become clearer
after we have presented our algorithm, so we postpone this discussion to the end of the next sec-
tion.

3.2 Fake news algorithm

In this section, we provide a fast algorithm for computing J , which we call the “fake news”
algorithm. We start with two preliminaries: notational conventions, and a direct method for com-
puting J that will serve as a benchmark for our algorithm.

Notation. To present our algorithm in an intuitive manner, we start by assuming that there is
only one input and one output, nx = ny = 1, and later generalize to any nx and ny. Define the
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T × 1 vector es to have 0’s everywhere except at the sth entry, where it has a 1. For a given dx,
we say there is a “shock at time s” when the T × 1 input vector is given by Xs ≡ Xss + esdx. Let
vs

t , Ds
t , and Ys

t denote the solution to equations (10)–(12) given Xs. Also, let Λs
t ≡ Λ(vs

t+1, Xs
t )

denote the transition matrix between states at time t, and ys
t ≡ y(vs

t+1, Xs
t ) denote the outcome

function at time t, in response to the shock at time s. Finally, denote with a d the difference of all
objects relative their steady state level, so that dYs

t ≡ Ys
t −Yss, dys

t ≡ ys
t − yss, dΛs

t ≡ Λs
t −Λss, and

dDs
t ≡ Ds

t −Dss. The sth column of the Jacobian J is then the limit of dYs

dx as dx → 0.

Direct method. A direct method for computing the sth column of the Jacobian using one-sided
numerical differentiation is as follows. First, starting with a small shock dx at time s, iterate (10)
backward, starting with vT = vss, and compute the value function vs

t , the transition matrix Λs
t , and

individual policies ys
t , for t = T− 1, . . . , 0. Second, iterate (11) forward, starting with D0 = Dss, to

solve recursively for the distributions Ds
t for t = 1, . . . , T − 1, by applying the transition matrices

Λs
t . Next, for each t, take the distribution-weighted sum (ys

t)
′Ds

t of individual policies to obtain
Ys

t in (12). Finally, form Jt,s = dYs
t /dx = (Ys

t − Yss)/dx. To obtain the entire Jacobian J , repeat
this process T times, once for each s. This is costly in practical applications, since T is typically at
least equal to 300.

Structure of Jacobian J . We now turn to our algorithm, which relies on several results about
the structure of the Jacobian J . The key is to recognize that the columns of J are closely related.
Using our s superscript notation, equation (12) defines the output at time t in response to the shock
at time s as

Ys
t = (ys

t)
′Ds

t (14)

and (11) defines the distribution at time t + 1 given the shock at time s as

Ds
t+1 = (Λs

t)
′Ds

t (15)

We first show how to efficiently obtain the policy functions ys
t and transition matrices Λs

t . This
makes use of the following implication of dynamic programming.

Lemma 1. For any s ≥ 1, t ≥ 1, we have:

ys
t =

yss s < t

yT−1
T−1−(s−t) s ≥ t

and Λs
t =

Λss s < t

ΛT−1
T−1−(s−t) s ≥ t

(16)

Lemma 1 follows immediately from the recursive structure of equation (10) and the definition
of ys

t and Λs
t . The intuition is that agents only care about the distance to the shock s− t, rather than

calendar time t and s separately, when deciding on their own behavior. For instance, the response
of their consumption policy at time t to any shock at time t + 1 is the same as the response of their
consumption policy at time 0 to the same shock at time 1.

12



By implication, we can compute all policies ys
t from a single perturbation of the input at date

s = T − 1. The same argument applies to the transition matrices Λs
t . Lemma 1 therefore suggests

an immediate improvement to the direct algorithm for computing the Jacobian: replace the T
backward iterations by a single backward iteration starting from a shock at date T − 1. This is
enough to deliver all policy functions ys

t and Λs
t for all shock dates s and all t. Observe that this

result is true nonlinearly, i.e. irrespective of the size of dx.
Our next result speeds up the algorithm even further, for the case in which the transition begins

and ends at the same steady state (D0 = Dss) and the shock dx is infinitesimal. The result concerns
aggregate outcomes Ys

t . For any s ≥ 1, t ≥ 1, we define

Ft,s · dx ≡ dYs
t − dYs−1

t−1 (17)

as the difference between the aggregate response of the output at t to a shock at date s, and its
response at t − 1 to a shock at date s − 1. Since equation (16) implies that dys

t = dys−1
t−1 for all

s, t ≥ 1, one might conjecture that Ft,s is identically zero. But this conjecture is not quite right,
since the distribution in equation (14) is also changing over time. The next lemma characterizes
Ft,s.

Lemma 2. Assume that D0 = Dss. For infinitesimal dx, and any s ≥ 1, t ≥ 1, we have:

Ft,s · dx = y′ss
(
Λ′ss
)t−1 dDs

1 (18)

Proof. First, since D0 = Dss, in the absence of any shock (dx = 0) we have Yt = Yss, ys
t = yss and

Ds
t = Dss for all t. Since y and Λ are differentiable, in the limit as dx → 0, equation (14) implies

dYs
t = y′ssdDs

t + (dys
t)
′Dss (19)

Subtracting dYs
t and dYs−1

t−1 and using the fact that equation (16) implies dys
t = dys−1

t−1 , we obtain

Ft,s · dx = y′ss

(
dDs

t − dDs−1
t−1

)
(20)

Next, in the limit as dx → 0, equation (15) implies both

dDs
t = Λ′ssdDs

t−1 + (dΛs
t−1)

′Dss (21)

and
dDs−1

t−1 = Λ′ssdDs−1
t−2 +

(
dΛs−1

t−2

)′
Dss

Subtracting and using the fact that equation (16) implies dΛs
t−1 = dΛs−1

t−2 , we therefore finally have

13



simply

dDs
t − dDs−1

t−1 = Λ′ss

(
dDs

t−1 − dDs−1
t−2

)
=

(
Λ′ss
)2
(

dDs
t−2 − dDs−1

t−3

)
...

=
(
Λ′ss
)t−1 dDs

1 (22)

where the last line follows because, given that D0 = Dss, we have dDs−1
0 = 0 for all s ≥ 1.

The intuition for equation (18) is as follows. Suppose that we know the path of the aggregate
output Yt at all dates t = 0 . . . T − 1 in response to a shock at date s− 1. How does this compare
to the path of Yt in response to a shock at date s, from date t = 1 onwards? From lemma 1, the
behavior of agents at all dates is identical in both cases. Therefore, the only difference is that the
initial distribution in the second case is Ds

1 rather than Dss. To first order, this difference in initial
distribution affects aggregates at all dates as if agents followed their steady state behavior, which
is what equation (18) expresses.

For a given s, Ft,s can be interpreted as the impulse response to a “date-s fake news shock”:
a shock to date s announced at date 0, and retracted at date 1.13 At date 0, agents react to the
announcement, which leads to the distribution Ds

1. After the announcement is retracted, they
revert to steady-state policies, so the effect on output at all dates t ≥ 1 is y′ss · (Λ′ss)

t−1 dDs
1. This

expression can usefully be rewritten with the help of the following definition.

Definition 1. The expectation vector for outcome Y at time t is defined by

Et ≡ (Λss)
t yss (23)

For each grid point, the time path of Et represents the expected time path of outcome Y, in the
steady state, for an agent starting at that grid point.14 Equation (18) then reads Ft,s · dx = E ′t−1dDs

1.

We can now use lemmas 1 and 2 to arrive at the following proposition.

Proposition 1. Assume that D0 = Dss. For infinitesimal dx, define the (t, s)-th element of the fake news
matrix F as

Ft,s · dx ≡

dYs
0 t = 0

E ′t−1dDs
1 t ≥ 1

(24)

13This information structure is the same as that used by Christiano, Ilut, Motto and Rostagno (2010) to generate
a boom-bust episode in response a shock to productivity that later turns out not to happen. In our case, the “fake
news” shock for date s is unlearned at date 1. It is also related, though not formally equivalent, to the “noise shocks”
considered in the belief-driven business cycle literature literature (e.g. Lorenzoni 2009.)

14In the literature on control theory, the matrix with rows E ′0, E ′1, . . . is sometimes called the observability matrix. This
concept is also used by Reiter (2010) and Ahn et al. (2018b).
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where dYs
0 = (dys

0)
′Dss and dDs

1 = (dΛs
0)
′Dss. Then, the Jacobian J of h satisfies the recursion Jt,s =

Jt−1,s−1 +Ft,s for t, s ≥ 1, with Jt,s = Ft,s for t = 0 or s = 0, and is therefore given by

Jt,s =
min{s,t}

∑
k=0

Ft−k,s−k (25)

Proof. When t, s ≥ 1, the recursion immediately follows from lemma 1. When t = 0, Jt,s · dx =

Ft,s · dx = dYs
0 by definition.

Finally, when s = 0 and t ≥ 1, lemma 1 implies that dy0
t = 0, and by equation (19), we have

Jt,0 · dx = dY0
t = y′ssdD0

t . Since dΛ0
t = 0 for all t ≥ 1, using (21) we can write Jt,0 · dx = y′ssdD0

t =

y′ssΛ′ssdD0
t−1 = · · · = y′ss(Λ′ss)

t−1dD0
1 = E ′t−1dD0

1, which is Ft,0 · dx in (24).

Proposition 1 characterizes the first-order aggregate response of heterogeneous agents to changes
in their environment at any date s, as a function of only dYs

0 (the aggregate initial response to shocks
at date s), dDs

1 (the response of the distribution at date 1 to shocks at date s), and the expectation
vectors Et which can be obtained from the stationary solution. The intuition goes back to lemmas
1 and 2: since policy functions only depend on the distance to the shock, and since the steady
state expectation vectors Et give information about the behavior of aggregates after shocks to the
initial distribution, it is possible to project the effect at any date t from knowledge of the effects of
future shocks on aggregates and distributions at date 0. The expectation vectors, in turn, are easy
to compute thanks to the following observation.

Lemma 3. The expectation vectors defined in (23) solve the recursion Et = ΛssEt−1, with E0 = yss.

Algorithm for a single input and output. Proposition 1 and lemma 3 inspire our fast “fake
news” algorithm. When implemented with one-sided numerical differentiation, given a small
dx > 0, the algorithm consists of four steps:

1. Calculate ys
0 and Λs

0 for each s using a single backward iteration from time T− 1. Combining
these with the initial steady state distribution, form two key objects: the T scalars Ys defined
by Ysdx ≡ dYs

0 = (dys
0)
′Dss, representing the effect on the output at date 0 from the shock

to the input at date s; and the T ng × 1-vectors Dsdx ≡ dDs
1 = (dΛs

0)
′Dss, giving the change

in the distribution at date 1 from the shock at date s.15

2. Calculate the T − 1 ng × 1 expectation vectors Et ≡ (Λss)
t yss, using the recursion from

lemma 3.

3. Combine results from the previous two steps to form the fake news matrix F from propo-
sition 1. The first row (t = 0) of this matrix contains the Y ’ s from step 1, and other rows

15In practice, it is usually more accurate to compute the differences dys
0 and dΛs

0 by subtracting “ghost runs” rather
than steady states. That is, compute ys

0 as described for some small dx > 0. Repeat the same procedure with dx = 0 to
get ỹs

0. Set dys
0 = ys

0 − ỹs
0. This procedure is more accurate than subtracting steady state values whenever those have

not fully converged, i.e. whenever ỹs
0 6= yss. Do the same for dΛs

0. See appendix C.1 for more details on this and other
ways to manage numerical error.

15



(t ≥ 1) contain the product E ′t−1Ds from steps 1 and 2:

F =



Y0 Y1 Y2 · · · YT−1

E ′0D0 E ′0D1 E ′0D2 E ′0DT−1

E ′1D0 E ′1D1 E ′1D2 E ′1DT−1
...

...
...

...
E ′T−2D0 E ′T−2D1 E ′T−2D2 · · · E ′T−2DT−1


(26)

4. Using proposition 1, build up the Jacobian Jt,s = Jt−1,s−1 + Ft,s recursively from its first
row and first column. By equation (25), the element (t, s) of the Jacobian J is the sum of the
(t, s) element of the F matrix and of all the elements on the diagonal to its immediate upper
left in (26). For instance, we have J2,2 = E ′1D2 + E ′0D1 + Y0.

At this stage it is clear why this algorithm achieves significantly higher speed than the direct
method for computing the Jacobian: it requires only the computation of the primitive objects Yt

and Dt, which can be obtained with one backward iteration starting from a shock at T − 1, and of
Et, which can be obtained by recursive application of the steady-state transition matrix, starting
with the vector yss of steady-state outcomes.

Example: Krusell and Smith. Panel (a) of figure 2 displays several columns of the Jacobian
J K,r for the Krusell-Smith model of section 2. By the news shock interpretation, these columns
represent the time path of aggregate capital accumulation {Kt} when households learn at date 0
about an increase in the rental rate rs at various dates s.

When the shock takes place at date 0, households are surprised by a higher return on existing
assets. They save some of this additional return (a standard wealth effect), accumulating assets
that they later progressively decumulate. When the shock takes place at later dates s > 0, house-
holds also have an intertemporal substitution response, which leads them to save in anticipation
of the increase in r. This generates a “tent” pattern in the Jacobian J .

Proposition 1 shows that the columns of J reflect the accumulation of terms from the fake
news matrix F . The columns of that matrix are depicted in panels (b) and (c). The first column
of J is the same as that of F . By contrast, the other columns of J are a combination of a shifted-
down version of the first column of F and of its other columns F·s for s > 0. By the “fake news”
interpretation, these columns represent the behavior of aggregate assets when households first
save at date 0 in anticipation of an increase in r at date s, and then dissave after the announcement
is retracted at date 1.

One striking feature of the columns of the Jacobian J is that they converge to a regular pattern
around the main diagonal: the s = 50 impulse response around t = 50 is almost the same as the
s = 75 and s = 100 impulse responses around t = 75 and t = 100. In other words, if the shock
is anticipated far enough in advance, all impulse responses are just shifted versions of each other.
This reflects the fact that Ft,s goes to zero both for high t (the effect of date-0 behavior through the
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Figure 2: Jacobian J K,r and fake news matrix FK,r in the Krusell-Smith model.
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distribution dies away) and for high s (the effect of far-out shocks on date-0 behavior dies away),
so that Jt,s ≈ Jt−1,s−1 for high t and s.16

Generalization to many inputs and outputs. In the general case in which the h function has
multiple inputs i and outputs o, the algorithm above is straightforward to apply separately for
each i and o. However, some further speed gain can be achieved by observing that certain objects
can be reused several times. Specifically, the Ds depend only on the input shock dXi, so they only
need to be computed once per input and can be written as Di

s. Moreover, the Et defined in step 2
depend only on the output of interest dYo, so they only need to be computed once per output and
can be written as E o

t . By contrast, the Ys defined in step 1 depend on both the input shock dXi and
the output of interest dYo. They are computed by doing a backward iteration in response to each
input shock i, and then taking the aggregate response of each o for each s. This delivers a Y o,i

s for
each o and i. The F o,i matrix can then be computed as in equation (26), but with Y o,i in the first
row, and the products (E o

t )
′Di

s in the other rows t, s.

Implementation and accuracy. We suggested implementing our algorithm with one-sided nu-
merical differentiation. This is simple in practice, but introduces small errors from the differentia-
tion procedure. In appendix C.1 we discuss alternatives, including two-sided numerical differen-
tiation, which reduces error, and automatic differentiation, which eliminates it.

In appendix D.1, we evaluate the errors when computing the Jacobian J K,r in figure 2. We use
as a benchmark the Jacobian that results from the direct method with automatic differentiation.

The conclusions from this exercise are as follows. First, under automatic differentiation, the di-
rect and the fake news method deliver exactly the same Jacobian, to near-machine precision. This
verifies Proposition 1. Second, two-sided numerical differentiation is always more accurate than
one-sided numerical differentiation, closing the gap with the automatic differentiation solution by
one to two orders of magnitude. Third, when implemented with numerical differentiation, the
fake news method is typically more accurate than the direct method. In all cases, the errors are

16This “asymptotic time invariance” property is a general feature of the Jacobians of heterogeneous-agent problems.
A previous version of this paper (Auclert, Bardóczy, Rognlie and Straub 2019) provided a formal proof.
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Table 2: Direct and fake news algorithms to compute 300× 300 Jacobians J .

Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Direct 21 s 2102 s 156 s 956 s
step 1 (backward) 13 s 1302 s 132 s 846 s
step 2 (forward) 8 s 800 s 24 s 111 s

Fake news 0.086 s 10.467 s 0.317 s 3.498 s
step 1 0.060 s 8.654 s 0.236 s 3.159 s
step 2 0.011 s 1.061 s 0.022 s 0.119 s
step 3 0.011 s 0.758 s 0.045 s 0.201 s
step 4 0.003 s 0.003 s 0.014 s 0.018 s

Grid points ng 3,500 250,000 3,500 10,500
Inputs nx 2 2 4 5
Outputs ny 2 2 4 4
Jacobians nx × ny 4 4 16 20

small, less than 0.01% of the peak response.

Efficiency. Table 2 displays the time it takes to compute J s for the heterogeneous-agent block
of each of our three benchmark models: the Krusell-Smith model already introduced, a one-asset
HANK model with endogenous labor described in appendix B.2, and a two-asset HANK model
described in appendix B.3. We report the times with one-sided numerical differentiation. The
speed-up from using the fake news rather than the direct algorithm is very large in all cases: a
factor of over 200 for all models.

What is the source of the large efficiency gain? When there are nx inputs and ny outputs, the
direct algorithm discussed at the top of this section requires nxT2 backward “steps” and nxT2

forward “steps”. By contrast, the fake news algorithm requires nxT backward steps and ny(T− 1)
applications of the matrix Λss to construct the expectation vectors Et, reducing computational
effort in steps 1 and 2 by a factor of around T, which in our application is T = 300.17,18

Jacobians as sufficient statistics for the heterogeneous-agent problem. Since the Jacobians J
locally describe the mapping Y = h(X), they are all that is needed to capture the local behavior
of the heterogeneous-agent problem. This observation implies that all of the complexity intro-
duced by heterogeneity in any given model boils down entirely to the Jacobian of the resulting

17The computation of expectation vectors in step 2 takes far less time than the backward iteration in step 1, especially
for the more complex models, because it only requires repeatedly multiplying by Λss—which can be split into multipli-
cation by a small transition matrix for the exogenous state, and multiplication by a highly sparse matrix with policies
for endogenous states, both of which we implement efficiently.

18There are two additional steps required for the fast algorithm, steps 3 and 4. Step 3 involves the multiplication
of T × ng and ng × T matrices, which has a cost proportional to ngT2 for each input-output pair—but since matrix
multiplication is implemented extremely efficiently by standard numerical libraries, this is less of a bottleneck overall
than the backward iteration in step 1, especially for models like the two-asset HANK where backward iteration is
especially complex. Step 4 is even faster, since it is a simple recursion on T × T matrices.
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heterogeneous-agent problem. This facilitates the analysis of the importance of heterogeneity for
general equilibrium, and the connection of models to the data. For example, in simple general
equilibrium models, the Jacobian of aggregate consumption with respect to income J C,y is all that
is needed for general equilibrium (Auclert, Rognlie and Straub 2018).

Scope and limitations. In addition to the Krusell-Smith model, the two other models we con-
sider in this paper fit into the framework of equations (10)–(12), so that the fake news algorithm
applies to them directly. Our one-asset HANK model features a multidimensional choice over
both labor and asset policies. Our two-asset HANK model features two endogenous states, a
liquid and an illiquid asset.

A number of other models can also be directly cast into the framework of equations (10)–(12).
This includes models where the inputs X matter directly for the transition rate between employ-
ment states (as in Gornemann, Kuester and Nakajima 2016), and models where higher-order mo-
ments of the distribution of agents are relevant as an output Y (such as the variance of consump-
tion or a CES price index). It also includes models where some non-grid-based representation of
the value function, such as Chebyshev polynomials, is used. Appendix A.1 covers these direct
applications.

Other models require a slightly more general framework than (10)–(12). This includes models
where the distribution of agent features entry and exit (e.g. Hopenhayn 1992 and simple over-
lapping generations models), or models where a nonlinear function of the distribution, such as
the uth quantile function, is relevant. It also includes models where the distribution is represented
parametrically, as in Algan, Allais and Den Haan (2010). Appendix A.2 covers these more complex
applications, which require a modification of Proposition 1, after which the fake news algorithm
continues to apply.

Appendix A also covers how to approach models featuring discrete choice: for example, over
the extensive margin of labor supply (e.g. Chang and Kim 2007), or over resetting a price or
investing in the presence of fixed costs (Golosov and Lucas 2007, Khan and Thomas 2008). These
fit into our original framework when taste shocks smooth out the discrete choice (appendix A.1),
and into our extended framework in other cases (appendix A.2). Since these decision problems
are often naturally posed in multiple stages, in appendix A.3 we further extend our framework to
accommodate multiple stages within each period.

Our extended framework in appendix A allows for very general equations governing the dis-
tribution Dt and aggregate outputs Yt. An important limitation, however, is that it does not
change the structure of equation (10): in particular, the value function vt is not allowed to depend
on Dt. This prevents us from applying the fake news algorithm when the behavior of hetero-
geneous agents depends on the anticipated future distribution through the value function, in a
way that cannot be intermediated via aggregates Xt in general equilibrium. This includes, for in-
stance, OLG models with an endogenous distribution of bequests that are received in mid-life (e.g.
de Nardi 2004, Straub 2017), labor-search models with wage posting or individual bargaining (e.g.
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Burdett and Mortensen 1998, Postel-Vinay and Robin 2002), and money-search models where the
anticipated distribution of cash balances matters directly for agent decisions (e.g. Molico 2006).19

4 General equilibrium impulse responses

A typical general equilibrium heterogeneous-agent model consists of one or more heterogeneous-
agent problems of the type described above, as well as additional sets of equations that govern
production, market clearing, and so on. In this section, we explain how to solve for general equi-
librium impulse responses once the Jacobians of the underlying heterogeneous-agent problem(s)
are known.

4.1 General equilibrium in the sequence space

A general equilibrium model in the sequence space is characterized by a system of nonlinear
equations

F(X, Z) = 0 (27)

where Z denotes the path of exogenous “shocks”, with Zt an nz× 1 vector at each t, and X denotes
the path of endogenous variables, with Xt an nx × 1 vector at each t. We assume that the model
has as many equations as endogenous variables, and that it is locally determinate, i.e. that F is
invertible near the steady state (Xss, Zss). Then, equation (27) truncated to a horizon of T is a
nonlinear system of nx × T equations in nx × T endogenous variables, which delivers the general
equilibrium impulse response to any change dZ in the path of Z relative to Zss.

We solve for the impulse responses of the model to first order around the steady state. By the
implicit function theorem, the response of endogenous variables dX to the shock dZ is given by

dX = −F−1
X FZdZ ≡ GdZ (28)

where the Jacobians FX and FZ are evaluated at (Xss, Zss), and we define G as the linear map from
shocks dZ to general equilibrium impulse responses dX.

Reducing dimensionality with variable substitution. One difficulty with writing models in the
form (27) is that the dimensionality can grow large enough that solving the linear system becomes
a bottleneck. Quantitative DSGE models often have dozens of endogenous variables, which with
T = 500 implies that F and X can have dimension 10,000 or higher.

In applications, it is common to reduce dimensionality by explicitly solving for some variables
in terms of others. Suppose that F is separated into F1 and F2, and that F2(X, Z) = 0 can be
solved in closed form to obtain X as a function of some smaller vector U of nu < nx unknowns:

19Sequence-space Jacobians may nevertheless be useful in solving some versions of these models, as recently demon-
strated by Fukui (2020) (in a wage-posting model) and Alves (2020) (in a sequential auction framework).
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Figure 3: DAG representation of Krusell-Smith economy
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X = M(U, Z). Substituting M into F1, and defining H(U, Z) ≡ F1(M(U, Z), Z), we can rewrite
(27) as the reduced system

H(U, Z) = 0 (29)

For instance, for the Krusell-Smith model from section 2, Xt includes capital Kt, returns rt, and
wages wt, and F includes asset market equilibrium and the factor demand equations. But we
solve out the factor demand equations to write rt and wt in terms of Kt−1 and Zt in (5) and (6),
and writing this solution as the function M, we are left with Ut = Kt, and an H that includes only
asset market equilibrium.

We use the implicit function theorem to solve for dX in two steps:

dU = −H−1
U HZdZ (30)

dX = MUdU + MZdZ = GdZ (31)

When the number of unknowns nu is much smaller than number of endogenous variables nx, this
is much more efficient than applying the implicit function theorem directly to F.

Calculating Jacobians of H and M. To implement (30) and (31), we need the Jacobians of H and
M. In a heterogeneous-agent model, these functions will include the aggregate actions of agents,
for which we can compute the relevant Jacobians using the fake news algorithm from section 3.
We can then combine these Jacobians with the rest of the model using the chain rule.

In models where H and M are sufficiently complex, it is helpful to obtain their Jacobians with
a more automated approach, rather than applying the chain rule manually as we did in section
2. In appendix C.2, we describe how to build up H and M as the directed acyclical graph (DAG)
of smaller blocks, and in appendix C.3 we show how to compose the Jacobians of these blocks
to efficiently obtain the Jacobians of the model. This modular approach allows us to efficiently
handle models with a large number of aggregate equilibrium conditions, such as the two-asset
model in appendix B.3, and we use it to solve all the models in this paper. For instance, figure 3
shows the DAG representation of the Krusell-Smith model.

Another possibility is to use an off-the-shelf automatic differentiation package. However, di-
rectly using such a package on the entire functions H and M, including the parts that deal with
heterogeneous agents, fails to take advantage of the special structure of heterogeneous-agent Ja-
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cobians, and can therefore be quite costly.20 It is far more efficient to use the fake news algorithm
to compute Jacobians for the heterogeneous-agent part of the problem, and then supply these
Jacobians to the package.

Finally, a simple (but less accurate) option is to numerically differentiate H and M. As with
automatic differentiation, a direct application of numerical differentiation is inefficient, but can be
made much faster by replacing the heterogeneous-agent parts of these functions with linearized
counterparts obtained using the fake news algorithm.21

4.2 Numerical accuracy: equivalence to the Reiter method

We now establish that our implementation of the sequence-space Jacobian (“SSJ”) method is accu-
rate by comparing the solution it produces to that obtained using the Reiter method.

In principle, the two methods should give the same solution, i.e. the first-order solution of
the model in aggregates. Indeed, they are both intended to solve to first order the same system
of equations, which includes (10)-(12) and additional equations in (27). There are, however, two
potential concerns to rule out. First, both our method and Reiter—like all first-order perturbation
methods—are subject to error when computing derivatives. Second, rather than solving the true
infinite-dimensional system in sequence space, our method truncates sequence-space Jacobians at
some high T.22

To verify accuracy, we choose as our benchmark the Reiter method with automatic differentia-
tion. Automatic differentiation, unlike numerical differentiation, ensures that there is no approx-
imation error when computing derivatives. We then show that the SSJ method—with the same
parameterization on the same grid and T = 300, and the fake news algorithm implemented using
automatic differentiation—delivers identical impulse responses to Reiter, and that its state-space
law of motion is also identical.23 We find that the SSJ method with numerical differentiation deliv-
ers larger but still relatively minor errors. We finally discuss practical considerations in choosing
T.

As is well known, the main bottleneck of the Reiter method is that it cannot be used directly
with large idiosyncratic state spaces without model reduction (the method scales in the cube of
the size of the idiosyncratic state space). For this reason, we restrict our comparison to the Krusell-
Smith model and the one-asset HANK model, each computed on a small grid of ng = 300 points

20See Ahn, Moll and Schaab (2018a) for an example of directly applying automatic differentiation to the entire H and
M. Effectively, the computer then follows an approach resembling the direct method discussed in section 3.1. See also
Childers (2018) for an application of automatic differentiation to heterogeneous-agent models.

21For instance, in the Krusell-Smith model, one would rewrite household asset demand as K − Kss = J K,w ·
(w− wss) + J K,r · (r− rss), using the Jacobians J K,w and J K,r calculated with the fake news algorithm.

22Recall from equations (10)–(12) that we take as given a discretized model, which we take to be the “true” model.
We compare the solution to the Reiter method applied to the same discretized model. If the “true” model is continuous
instead, getting to the discretized model in the first place involves some error, but this does not affect the comparison
here.

23Note that this usage of automatic differentiation in the backward iteration of the fake news algorithm, which is
discussed in section 3.2, is distinct from the usage of automatic differentiation discussed in section 4.1: the former is to
obtain error-free derivatives of v, Λ, and y in (10)–(12), while the latter is to obtain derivatives of H.
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Figure 4: Equivalence between the SSJ and the Reiter (2009) methods.

Krusell-Smith model

(a) Impulse responses of capital across methods
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(b) Differences to Reiter (2009)
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One-asset HANK model

(c) Impulse responses of output across methods

0 20 40 60 80
Time t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
de

vi
at

io
n

fr
om

ss

Reiter
SSJ with 1-sided num. diff.
SSJ with 2-sided num. diff.
SSJ with auto. diff.

(d) Differences to Reiter (2009)
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(100 asset grid points and 3 income states). We describe our implementation of the Reiter method
in appendix C.6.

Preliminaries: benchmark representative-agent models. Before proceeding, we first check that
our implementation of the SSJ method is accurate for models without heterogeneity. We verify that
the linear impulse responses of output to all shocks in the Smets and Wouters (2007) model and in
the Herbst and Schorfheide (2015) model—two benchmark models used extensively for estimation
in the literature—are identical, to within 5 and 14 digits respectively, to those obtained using the
first-order solution from Dynare, which uses standard state-space methods for computation.24

24Impulse responses and numerical errors are plotted in appendix E.5.
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Accuracy of impulse responses. Figure 4 compares the impulse responses from the Reiter method
with automatic differentiation, and the impulse responses produced by our SSJ method using the
three types of differentiation discussed in section 3.2. All panels compute impulse responses to a
1% TFP shock with persistence ρ = 0.9, and the SSJ truncation horizon is chosen at T = 300. The
top panels show the impulse response of capital in the Krusell-Smith model. The bottom panels
show the impulse response of output in the one-asset HANK model. Panels (a) and (c) plot the
impulse responses in levels using all four methods. The impulse responses look visually identi-
cal. To get a sense of the differences, panels (b) and (d) plot the absolute value of the differences
between the lines in the left panel and the Reiter solution at each t. When solved with automatic
differentiation, our method yields essentially the same result as the Reiter solution with automatic
differentiation, up to ten digits of accuracy. Applying our method with numerical differentiation
predictably introduces a small error, comparable to the errors typically found when implementing
the Reiter method with numerical differentiation. Despite this error already being small, one can
reduce it significantly at just twice the computational cost by using two-sided numerical differen-
tiation. This is important because two-sided numerical differentiation is often easier to implement
than automatic differentiation in practice.

Accuracy of the state-space law of motion. While comparison of individual impulse responses
is a useful proof of accuracy, a more definitive test is to verify that the state-space laws of mo-
tion are identical. In appendix C.7, we show how to recover the state-space law of motion from
our sequence-space solution, by using some of the intermediate outputs of the fake news algo-
rithm. Using this method, we compute the matrices describing the state-space law of motion in
the Krusell-Smith model and the one-asset HANK model (with automatic differentiation), and
we compare these matrices to those from the Reiter method. We find that the sup norm of the
difference between these matrices is below 10−8 for both models.

Choice of truncation horizon T. We have established that our method, for large enough T, de-
livers the same solution as the Reiter method. In practice, however, a separate computation via
the Reiter method is usually not available as a benchmark. In these cases, how can one ensure
that T is, in fact, high enough? To answer this question, we now examine the sensitivity of the
sequence-space solution to T.

We take as our benchmark the sequence space solution with a very large T (T = 1000), well
above the horizon required to achieve agreement with the Reiter method in our previous exercise.
We then see how the impulse response in the first 100 periods differs from this benchmark as we
reduce T. Throughout, we compute Jacobians with one-sided numerical differentiation, since it is
the easiest and most commonly used in practice.

Figure 5 performs this exercise for our three models, each in response to a 1% shock to TFP
with persistence ρ. In the left panel, ρ = 0.9. We see that even for truncation horizons T far shorter
than the T = 300 used in this paper, the RMSE of the output impulse response dY/Yss is near
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Figure 5: Impulse response error (relative to T = 1000) as a function of the truncation horizon T

(a) TFP persistence ρ = 0.9
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(b) TFP persistence ρ = 0.99
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zero in both the Krusell-Smith and one-asset HANK models. The two-asset HANK model, on the
other hand, only achieves five digits of accuracy by T = 300. This is because that model has much
greater internal persistence: the magnitude of the underlying output impulse response at t = 300
is above 10−4%, while it is below 10−9% for the two other models. (By that point, the shock itself
is below 10−13%.)

The right panel looks at a more extreme case, with ρ = 0.99. Here, the shock at t = 300
remains at 5% of its level on impact. Now the two-asset HANK model achieves less than 3 digits
of accuracy even with T = 300, and about 5 digits of accuracy with T = 500. This indicates the
importance of a high T when dealing with highly persistent shocks, especially in models with
high internal persistence.25

Overall, to be sure that the truncation horizon is long enough, it is most important to ensure
that both the shock itself and the endogenous impulse response—which may feature some internal
persistence—are near zero by T. An additional check is to make sure that changing T to a higher
value does not change the impulse response: as figure 5 indicates, when T is not yet high enough to
deliver accuracy, the results are sensitive to changes in T. These two simple checks ensure that one
has minimized truncation error, leaving numerical differentiation as the only possible remaining
source of error relative to the true first-order solution of the model in aggregates.

25Interestingly, the error in the first 100 periods in the other two models is below 10−9 with T = 300, in spite of the
shock’s persistence. Of course, there is still error near t = 300, as is inevitable when the shock has not died out by the
truncation horizon, but this error does not propagate backward in these models to nearly the same extent. This lack
of backward propagation is related to the weaker internal persistence in these models relative to the two-asset HANK
model.
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5 Application to estimation

We now discuss how to use the sequence-space Jacobian method to estimate models on time-series
data. This application uses the equivalence of impulse responses with the moving-average (MA)
representation of the model with aggregate shocks. This equivalence, in turn, follows immediately
from the certainty equivalence property of first-order perturbation methods such as ours (see e.g.
Simon 1956, Theil 1957, Judd and Guu 1993, and Boppart, Krusell and Mitman 2018).

We assume that the exogenous shocks follow independent moving-average processes, i.e. the
vector-valued stochastic process dZ̃ is given by

dZ̃t =
∞

∑
s=0

dZsεt−s (32)

where εt is an nz vector of mutually iid standard normally distributed innovations, and {dZt+s}s

are the impulse responses to a unit innovation to εt.
Equation (28) tells us that the impulse responses of endogenous variables dX can be obtained

by simple matrix multiplication of the impulse of shocks dZ with the general equilibrium Jacobian
G. Certainty equivalence then implies that the stochastic process dX̃ follows the moving-average
process

dX̃t =
T−1

∑
s=0

dXsεt−s (33)

The rapid computation of this MA(T − 1) representation is the foundation of our applications in
this section, which will build up to likelihood-based estimation of our three models.

5.1 Simulation

As pointed out by Boppart, Krusell and Mitman (2018), the formulation in equation (33) is useful to
simulate sample paths for aggregate variables generated by any model, including a heterogeneous-
agent model. Assume impulse responses dX have been computed with truncation horizon T.
Then, a procedure to simulate a random sample path of dX̃ is as follows: first, draw paths for the
shock innovations, that is, a sequence {εt} up to a large horizon T. Second, evaluate (33) for each
t. Finally, discard the first T elements. This procedure generates a random sample path of length
T− T.26 Panel (a) of Figure 6 presents an example of such simulations for the Krusell-Smith model
with AR(1) TFP shocks.27

Table 1 shows that, given the G matrices, this simulation procedure is extremely fast in prac-
tice: to draw sample paths of length 100,000 for the observables used in the estimation of our
four main models at their posterior modes in section 5.4, we only need 5 ms for the Krusell-Smith
model (one observable, one shock), 22 ms for the one-asset HANK model (three observables, three

26In appendix E.3, we explain how to extend this procedure to simulate panels of individuals.
27For this simulation, we assume an AR(1) process for TFP with persistence ρ = 0.9, and innovations with standard

deviation of σ = 0.02. We set T = 300 and T = 500, so there are 200 periods of observation.
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Figure 6: Simulations and second moments of the Krusell and Smith (1998) model for AR(1) TFP, ρ = 0.9
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shocks), and 105 ms for the two-asset HANK model (seven observables, seven shocks).
One use of these simulated sample paths, as Boppart, Krusell and Mitman (2018) show, is to

compute the second moments of outcomes—their variances and covariances, at various lags and
leads. In the next section, however, we will instead discuss a more efficient, analytical way of
computing these moments, based directly on the impulse responses dX.

5.2 Analytical second moments

The autocovariances of the vector-valued stochastic process dX̃t with MA coefficients dX are given
by the standard expression (see, for instance, Box and Jenkins 1970 and Hamilton 1994):

Cov(dX̃t, dX̃t′) =
T−1−(t′−t)

∑
s=0

(dXs) (dXs+t′−t)
′ (34)

The covariance in (34) only depends on the distance t′ − t, not on t and t′ separately.
In panel (b) of figure 6, we provide an illustration of these second moments for the param-

eterization of the stochastic Krusell-Smith model simulated in panel (a). The figure shows the
correlations of productivity, output, consumption, and capital with the underlying productivity
process, at various lags. The figure shows that capital and consumption—and to a much lesser
extent, output—tend to lag productivity. This reflects the typical transmission mechanism of TFP
shocks in RBC models.

As table 3 reveals, it is very fast to calculate autocovariances in this way: for our estimation
exercises of section 5.4, moving from the MA(T− 1) representation to a full set of autocovariances,
which are stacked in constructing the matrix V, only takes between 0.4 and 0.7 milliseconds.28

These autocovariances can be used directly to calibrate or estimate a model—as in the simulated

28This is facilitated by using the fast Fourier transform to calculate (34) in a highly efficient way, a process that we
describe in appendix E.4.
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method of moments, but without the need for explicit simulation.29 Alternatively, they can be
used to evaluate the likelihood function, as an input to likelihood-based estimation on time series
data. This is where we turn next.

5.3 Evaluating the likelihood function

The typical approach to likelihood-based estimation in the DSGE literature is to compute the like-
lihood by applying the Kalman filter to the model’s state-space representation (see e.g. Smets and
Wouters 2007, An and Schorfheide 2007, Herbst and Schorfheide 2015, and Fernández-Villaverde,
Rubio-Ramírez and Schorfheide 2016). This approach is appropriate for models with small state
spaces. With the large state spaces that characterize heterogeneous-agent models, however, eval-
uating the likelihood in this fashion can be prohibitively slow.

We now suggest an alternative approach: to use the MA representation provided by the
sequence-space Jacobian method to rapidly compute (and recompute) the likelihood. The idea
of using the MA representation of a DSGE model directly to calculate the likelihood goes back to
at least Hansen and Sargent (1981). There are multiple ways to perform this calculation. The ap-
proach we employ in our application builds directly on the analytical moments from the previous
section.30 Let

dX̃obs
t = B dX̃t + ut (35)

denote the vector of nobs observables whose likelihood we would like to determine.31 Here {ut}
is iid normal with mean 0 and covariance matrix Σu, and B is a nobs × nx matrix. Since dX̃obs

t is a
linear combination of the εt and ut terms, it has a multivariate normal distribution. Moreover, its
second moments are a simple linear transformation of those of dX̃t:

Cov(dX̃obs
t , dX̃obs

t′ ) = 1t=t′ · Σu + B Cov(dX̃t, dX̃t′) B′ (36)

We stack these covariances into a large symmetric nobsTobs × nobsTobs matrix V, where Tobs is the
number of time periods in our data.32 The log-likelihood function is then the conventional log
multivariate density. Dropping the constant term, it can be expressed as a function of the observed
data dX̃obs = (dX̃obs

t ) (stacked as an nobsTobs-dimensional vector) as

L = −1
2

log det V− 1
2

[
dX̃obs

]′
V−1

[
dX̃obs

]
(37)

29For recent examples of this approach to estimation, see Auclert and Mitman (2020) and Bardóczy (2020). For a
previous instance of an analytical approach to calculating second moments from a heterogeneous-agent model, see
Harmenberger and Sievertsen (2017).

30Recent papers in the DSGE literature that use the same approach include Mankiw and Reis (2007) and Schmitt-
Grohé and Uribe (2010).

31These may include moments of micro data (if we interpret ut as sampling error), since we can construct model im-
pulse responses for such moments using our extended methods from appendices A.1 and A.2. More comprehensively
integrating micro data into time series estimation requires other methods. For promising work along these lines, see
Chang, Chen and Schorfheide (2018) and Plagborg-Møller and Liu (2019).

32Missing or mixed-frequency data can be easily accommodated by replacing the B in (35) with a time-specific Bt,
which can have a time-varying number of rows. The second term on the right in (36) then becomes Bt Cov(dX̃t, dX̃t′ ) B′t′ .
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We evaluate this expression by performing a Cholesky decomposition of V, from which we can
quickly calculate both the log determinant log det V and the quadratic form

[
dX̃obs]′ V−1 [dX̃obs].33

Table 3 reveals that this is quite efficient in our applications: calculating L takes about 2 millisec-
onds or less in all except the two-asset HANK, where it takes about 12 milliseconds.

A weakness of this approach is that the Cholesky decomposition of V requires time propor-
tional to n3

obsT3
obs. As the number of time-series observations Tobs grows, this can become quite

costly.34 An alternative that scales better with Tobs is to use the Whittle approximation to the
likelihood, as in Hansen and Sargent (1981) and Plagborg-Møller (2019), which can be efficiently
calculated using the Fast Fourier Transform.

Another approach is to construct a state-space system from the MA representation, includ-
ing the most recent T realizations of the innovations εt, and then apply the Kalman filter. This
system is distinct from the usual state-space one, and does not scale with the underlying hetero-
geneity—but since its size is proportional to the truncation horizon T, it is often large enough in
our applications that applying the Kalman filter is costly. Still, this approach has a number of ad-
vantages: for instance, its cost only scales linearly in Tobs, and if desired we can apply the Kalman
smoother to do inference on shocks.

5.4 Bayesian estimation

In this section, we perform a Bayesian estimation of macro parameters for our three example
economies. Our primary objective is to illustrate that, by reusing Jacobians, this can be done very
efficiently with the SSJ method. We first estimate the posterior mode, and then use a standard
Markov chain Monte Carlo method (Random Walk Metropolis Hastings, RWMH) to trace out the
shape of the posterior distribution, as described in Herbst and Schorfheide (2015). We leave a
detailed understanding of the economics behind the estimation results to future research.

Reusing Jacobians. Likelihood-based estimation involves computing the likelihood function
many times for different parameters. In our case, given equation (37), this requires computing
the covariance matrix of model observations V for each parameter draw, which in turn requires
computing the impulse responses dX. Our key innovation is to make the repeated computation of
dX very efficient by reusing Jacobians. The benefits of this procedure, however, depend on which
parameters we are estimating.

Consider first the estimation of the parameters of shock processes. In this case, the matrix G in
equation (31) is unchanged across parameter draws, since these parameters only change the vector
dZ. Hence, it is sufficient to compute G once, and then for each parameter draw form dX, V and L

33We provide an accuracy check of our implementation of (37) by using it to find the posterior modes of the Herbst
and Schorfheide (2015) and the Smets and Wouters (2007) models, on their original datasets. Table F.1 in appendix F.1
shows that the modes are numerically identical to those obtained in Dynare given the state-space formulations of these
models.

34One relatively minor modification, which exploits the block Toeplitz structure of V, is to use Levinson recursion
instead of the Cholesky decomposition (e.g. Meyer-Gohde 2010). Asymptotically, this scales with T2

obs instead, although
for our applications it did not deliver a major improvement.
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without re-solving the model. This separation constitutes a clear advantage of our sequence-space
approach relative to a state-space approach to estimation.

Next, consider the estimation of parameters that do not change the steady state of the heterogeneous-
agent problem. This includes parameters that govern price stickiness, capital adjustment costs, or
monetary policy rules. These parameters also do not affect the Jacobian of the heterogeneous-
agent problem. Hence, in the construction of the total model Jacobian in equation (56), these
Jacobians can be held fixed at their initial value.35 Since heterogeneous-agent Jacobians are by far
the most time-consuming step in obtaining G (see Table 1), this is still very fast.

Finally, consider estimating parameters that do change the steady state of the heterogeneous
agent problem. There, the Jacobian of that problem needs to be recomputed for each new draw
of parameters, together with the steady state. While the fake news algorithm speeds up Jacobian
computation considerably, the additional time cost of re-evaluating the steady state on each draw
remains substantial, and we do not pursue this type of estimation here.36

Priors, data, and estimation. We now proceed to our main estimation exercise. Across all mod-
els, we assume the following prior distributions. We assume that the priors for the standard
deviations of all shocks are Inverse-Gamma distributed with mean 0.4 and standard deviation
4. We assume that the priors for persistence parameters are Beta distributed with mean 0.5 and
standard deviation 0.2. We also assume no measurement error, Σu = 0. We describe the priors of
model-specific parameters below. We search for the posterior mode using a standard optimization
routine, starting with the prior mode as our initial guess.37 We run a standard RWMH in which
the proposal distribution is a multivariate normal with variance equal to the inverse Hessian at
the posterior mode, scaled by a factor c that is adjusted to get an acceptance rate around 25%.38

We simulate the Markov chain for 100,000 draws, discarding the first 50,000.
For each model, we use the same U.S. data series as those used in Smets and Wouters (2007),

over the same sample period (1966:1–2004:4). We linearly de-trend the logs of all growing vari-
ables (output, consumption, investment, wages, hours) and take out the sample means of inflation
and nominal interest rates. The individual models are then estimated as follows.

Krusell-Smith model. We estimate our Krusell and Smith (1998) model with a single shock,
TFP, and a single time series {dXobs

t }, output. We assume that TFP shocks follow an ARMA(1, 1)

35This statement is true, more generally, of the Jacobian of any block in the DAG whose parameters do not change.
36In the literature, Winberry (2018), Auclert, Rognlie and Straub (2020), and Bayer, Born and Luetticke (2020) all

calibrate the steady-state micro parameters governing the heterogeneous-agent problem, and use time series data only
to estimate macro parameters, as we do here. In recent work, Acharya, Cai, Del Negro, Dogra, Matlin and Sarfati (2020)
use time series data to also estimate micro parameters, with sequential Monte Carlo methods to speed up estimation.
Also see Plagborg-Møller and Liu (2019), who estimate micro parameters using a mix of micro and macro data.

37Specifically, we use the SciPy implementation of L-BFGS-B, imposing some non-binding bounds to guide the rou-
tine away from poorly-behaved regions of the parameter space.

38One simple improvement, which we do not attempt, might be to use a proposal distribution where a positive
probability of draws only change the parameters of shock processes, not other parameters. Since we can re-use G,
calculating the likelihood for these draws would be much faster.
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process, (1− ρL)dZ̃t = (1− θL)σεt, where L denotes the lag operator. We estimate the roots ρ, θ as
well as the standard deviation σ. Table F.2 in appendix F shows the estimates, finding a persistent
AR root ρ ≈ 0.9, as well as a relatively small MA component θ ≈ 0.03. Recursive means and
univariate plots of the posterior distribution sampled with the RWMH algorithm suggest that the
Markov chain has converged and the posterior distribution is well behaved.

One-asset HANK model. We estimate our one-asset HANK model both with only shock pa-
rameters, and with shock and model parameters together. In both cases, we use three shocks
(monetary policy shocks, government spending shocks, and price markup shocks) and three time
series (output, inflation, and nominal interest rates). Each shock is modeled as an AR(1) with its
own standard deviation and persistence. Thus, there are six shock parameters for this model. The
first four posterior columns in table F.3 in appendix F show our estimates when only estimating
those shock parameters; we find persistent government spending shock and price markup shocks,
while monetary policy shocks are less so. The last four posterior columns in this table report the
estimated shock and model parameters in the joint estimation. We find a Taylor coefficient φ of
around 1.3, a modest responsiveness of the Taylor rule to output φy ≈ 0.13, and a Phillips curve
slope parameter κ around 0.14. These are standard values in the literature. Again, recursive means
and posterior distribution plots suggest good convergence properties for the RWMH algorithm.

Two-asset HANK model. We add all seven shocks from Smets and Wouters (2007) to the two-
asset model: shocks to TFP, government spending, monetary policy, price and wage markups. The
two exceptions are that we use discount factor shocks rather than “risk premium” shocks (both
shock the Euler equation and are thus very similar), and we shock firms’ first-order conditions for
capital instead of using investment-specific technology shocks.39 We estimate the parameters of
these seven shock processes using time series data on output, consumption, investment, hours,
wages, nominal interest rates and price inflation. As with the one-asset model, we estimate two
versions of the model, one with only shock parameters and one with shock and model parameters
(table F.4 in appendix F). Compared to the one-asset model, we find here somewhat less responsive
coefficients of the Taylor rule on inflation and output at the mode, but also a much wider 90%
credible interval. We also find smaller Phillips curve slope parameters κp, κw. We also estimate
the degree of capital adjustment costs εI and find it to be in line with standard estimates from
the literature. The evolution of the recursive means across the 150,000 non-discarded draws, as
well as the estimated posterior distributions, suggest good convergence properties when we only
estimate shocks, but less stability when estimating both shocks and parameters. This could be due
to the fact that the model is not designed explicitly to fit the hump shapes in the time series; see
Auclert, Rognlie and Straub (2020) for a model that addresses this shortcoming.

39Investment-specific technology shocks are known to have counterfactual implications for the relative price of in-
vestment—see, for instance, Justiniano, Primiceri and Tambalotti (2011).
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Table 3: Estimation times.

Krusell-Smith one-asset HANK two-asset HANK

shocks shocks model + shocks shocks model + shocks

Single likelihood evaluation 0.639 ms 2.353ms 56.001 ms 13.992 ms 227.245 ms
step 1 (MA) 0.015 ms 0.091ms 53.686 ms 1.139 ms 214.396 ms
step 2 (autocovariances) 0.041ms 0.144 ms 0.146 ms 0.706 ms 0.712 ms
step 3 (log-likelihood) 0.582 ms 2.117 ms 2.169 ms 12.148 ms 12.137ms

Posterior mode optimization 0.06 s 0.66 s 13.95 s 16.22 s 522.03 s
no. of evaluations 81 237 580 1094 6560

Random Walk Metropolis Hastings 132.40 s 568.42 s 11217.00 s 2899.58 s 42563.90 s
no. of evaluations 200,000 200,000 200,000 200,000 200,000
acceptance rate 0.253 0.248 0.253 0.255 0.241
scaling factor c 2.50 1.10 0.65 0.40 0.10

No. of shocks 1 3 3 7 7
No. of estimated shock parameters 3 6 6 14 14
No. of estimated model parameters 0 0 3 0 5
Total no. of estimated parameters 3 6 9 14 19

Estimation times. Table 3 lists computing times for each of our five estimation exercises, includ-
ing times for each likelihood evaluation and their breakdown into the three steps described in
section 5.3.

Once the G matrix is computed (table C.1), the Krusell-Smith model’s likelihood can be evalu-
ated in less than one millisecond, and the posterior mode can be found in around 60 milliseconds.
The entire RWMH estimation takes just over two minutes. We attain similar speeds estimating
the shock processes for the one-asset HANK model (just under 10 minutes for RWMH). Since we
allow for seven shocks when estimating the two-asset HANK model, estimating the parameters
of these shock processes is somewhat slower than in the other two models; this has nothing to do
with the complexity or micro heterogeneity of the two-asset model. Still, a single likelihood eval-
uation only takes a few milliseconds, the posterior mode is found in a few seconds, and RWMH
estimation takes about 50 minutes.

When model parameters are also estimated, the likelihood takes a bit longer to be re-evaluated.
This is entirely due to step 1—the computation of impulse responses. The single likelihood evalu-
ation for the two-asset model, for instance, takes 227 ms rather than 14 ms when model parameters
change, and finding the posterior mode takes less than 9 minutes. Running RWMH with 200,000
evaluations on the two-asset model when estimating 19 shock processes and model parameters
takes less than 12 hours. To the best of our knowledge, these are much faster speeds for estima-
tion of such models than what any other method has been able to achieve at a comparable level of
accuracy.
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Our main contribution in this section, the idea of reusing Jacobians, is essential to achiev-
ing these speeds. To illustrate this, observe that re-evaluating the heterogeneous-agent Jacobian
200,000 times for the two-asset model would take about 8 full days with our fake news algorithm
(approximately 3.5 s per evaluation), and about 6 years with the direct algorithm (approximately
950 s per evaluation).

6 Application to nonlinear perfect foresight transitions

We now discuss how to use sequence-space Jacobians to obtain nonlinear solutions to equation
(27). These solutions are the nonlinear perfect foresight impulse responses to unexpected shocks
perturbing the aggregate steady state at date 0 (sometimes called “MIT shocks”). In the literature,
these are used by researchers to explore size dependence and sign asymmetries (see e.g. Kaplan
and Violante 2018 for fiscal policy and Berger, Guerrieri, Lorenzoni and Vavra 2018 for house price
changes), and to simulate transitions between two steady states in applications that involve long-
term changes (see e.g. Heathcote, Storesletten and Violante 2010 for rising inequality, and Krueger
and Ludwig 2007 for demographic change). Recently, Boppart, Krusell and Mitman (2018) have
also suggested examining the extent of size dependence in these shocks as a test of how closely
the first-order aggregate perturbation matches the nonlinear solution with aggregate risk.

To find the U that solves H (U, Z) = 0 for a given Z, truncated to some T, we use the following
iterative procedure. First, starting from j = 0, guess a path U0 (typically, U0 = Uss). Second,
calculate H

(
Uj, Z

)
. Third, form the j + 1 guess using

Uj+1 = Uj − [HU (Uss, Zss)]
−1 H

(
Uj, Z

)
(38)

This algorithm falls in the class of quasi-Newton methods,40 since the steady-state sequence space
Jacobian HU (Uss, Zss) is used instead of the actual Jacobian HU

(
Uj, Z

)
.41 Once we obtain U, we

can compute the full set of endogenous variables directly from X = M (U, Z). We illustrate this
method using our two-asset HANK model in two ways.

Nonlinear impulse responses. Panel (a) of figure 7 shows three impulse responses of consump-
tion in the two-asset HANK model in response to monetary policy shock with quarterly persis-
tence ρ = 0.6. Two are the linear and nonlinear impulse responses to a -5pp shock to the Taylor
rule, and the other is the nonlinear impulse response to a -1pp shock, scaled up by a factor of 5.
The linear and scaled-up nonlinear impulse responses are almost identical, indicating that linear-

40This idea of Newton’s method to compute nonlinear impulse responses dates back to Laffargue (1990), Boucekkine
(1995), and Juillard (1996). For heterogeneous-agent models, previous versions of the method in (38) were implemented
by approximating the HU (Uss, Zss) matrix: see, among others, Auclert and Rognlie (2018), Straub (2017), and Koby and
Wolf (2020). For an example using automatic differentiation to obtain HU (Uss, Zss), see Ahn, Moll and Schaab (2018a).

41One alternative is to build an approximation to HU

(
Uj, Z

)
for each new guess Uj, holding heterogeneous-agent

Jacobians constant at their steady state values but using exact Jacobians elsewhere. This is useful when there are
substantial nonlinearities originating outside the heterogeneous-agent block.
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Figure 7: Nonlinear impulse responses and transitional dynamics for the two-asset HANK model

(a) Consumption after shocks to Taylor rule
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(b) Transition after a 1% permanent TFP shock
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ity is an accurate assumption for -1pp shocks. The nonlinear impulse response to the -5pp shock
is visibly a bit smaller than the other two, but still similar: 0.81% on impact, rather than 0.86%.
This similar response, despite the extreme size of the monetary shock, suggests that nonlinearities
in the household model—such as large shocks moving households away from their borrowing
constraints—do not play an important role for plausibly-sized shocks.

The algorithm above converges to |H| < 10−8 in 13 iterations for the -5pp shock, and 5 itera-
tions for the -1pp shock. By contrast, methods that rely on ad-hoc adjustment criteria often require
hundreds of iterations before convergence.

In Table 1, we use the algorithm to compute nonlinear impulse responses for all four of our
models, and report the time this requires, which ranges from 0.32 s for Krusell-Smith to 15 s for
two-asset HANK. (For comparability, these numbers are for a 1% shock to TFP, which is available
in every model.)

Transition to a new steady state. We can use this algorithm to compute the response to a perma-
nent shock. Here, it important to use the Jacobian HU (Uss, Zss) around the terminal steady state.
For example, panel (b) of figure 7 reports the nonlinear transition, starting from the initial steady
state of our two-asset HANK model, to a one-time permanent shock of 1% to TFP. In this example,
it takes 7 iterations to reach |H| < 10−8.

7 Conclusion

This paper presents a highly efficient method for computing heterogeneous-agent models. The
core idea is that sequence-space Jacobians are sufficient statistics that summarize all we need to know
about the heterogeneity in order to determine general equilibrium dynamics, to first order with
respect to aggregate shocks. Our main contribution is a fast algorithm for computing the Jaco-
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bians of heterogeneous-agent problems. We combine this algorithm with a systematic method for
computing model Jacobians and linearized impulse responses. We apply these objects to estimate
models with high-dimensional state spaces, and compute their nonlinear transitional dynamics.

Our methods allow us to find the posterior mode of a two-asset HANK model in under ten
minutes and trace its with posterior distribution with MCMC in under twelve hours, estimation
times that had so far been out of reach for the literature. We hope that they will prove useful
to solve and estimate other heterogeneous-agent models and facilitate new developments in the
field.
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Online Appendix to “Using the Sequence-Space Jacobian
to Solve and Estimate Heterogeneous-Agent Models”

A Generalizing the fake news algorithm

A.1 Direct applications of the existing framework

First, we identify several ways in which the existing framework can be adapted to include model
elements differing from our examples, with either no change or limited changes to the algorithm.

Non-grid representations of the value function. (10)-(12) assume that the distribution is dis-
cretized as a finite grid, and that y and Λ give the value of the output Y at each point and the
transition probabilities between points. None of this places any restriction, however, on how the
value function is discretized as v. Our algorithm therefore accommodates a variety of discrete
representations of v (splines, Chebyshev polynomials, parametric, etc.) without any modification.

Higher moments. At first glance, (12) seems to require that we are taking the mean y′tDt of some
individual outcome yt. But if we redefine the individual outcome as (yt)k, then we can the cal-
culate kth (non-centered) power moment

(
(yt)k)′Dt as well. Applying this strategy as necessary

for different k and combining the results using a simple block, we can obtain the Jacobian for any
transformation of these moments, such as the variance, the coefficient of variation, or a CES price
index.

This allows us to calculate many moments of interest, though not all; for instance, for some
distributional moments like the Gini coefficient, we need the general framework of the next sec-
tion.42

Leads and lags. The equations (10)-(12) include only contemporaneous Xt, without any leads or
lags. What if, instead, a lagged or future variable appears, such as Xt−1 or Xt+1? In the case of leads
like Xt+1, the algorithm works without any change: lemma 1 goes through without modification,
so that iterating backward from a shock at T− 1 still gives the dys

0 and dΛs
0 needed in proposition

1. Intuitively, this is because our backward iteration already incorporates the effects of a future
shock working through the value function, and nothing more is needed to handle the case where
future X also appears directly in (10)-(12).

If, on the other hand, a lag like Xt−1 appears in (10)-(12), then it is no longer true that ys
t = yss

and Λs
t = Λss for t = s + 1 in (16), because both are affected by the lagged shock. Lemma 1 fails,

42Note, however, that this is only necessary if we need Jacobians for these moments. If, instead, we only need impulse
responses for these moments (and the moments themselves are not needed to solve for general equilibrium), we can
apply the linearized (10)-(12) to the equilibrium impulse responses for Xt and recover impulse responses yt and Dt,
then directly compute any desired moments from these.
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and our method—which does not account for the possibility that “past” shocks affect current
individual outcomes at a particular point in the state space—no longer works.

The simplest solution is to transform variables outside the heterogeneous-agent block, e.g.
define a new variable X̃t ≡ Xt−1 (which can be the output of a simple block taking in X), so that
within the algorithm, only a contemporaneous variable X̃t appears, matching the exact form of
(10)-(12).43

Discrete choice with taste shocks. The models we simulate in this paper all have the feature that
policy functions are continuous in the underlying idiosyncratic state variables. This is no longer
generally the case for models that feature discrete choices, such as lumpy adjustment of durables,
price setting with menu costs, or a discrete labor-leisure choice (see e.g. Bardóczy 2020). For such
models, if the problem is discretized using a grid, linearization can give extremely misleading
results: if none of the grid points at a point where the discrete choice changes, then the first-order
response of the discrete choice to any shock is zero.

This problem is common to all perturbation methods. One standard solution is to assume
continuously-distributed iid taste shocks affecting the value of each discrete choice. The proba-
bility of each discrete choice then varies continuously with the (pre-taste shock) state.44 To write
the model in the form (10)-(12), Dt should then be the discretized pre-taste shock distribution, and
vt, yt, Λt should be the expected values at each state in this distribution.

An alternative to taste shocks, which we discuss in the next section, is to use a continuous
representation of the distribution rather than a discrete grid.

Endogenous distribution. The distribution Dt in equation (11) is assumed to be unaffected by
the current shock Xt and the value function vt+1. In short, it is predetermined at date t. What if we
want events at date t to affect the distribution—for instance, if shocks at date t can affect capital
gains on wealth at date t, or can affect the probability of unemployment at date t?

Within the framework (10)-(12), the solution is to keep Dt predetermined at date t, and in-
corporate these shocks into the functions v, Λ, y instead. For instance, in our two-asset HANK
example, the date-0 return on the illiquid asset includes an endogenous capital gain. The distri-
bution D0 gives the state prior to this capital gain, and then the ex-post return on illiquid assets,
ra

0 is included as part of X0 as an input to v, Λ, y.
Similarly, if the probability of unemployment is endogenous at date t, Dt should still be the

state prior to the realization of the idiosyncratic unemployment shock, and then v, Λ, y should take
expectations over the realizations of this shock.

43To implement the fake news algorithm directly with lags, we would need to calculate ys
0 and Λs

0 for all s from −u
to T− 1, where u is the maximum lag length, use these to build a fake news matrix F with columns s = −u, . . . , T− 1,
then apply the recursion Jt,s = Jt−1,s−1 +Ft,s in step 4 starting from this new leftmost column −u. In our experience,
this is more difficult and error-prone than the X̃t solution above.

44One particularly convenient approach is to use extreme value taste shocks as in Iskhakov, Jørgensen, Rust and
Schjerning (2017), which are smooth and lead to logit choice probabilities. Bardóczy (2020) implements the fake news
algorithm using this approach.
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Although this procedure can virtually always be used to put a model into the framework of
(10)-(12), it becomes unwieldy in complex cases. In appendix A.3, we describe how to apply the
fake news algorithm to a model where the distribution evolves over multiple subperiods within
each period. This provides a more formal, structured approach.

A.2 Nonlinear Y or D

We now generalize our algorithm to the case of nonlinear functions for Dt+1 and Yt in (11)-(12).
The key is the following generalization of proposition 1.

Proposition 2. Assume that equations (11) and (12) are replaced, respectively, by

Dt+1 = D (vt+1, Xt, Dt) (39)

Yt = Y (vt+1, Xt, Dt) (40)

for some functions D (v, X, D) and Y (v, X, D). Then proposition 1 still holds, provided that definition 1 is
changed to

Et ≡ (D′D)
tY′D (41)

where DD ≡ ∂D
∂D (vss, Xss, Dss) and YD ≡ ∂Y

∂D (vss, Xss, Dss) are the nD × nD Jacobian and 1× nD gradient
of D and Y with respect to D, respectively.

Proof. In the proof of lemma 2, we replace (19) by dYs
t = YDdDs

t + Yvdvs
t+1 + YXdXs

t . Subtracting
dYs

t and dYs−1
t−1 and using dvs

t+1 = dvs−1
t from (16) and dXs

t = dXs−1
t−1 by construction, we get

Ft,s · dx = YD(dDs
t − dDs−1

t−1), which is identical to (20) except with y′ss replaced by YD.
Similarly, replacing (21) with dDs

t = DD · dDs
t−1 + D′vdvs

t + D′XdXs
t−1, we follow the same steps

to show that dDs
t − dDs−1

t−1 = (DD)t−1dDs
1, which is identical to (22) except with Λ′ss replaced by

DD. The modified lemma 2 follows, with y′ss, Λ′ss replaced by YD, DD. Replacing these in the
definition of Et, the proof of proposition 1 goes through.

Remarkably, the only change needed in proposition 2, relative to proposition 1, is to redefine
Et as (D′D)

tY′D rather than (Λss)tyss. This redefinition is natural: the Jacobian DD, which gives
the first-order effect of yesterday’s distribution on today’s, is the generalized counterpart of the
forward iteration matrix Λ′ss, and the gradient YD, which gives the first-order effect of today’s
distribution on the aggregate output, is the generalized counterpart of y′ss.

Given this redefined Et, which can be calculated recursively via Et = (D′D)Et−1 and E0 = Y′D,
the fake news algorithm is otherwise unchanged. We now discuss some applications.

Entry and exit. In general, if we modify our original framework to allow for entry and exit, we
have an equation (39) of the more specific form

Dt+1 = Λ(vt+1, Xt)Dt + Dentry(vt+1, Xt) (42)
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where Λ is a Markov matrix with rows that may sum to less than one (because of exit, which may
be endogenous) and Dentry accounts for the possibly-endogenous entry of agents. If, additionally,
new entrants show up in the aggregate output, then we also have an equation (40) of the form

Yt = y(vt+1, Xt)
′Dt + Yentry(vt+1, Xt) (43)

where Yentry accounts for the effect of the new entrants.
Note that from (42) and (43), we have DD = Λ′ss and YD = y′ss. Hence the expectation vector

(41) is the same as our original definition from section 3, and proposition 1 and the fake news
algorithm apply in their original form.

Alternative representations of the distribution. In our original equations (11)-(12), we assumed
that the distribution vector Dt consisted of probability masses at discrete grid points. Now, in
(39)-(40), Dt can be an arbitrary vector describing the distribution. For instance, suppose that
the state is one-dimensional and continuous. Then if Dt is a vector of parameters45 encoding a
density f (θ; Dt) for θ ∈ (−∞, ∞), we can write a function D (vt+1, Xt, Dt) that specifies how these
parameters evolve over time in our problem. We can also define the aggregate output Y as the
average of some idiosyncratic outcome y(θ; vt+1, Xt) of interest:

Y (vt+1, Xt, Dt) ≡
∫ ∞

−∞
y(θ; vt+1, Xt) · f (θ; Dt)dθ (44)

Assuming that we already have a way to calculate D and Y, all we need to implement the fake
news algorithm is DD and YD. If D is not too high-dimensional, then numerical differentiation is
usually a simple strategy to calculate these, although automatic differentiation or (in special cases)
analytical differentiation may also be useful.

Moments of the distribution. Suppose that we want the Jacobian for some moment that can not
be represented as a transformation of power moments as in the previous section. For instance—to
take a simple example—suppose that D is a vector of parameters describing the distribution of
assets, and we want the uth quantile of this asset distribution. This is a nonlinear function Y(Dt),
and to apply the fake news algorithm we only need to calculate the gradient YD, which (as above)
can be done using either numerical or automatic differentiation.

If D is instead a simple discretized distribution, then the uth quantile function is discontinu-
ous, consisting of many steps, and its Jacobian is therefore essentially meaningless (wherever it
can be calculated, it is identically zero). We could obtain a more interesting object, however, by
converting this function to be piecewise linear, interpolating between the discrete mass points.
With many grid points, numerical differentiation might be impractical in this case, but thanks to

45For an example of a parametric family of distributions often used with heterogeneous-agent models, see Algan et
al. (2014). In some cases, another possibility is to represent the distribution with a more flexible set of basis functions,
such as Chebyshev polynomials.
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the simplicity of the linearly interpolated quantile function, one can write the gradient YD analyt-
ically instead.

Discrete choice without taste shocks. As discussed in appendix A.1, first-order methods are
misleading for endogenous discrete choices on a state space that has been discretized to a grid,
since locally these choices will not respond to shocks unless the grid points happen to be at the
discontinuities (in which case there is instead a singularity). The suggestion of appendix A.1 was
to assume iid taste shocks, so that the probabilities of each discrete choice vary continuously.

If D is a vector of parameters parametrizing a smooth density, however, then the integral (44)
aggregating a discrete choice y will generally vary smoothly in Xt even if y itself is discontinuous.
Similarly, the law of motion (39) should also vary smoothly. At this point, there is no particular
computational problem posed by discrete choice, and we can apply proposition 2 as long as we
can calculate DD and YD, just like above.46

A.3 Multi-stage problems

In appendix A.1, we observe that in cases where the “distribution” at time t seems endogenous
to events at time t (e.g. unemployment risk), our basic framework (10)-(12) can be applied if we
interpret Dt as being the distribution prior to any time-t events, and v, Λ, y as taking expecta-
tions over these events. But as models become more complex, with more within-period structure,
implementing this approach manually can become difficult.

We therefore further generalize our framework to account for multiple “stages” j ∈ {0, . . . , J−
1} within a given period t. We now assume that the three equations (10)-(12) are replaced by

vt,j = vj(vt,j+1, Xt,j) (45)

Dt,j+1 = Dj
(
vt,j+1, Dt,j, Xt,j

)
(46)

Yt,j = Yj
(
vt,j+1, Dt,j, Xt,j

)
(47)

where we adopt the convention that ·t,J = ·t+1,0, and assume that the initial distribution D0,0 is
given exogenously.

At each stage j, we allow for stage-specific inputs Xt,j and outputs Yt,j.47 Given a path for {Xt,j},
one solves (45)-(47) to obtain {Yt,j} in the standard way, except that all iterations go through both

46One caveat, however, is that a smooth density is not always realistic in models with discrete choice. For instance,
if agents always reset to the same ideal state, then there will be a mass point at that state; further, if uncertainty in
the model is discrete, then there will be mass points corresponding to the each finite sequence of shocks that might
be realized after that state. To avoid having the distribution consist entirely of mass points in this way, it is useful
to introduce some stochastic variables that are drawn from a continuous distribution (e.g. in household models, iid
lognormal income risk in each period, in addition to whatever other income risk is present). This is also true if we
want to avoid mass points in a model with occasionally binding constraints (e.g. in household models, a borrowing
constraint).

47If some stages have either no outputs or no inputs, we can simply disregard the relevant terms. If multiple stages
include the same input, then we can use the algorithm to calculate Jacobians with respect to the input at each stage
individually, and then sum the Jacobians.
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t and, within each t, through each stage j. For instance, iterating backward over (45), starting from
some steady-state vT,0 = vss,0, would involve iterating through

vT−1,J−1, vT−1,J−2, . . . , vT−1,0, vT−2,J−1, vT−2,J−2, . . . ,

and so on.
Write Dj

D ≡
∂Dj
∂D and Yk

D ≡ ∂Yk
∂D , and use these to define E k

t,j recursively, iterating backward over
(t, j) starting with the initial condition E k

0,k = (Yk
D)
′ and then writing

E k
t,j ≡ (Dj

D)
′E k

t,j+1 (48)

for all t > 0 or t = 0 and j < k. For any s, the vector E k
t,j gives the first-order impact of the

distribution Ds,j at time s, stage j on the output Ys+t,k at the time s + t, stage k.
Next, assuming a shock dx to Xk

s , we define

F j,k
t,s · dx ≡

dYs,k
0,j t = 0

E j
t−1,0dDs,k

1,0 t ≥ 1
(49)

and have the following further refinement of proposition 1.

Proposition 3. Assume D0,0 = Dss,0. The Jacobian J of h satisfies the recursion J j,k
t,s = J j,k

t−1,s−1 +F
j,k
t,s

for t, s ≥ 1, with J j,k
t,s = F j,k

t,s for t = 0 or s = 0, and is therefore given by

J j,k
t,s =

min{s,t}
∑
u=0

F j,k
t−u,s−u (50)

where F j,k
t,s is defined in (49).

Obtaining entries of the Jacobian is therefore no more complicated than in our original case,
conditional on being able to evaluate (49) to obtain F j,k

t,s .
For each k, we can still obtain dYs,k

0,j and dDs,k
1,0 for all s = 0, . . . , T− 1 and j by iterating backward

from a shock at date T − 1. This is slightly more involved than before, however. One must first
obtain dvs,k

0,j for each s and j through backward iteration, then for each s, combine this with (46)

and (47), iterating forward through the js, to obtain dYs,k
0,j for all js and finally dDs,k

1,0. (This is in
contrast to the original algorithm, where obtaining the dYs

0 involved no forward iteration at all.)

B Model descriptions and calibration

For notational simplicity, we use subscript i to denote household-level outcomes instead of writ-
ing them explicitly as functions of state variables as in the main text. Tables B.1-B.3 show our
calibration of the three models.
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B.1 Krusell-Smith

We describe the model in section 2. We assume that P (e, e′) discretizes a log AR(1) process

logeit = ρlogeit−1 + σεit

with normal innovations εit ∼ N (0, 1) and use the Rouwenhorst method for discretization. In the
high-dimensional (“HD”) version, we set ne = 50 and nk = 5000.

Table B.1: Calibration of our Krusell-Smith economy

Parameter Value

r Real interest rate 0.01
σ Risk aversion 1
α Capital share 0.11
δ Depreciation rate 0.025
ρ Skill mean reversion 0.966
σ/
√

1− ρ2 Cross-sectional std of log earnings 0.5
ne Points in Markov chain for e 7
nk Points on asset grid 500

B.2 One-asset HANK

Textbook NK model with HA household sector similar to McKay, Nakamura and Steinsson (2016).
Households. Relative to the KS model, households also choose their hours worked nit. They

pay taxes and receive dividends from the ownership of firms according to incidence rules τ (e)
and d (e). The Bellman equation is

Vt(eit, ait−1) = max
cit,nit,ait

{
c1−σ

it
1− σ

− ϕ
n1+ν

it
1 + ν

+ βEtVt+1(eit+1, ait)

}
cit + ait = (1 + rt)ait−1 + wteitnit − τtτ̄(eit) + dtd̄(eit)

ait ≥ a

Firms. A competitive final goods firm aggregates a continuum of intermediate goods, indexed
by j, with a constant elasticity of substitution µ/(µ − 1) > 1. Intermediate goods are produced
by monopolistically competitive firms with production function yjt = F(njt) ≡ Ztnjt. To maintain
symmetry, we assume that every firm employs a representative worforce. Each firm sets the price
of its product pjt subject to quadratic adjustment costs ψt(pjt, pjt−1) = µ

µ−1
1

2κ

[
log(pjt/pjt−1)

] 2Yt.
In the symmetric equilibrium, aggregate inflation 1 + πt ≡ Pt/Pt−1 evolves according to the
Phillips curve

log(1 + πt) = κ

(
wt

F′(Nt)
− 1

µ

)
+

1
1 + rt+1

Yt+1

Yt
log(1 + πt+1) (51)
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and dividends equal output net of labor and price adjustment costs dt = Yt − wtNt − ψt.

Table B.2: Calibration of our one-asset HANK economy

Parameter Value Target

Households
β Discount factor 0.982 r = 0.005
ϕ Disutility of labor 0.786 N = 1
σ Inverse IES 2
ν Inverse Frisch 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0.966
σe Cross-sectional std of log earnings 0.5

Firms
µ Steady-state markup 1.2
κ Slope of Phillips curve 0.1

Policy
B Bond supply 5.6
G Government spending 0
φ Taylor rule coefficient on inflation 1.5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 7
na Points on asset grid 500

Policy. The fiscal authority spends Gt, issues one-period nominal bonds B, and adjusts the
level of taxes τt to balance its budget period by period τt = rtB + Gt. Monetary policy sets the
nominal rate on bonds according to a standard Taylor rule it = r∗t + φπt + φy(Yt−Yss). The Fisher
equation is rt = (1 + it−1)/(1 + πt).

Market clearing. The final good is used for private consumption, public consumption, and
price adjustment costs Yt =

∫
citdi + Gt + ψt. Aggregate household savings equals government

bonds B =
∫

aitdi. Labor demand equals supply in efficiency units Nt =
∫

eitnitdi.

B.3 Two-asset HANK

Richer NK model with wage as well as price stickiness, and capital with adjustment costs. House-
holds have access to a liquid and an illiquid account as in Kaplan, Moll and Violante (2018).

Households. Relative to the one-asset model, households allocate their savings between liquid
assets bit and illiquid assets ait subject to a convex portfolio adjustment cost Φt(ait, ait−1). Hours
worked Nt are the same for all households and are pinned down by labor demand from firms as
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explained below. The Bellman equation is

Vt(eit, bit−1, ait−1) = max
cit,bit,ait

{
c1−σ

it
1− σ

− ϕ
N1+ν

t
1 + ν

+ βEtVt+1(eit+1, bit, ait)

}
s.t. cit + ait + bit = (1− τt)wtNteit + (1 + ra

t )ait−1 + (1 + rb
t )bit−1 −Φt(ait, ait−1)

ait ≥ 0, bit ≥ b.

We specify the adjustment cost function, with χ0, χ1 > 0 and χ2 > 1, as

Φt(ait, ait−1) =
χ1

χ2

∣∣∣∣ ait − (1 + ra
t )ait−1

(1 + ra
t )ait−1 + χ0

∣∣∣∣χ2

[(1 + ra
t )ait−1 + χ0]

Financial intermediary. A representative financial intermediary takes liquid and illiquid de-
posits from households and invests them in government bonds Bg

t and firm equity pt. It performs
liquidity transformation at proportional cost ω

∫
bitdi. No arbitrage requires that the economy-

wide ex-ante return Et[1 + rt+1] equals the expected returns on nominal government bonds and
on equity. The competitive financial intermediary passes these returns on to households, subject
to intermediation costs:

Et[1 + rt+1] =
1 + it

Et[1 + πt+1]
=

Et[dt+1 + pt+1]

pt
= Et[1 + ra

t+1] = Et[1 + rb
t+1] + ω

The ex-post returns rt,ra
t , rb

t however, are subject to surprise inflation and capital gains. Assuming
that capital gains accrue to the illiquid account, we have 1 + rt = (1 + it−1)/(1 + πt) = 1 + rb

t + ω

and
1 + ra

t = Θp

(
dt + pt

pt−1

)
+ (1−Θp)(1 + rt)

where Θp denotes the share of equity in the illiquid portfolio.
Firms. Relative to the one-asset HANK model, intermediate goods firms have a Cobb Dou-

glas production function yjt = F(k jt−1, njt) ≡ kα
jt−1n1−α

jt . Firms choose their own capital stock

subject to quadratic adjustment costs ζ
(

k jt
k jt−1

)
k jt−1 with ζ(x) ≡ x− (1− δ) + 1

2δεI
(x− 1)2, where

δ > 0 is depreciation and εI > 0. The Phillips curve is analogous to (51), with marginal cost
mct = wt/FN(Kt−1, Nt). Let It = Kt − (1 − δ)Kt−1 + ζ

(
Kt

Kt−1

)
Kt−1 denote aggregate invest-

ment. Dividends equal output net of investment, labor costs, and price adjustment costs dt =

Yt − wtNt − It − ψt. Finally, Tobin’s Q and capital evolve according to

Qt =1 +
1

δεI

Kt − Kt−1

Kt−1
(52)

(1 + rt+1)Qt =α
Yt+1

Kt
mct+1 −

[
Kt+1

Kt
− (1− δ) +

1
2δεI

(
Kt+1 − Kt

Kt

)2
]
+

Kt+1

Kt
Qt+1 (53)

49



Table B.3: Calibration of our two-asset HANK economy

Parameter Value Target

Households
β Discount factor 0.976 r = 0.0125
σ Inverse IES 2
χ0 Portfolio adj. cost pivot 0.25
χ1 Portfolio adj. cost scale 6.416 B = 1.04Y
χ2 Portfolio adj. cost curvature 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0.966
σe Cross-sectional std of log earnings 0.92

Labor unions
ϕ Disutility of labor 2.073 N = 1
ν Inverse Frisch elasticity 1
µw Steady state wage markup 1.1
κw Slope of wage Phillips curve 0.1

Firms
Z TFP 0.468 Y = 1
α Capital share 0.33 K = 10Y
µp Steady-state markup 1.015 p + Bg = 14Y
δ Depreciation 0.02
κp Slope of price Phillips curve 0.1

Financial intermediary
ω Liquidity premium 0.005

Policy
τ Labor tax 0.356 budget balance
G Government spending 0.2
Bg Bond supply 2.8
φ Taylor rule coefficient 1.5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 3
nb Points on liquid asset grid 50
na Points on illiquid asset grid 70

Unions. A competitive labor packer aggregates a continuum of labor services, indexed by k,
with a constant elasticity of substitution µw/(µw − 1) > 1. The wage for each labor type is set by a
different labor union. To ensure symmetry, we assume that every household supplies every labor
type, thus all unions represent all households. Unions set wages to maximize the average utility
of households, taking as given their consumption-savings decisions. Setting a nominal wage Wkt

incurs quadratic adjustment cost ψw
t (Wkt,Wkt−1) =

µw
µw−1

1
2κw

[log(Wkt/Wkt−1)]
2 in utils. In the sym-

metric equilibrium, aggregate wage inflation 1 + πw
t = (1 + πt)wt/wt−1 evolves according to the
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Phillips curve

log(1 + πw
t ) = κw

(
ϕN1+ν

t − (1− τt)wtNt

µw

∫
eitc−σ

it di
)
+ β log(1 + πw

t+1)

Policy. Monetary and fiscal policies are the same as in the one-asset HANK model, with the
slight modification that τt denotes a proportional tax on labor, and thus budget balance requires
that τtwtNt = rtBg + Gt.

Market clearing. The final good is used for private consumption, public consumption, in-
vestment, price adjustment costs, liquidity transformation, and portfolio adjustment cost Yt =∫

citdi + Gt + It + ψt + ω
∫

bit−1di +
∫

Φt(ait, ait−1)di. Total saving by households equals the value
of firm equity and government bonds pt + Bg =

∫
ait + bitdi.

C Computational details

C.1 Numerical and automatic differentiation details

A key implementation question is how to obtain the two objects dYs
0 and dDs

1. As discussed in the
main text, given some dx, one starts a backward iteration from T − 1, obtaining ys

0 = yT−1
T−1−s and

Λs
0 = ΛT−1

T−1−s for all s = 0, . . . , T − 1, and then dYs
0 = (dys

0)
′Dss and dDs

1 = (dΛs
0)
′Dss. There are

two important practical complications:

1. We only get the correct derivative when dx is infinitesimal.

2. In typical applications, we have not solved for the steady state solving (10) exactly (i.e. such
that vss = v(vss, Xss) exactly), but instead for a steady state such that (10) holds up to some
numerical tolerance (i.e. such that ‖vss − v(vss, Xss)‖ < 10−9). As a result, iterating back-
ward will generally give dys

0 6= 0 and dΛs
0 6= 0, even if dx = 0.

The first issue is about how to do differentiation, and is common to all perturbation methods.
The second issue is more specific to our approach. We now describe three ways to perform dif-
ferentiation—addressing the first issue—and, within each, discuss how to deal with the second
issue.

One-sided numerical differentiation. Here, we simply choose some small but non-zero dx and
then iterate backward as described above. As is standard, dx should be chosen to trade off error
from second-order effects (which grow with dx) and from numerical issues like rounding error
(which shrink with dx). In our application, one potential source of the latter error is, as discussed
above, that the steady state is not exact. This will often be worse than the typical rounding er-
ror from floating-point numbers, since we usually pick a numerical tolerance for value function
convergence (e.g. 10−9) that is larger than machine precision (∼ 10−16).

There are two ways to address this issue:
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(a) Do an additional full backward iteration from T− 1 to 0 (a “ghost run”) starting from dx = 0,
and denote the results as ỹs

0 and Λ̃s
0. Set dys

0 = ys
0 − ỹs

0 and dΛs
0 = Λs

0 − Λ̃s
0.

(b) At each step, subtract off v(vss, Xss) and recenter around the steady state. Starting with the
shock dx, calculate dv0

0 = v(vss, Xss + dx)− v(vss, Xss). Then, for each s calculate

dvs
0 = v(vss + dvs−1

0 , Xss)− v(vss, Xss) (54)

Do the same for the functions Λ and y as well (e.g. at each step s ≥ 1 calculate dys
0 =

y(vss + dvs−1
0 , Xss)− y(vss, Xss)).

We can think of approach (a) as follows: if ys
0 and Λs

0 are functions of the shock dx, we are using
one-sided numerical differentiation around dx = 0 to calculate dys

0/dx and dΛs
0/dx for each s.

Approach (b) is related, but instead effectively uses one-sided numerical differentiation at each
step of the backward iteration.48

Approach (b) is usually more efficient than (a), since it does not require a full backward itera-
tion from T − 1 to 0 with dx = 0, and instead only requires v(vss, Xss), y(vss, Xss), and Λ(vss, Xss),
which take a single step to compute. Approach (b) is also more accurate, since it corrects for error
in the steady state at each step and does not allow these errors to compound. We therefore use (b)
as our default for one-sided calculations in this paper (with dx = 10−4).

One advantage of (a) is that it may be easier to implement with minimal changes to existing
code, since it involves two complete backward iterations from T − 1 to 0, and does not require
changing the steps themselves as in (54).

Two-sided numerical differentiation. Here we have the following two analogues of approaches
(a) and (b) above.

(a) Iterate backward from T − 1 to 0 for shocks at T − 1 of dx and −dx, denoting the results
by (ys+

0 , Λs+
0 ) and (ys−

0 , Λs−
0 ), respectively, and set dys

0 = (ys+
0 − ys−

0 )/2 and Λs
0 = (Λs+

0 −
Λs−

0 )/2.

(b) Iterate backward from T − 1 to 0, recentering around the steady state in each step. Specif-
ically, starting with the shock dx, calculate dv0

0 = (v(vss, Xss + dx)− v(vss, Xss − dx)) /2.
Then, for s calculate

dvs
0 =

v(vss + dvs−1
0 , Xss)− v(vss − dvs−1

0 , Xss)

2
(55)

Do the same for the functions Λ and y as well (e.g. at each step s ≥ 1 calculate dys
0 =

(y(vss + dvs−1
0 , Xss)− y(vss − dvs−1

0 , Xss))/2).

48To make this interpretation clearer, we could divide the right side of (54) by dx to get dvs
0/dx, and then use dx ·

(dvs−1
0 /dx) as an input. Practically, however, this involves unnecessary offsetting divisions and multiplications by dx.
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Analogous to above, approach (a) effectively does two-sided numerical differentiation on the en-
tire backward iteration process, while approach (b) does two-sided numerical differentiation at
each step of the process. Note that it is no longer necessary to calculate any responses with dx = 0.

Both approaches (a) and (b) have similar efficiency and accuracy. (b) is in principle more accu-
rate for the same reason as above, since it immediately recenters rather than allowing errors in the
steady state to build up, but in practice this accuracy advantage seems minor. For consistency with
the above, we use approach (b) as our default for two-sided calculations (also with dx = 10−4).

Automatic differentiation. Automatic differentiation allows us to calculate the two objects in
(26), dYs

0 and dDs
1, for infinitesimal dx, getting exact derivatives dYs

0/dx and dDs
1/dx. One option

is to take whatever code iterates backward from T − 1 to 0, starting with some shock dx, and
simply feed it into an automatic differentiation package, telling it to differentiate with respect to
dx.

Though this approach works, it also suffers from error in the steady state: since vss is not ex-
actly the same as v(vss, Xss), the package will be differentiating around a slightly different “steady
state” at each step, which may be inefficient. It is therefore beneficial to apply automatic differ-
entiation to a backward iteration routine that recenters around the steady state at each step, as in
(54), so that differentiation will be done around the same steady state at each step.

In our implementation, we go slightly further, pre-calculating all derivatives ∂v/∂v, ∂v/∂X,
∂y/∂v, and so on around the steady-state (vss, Xss), and then using these derivatives to iterate
backward starting with infinitesimal dx. Specifically, we first use the Python automatic differ-
entiation package “jax” to calculate all derivatives.49 Then, we do backward iterations, starting
with dv0

0/dx = ∂v/∂X, and then iterating backward dvs
0/dx = (∂v/∂v) · (dv0

0/dx). We similarly
calculate each dys

0/dx and dΛs
0/dx.

Applying to direct method. In appendix D.1, we apply one-sided, two-sided, and automatic
differentiation to the direct method of computing columns s of the Jacobian. For one-sided differ-
entiation, we apply the direct method exactly as described at the beginning of section 3.2, calcu-
lating the impulse response to an small shock dx = 10−4 at date s. However, in the spirit of (a)
above, we subtract off the results from a “ghost run” with a shock dx = 0 to eliminate inaccuracy
from an imperfect steady state. For two-sided differentiation, we calculate the impulse responses
to small shocks dx and−dx at date s and then take half the difference between the two. Finally, for
automatic differentiation, we use automatic differentiation to precalculate all derivatives as above,

49This required extensive modifications to our code to make it compatible with jax. For instance, jax requires a more
functional style—it does not allow operations that overwrite existing arrays—and it cannot immediately differentiate
our routines written to be compiled by Numba (a Python just-in-time compiler). Further, one major source of inef-
ficiency is that Jacobians like ∂v/∂v tend to be highly sparse, but jax (like most automatic differentiation packages)
cannot internally use sparse array operations. Although we convert the derivatives provided by jax into SciPy’s sparse
matrix representation before doing additional computations with them, jax’s internal computations are still slow in
high-dimensional cases because of this limitation. Implementation difficulties of this kind are why we chose numerical
differentiation to be our primary approach. (See Ahn et al. (2018b) for an example of a paper employing a custom-built
automatic differentiation toolkit that makes use of sparsity internally.)
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and use them to evaluate the linearized equations (10)-(12) and obtain a linear impulse response
to a shock at each date s.

C.2 Equilibrium computation as a directed acyclic graph

In this section, we introduce a formal way of representing the variable substitutions that under-
lie the H and M functions. The idea is to organize the model as a set of blocks arranged along
a directed acyclic graph, or DAG. While the technical definition requires some formalism, con-
structing models this way is highly intuitive and facilitates efficient computation.

The general type of model whose Jacobians we can compute consists of any combination of
heterogeneous-agent problems (or heterogeneous-agent blocks), characterized by the mapping (13),
and simple blocks, which capture typical aggregate relationships in dynamic macro models. For-
mally, we define simple blocks as mappings between inputs X and outputs Y for which there exist
k, l ∈N and a time-invariant function h such that Yt is only a function of neighboring Xt’s, that is,

Yt = h(Xt−k, . . . , Xt+l)

For instance, a neoclassical firm sector can be represented as a simple block mapping Xt = (Kt, Zt)

to Yt = (Yt, rt, wt). Combining such a sector with a heterogeneous-agent block mapping Xt =

(rt, wt) to Yt = Kt({rs, ws}), as well as a simple block mapping Xt = (Kt, Kt) to market clearing
Yt = Kt − Kt, we obtain the Krusell-Smith model of section 2. Jacobians of simple blocks are
straightforward to compute explicitly.

We call “sequence-space model” any combination of these blocks that maps shocks (like Zt) and
unknowns (like Kt) to targets (like asset market clearing) along a directed acyclic graph.

Definition 2. A sequence-space model is defined by:

1. A set of sequence indices N = Z ∪ U ∪O, where Z are exogenous shocks, U are unknowns, O
are outputs, andH ⊂ O are targets,

2. A set of blocks, each either simple or heterogeneous-agent blocks, indexed by B, where each
block b ∈ B has inputs Ib ⊂ N and outputs Ob ⊂ O, such that each output o ∈ O belongs
to exactly one block, and for each output o ∈ Ob, block b provides a function ho({Xi}i∈Ib)

mapping the block’s input sequences to this output sequence,

such that a) the number of unknowns and targets are equal, that is, nu = nh, and b) the directed
graph of blocks, formed by drawing an edge from b to b′ whenever some output o ∈ Ob is used as
an input o ∈ Ib′ , is acyclic.

Definition 3. An equilibrium of a sequence-space model, given sequences {Xi}i∈Z for the exoge-
nous shocks, is a set of sequences {Xi}i∈U∪O such that: a) Xo = ho({Xi}i∈Ib) for any output o ∈ O,
and b) Xo = 0 for any target o ∈ H.
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Definition 4. A steady state equilibrium is an equilibrium in which all sequences are constant over
time, Xi

t = Xi
ss for all i ∈ N .

A sequence-space model thus consists of a combination of blocks that are linked along a di-
rected graph. Each individual block covers a different aspect of the economy and computes either
equilibrium conditions themselves (i.e. outputs that are also “targets”) , or variables that are use-
ful for other blocks (i.e. outputs that are also inputs). Any such variable can be viewed as having
been “substituted out” and need not be carried around as an unknown. .

An important property we require is that the directed graph that connects blocks be acyclic,
that is, it does not feature circular dependencies across blocks. Instead, there is always an ordering
b1, . . . , bnb of the blocks (formally, a “topological sort”) such that all input variables used in later
blocks, e.g. b3 or b4, are either output variables from earlier blocks, e.g. b1 or b2 (in which case those
variables were substituted out) or they are shocks or unknowns. Recursively, this implies that
starting with shocks and unknowns {Xi, i ∈ Z ∪U}we can follow along this ordering, computing
each block’s output, one-by-one, starting with block b1 (which only uses inputs that are either
shocks or unknowns), then moving to block b2 (whose inputs can also be outputs of b1), and so
on. When we are done, we will have calculated all outputs {Xo}o∈O ..

Thus, the recursive mapping from shocks and unknowns {Xi, i ∈ Z ∪ U} to targets {Xo}o∈H
represents H(U, Z)=0, and the mapping to other outputs {Xo}o∈O\H represents M(U, Z) = X.

Note that acyclicality does not place any restrictions on the economic model itself, only on its
representation as a directed graph. If we start with a cyclic graph, we can always break the cycle
by adding additional unknowns and targets: for instance, if block b1 is required for b2, b2 for b3,
and b3 for b1, we can add the required outputs of b3 as unknowns that are direct inputs to b1, and
then add a target enforcing consistency between these unknowns and the actual outputs of b3.50

Example: Krusell-Smith model. Figure 3 visualizes the DAG for the Krusell-Smith model that
corresponds to the variable substitutions we made in section 2. It has three blocks (neoclassical
firms, heterogeneous households “HA”, and a block to compute the asset market clearing con-
dition H), one exogenous shock (productivity Z = {Z}), one unknown (capital U = {K}), four
outputs (capital return, wage, household savings, asset market clearing, so O = {r, w,K, H}),
and one target (asset market clearing H = {H}).51 The DAG is best read from left to right. The
“firms” block maps the unknown sequence of capital stocks K and the exogenous shocks Z into
the interest rate and wage sequences r, w. Those are then used to substitute out r, w in the “HA”
block, before asset market clearing H is computed.

One and two-asset HANK models. The Krusell-Smith model allows for a relatively straight-
forward DAG that reduces the number of unknowns to nu = 1. Figure C.1 gives a DAG for a

50An alternative approach to resolve cycles is to use a “solved block”, discussed in appendix C.5.
51Not visualized are firm production Y or household consumption C, which could be additional outputs of the firm

and HA blocks, respectively, but are not strictly necessary since we are using asset rather than goods market clearing
to define equilibrium.
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Figure C.1: DAG representation of one-asset HANK economy
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more complex case: a one-asset HANK model from appendix B.2.. This model combines standard
NK elements—sticky prices, flexible wages, and a Taylor rule for monetary policy, but no capi-
tal—with a one-asset incomplete market HA household sector where labor supply is endogenous.

As figure C.1 shows, the DAG for this model features three unknowns (wages w, output Y,
and inflation π), which are used to compute six intermediate outputs, ultimately yielding three
targets (a Phillips curve condition H1, labor market clearing H2, and asset market clearing H3). In
other words, the DAG substitutes out six variables that would otherwise have to be included as
unknowns. We introduce four exogenous shocks (productivity Z, Taylor rule intercept r∗, govern-
ment spending G, and markups µ).

The DAG makes it easy to visualize the dependencies between macroeconomic aggregates that
are embedded in the model: for instance, the dividends from firms are distributed to households
(according to a certain rule), so the output d of the firm block is an input to the HA block. Similarly,
the real interest rate r affects the taxes required for the government to achieve its balanced-budget
target, so r is an input to the fiscal block, which has an output τ that is an input to the HA block.

Even as models grow in complexity beyond this one, they often still admit DAGs with small
numbers of unknowns and targets. Figure C.2 shows our preferred DAG for the two-asset HANK
model from appendix B.3. This model has nx = 21 endogenous variables, but 18 can be substituted
out along the DAG.
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Figure C.2: DAG representation of two-asset HANK economy
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C.3 Jacobians and impulse responses

We now show how to use the DAG representation of the model to automatically evaluate the Ja-
cobians of H and M. To do so, we systematically apply the chain rule along the model’s DAG,
implementing a technique known as forward accumulation in the automatic differentiation litera-
ture (Griewank and Walther 2008). This technique combines the Jacobians of individual blocks to
build up HU, HZ and MU, MZ. 52

Total Jacobians J. To start, we need a new concept. For any exogenous shock or unknown i ∈
Z ∪U and any output o, let the Jo,i denote the total Jacobian of o with respect to i when o is evaluated
along the DAG. For instance, in the one-asset HANK model in figure C.1, the total Jacobian JN ,w

of household labor supply with respect to wages combines two forces: the direct effect of w on
household decisions, and the indirect effect working through the influence of w on firm profits
and therefore the dividends d received by households. This is in contrast to J N ,w, which is a
partial Jacobian that captures only the direct effect.

To obtain Jo,i through forward accumulation, we first initialize Ji,i to the identity for each i ∈
Z ∪ U . We then go through blocks following the ordering (topological sort) b1, . . . , bnb one-by-one
beginning with b1. For each block b, we evaluate the total Jacobian of all its outputs o ∈ Ob with

52In actual computations, the methods in this section will be applied on Jacobians that are truncated to some horizon
T × T. For simple blocks we use a simple sparse representation of the Jacobian, described in appendix E.2, and do not
need to truncate.
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Table C.1: Computing times for G.

Krusell-Smith one-asset HANK two-asset HANK

Total 3.3 ms 50.6 ms 173.5 ms
step 1 (forward accumulate HU and HZ) 0.6 ms 7.5 ms 27.0 ms
step 2 (compute GU ,Z = −H−1

U HZ) 1.2 ms 25.9 ms 51.6 ms
step 3 (forward accumulate for all Go,Z ) 1.5 ms 17.2 ms 95.0 ms

No. of unknowns 1 3 3
No. of exogenous shocks 1 3 7

respect to shocks and unknowns i ∈ Z ∪ U :

Jo,i = ∑
m∈Ib

J o,mJm,i (56)

This systematically applies the chain rule: for each input m, (56) takes the product of the partial
Jacobian J o,m with the already-calculated total derivative Jm,i of m with respect to i. (When m = i,
then the latter is the identity and the term is just the partial Jacobian J o,i.) The benefit of building
up the Jo,i progressively via forward accumulation is that the chain rule is applied in an efficient
way, without redundant computations.

General equilibrium Jacobians G. Using the J matrices, we can compute the total Jacobians of
all targets with respect to all unknowns and shocks, HU = JH,U and HZ = JH,Z . By equation (30),
these are the objects needed to solve the equilibrium response of unknowns, dU = −H−1

U HZdZ.
We can compute this response for any arbitrary shock vector dZ by simple multiplication with the
matrix GU ,Z = −H−1

U HZ. We refer to this matrix as general equilibrium Jacobian of unknowns to
shocks.

To compute Go,Z for the remaining outputs o ∈ O \H, we trace the same forward accumula-
tion steps as before, and build Go,Z recursively, using53

Go,Z = ∑
m∈Ib

J o,mGm,Z (57)

Each Go,Z has nzT columns, each of which can be interpreted as the impulse response of o to some
news shock. One way to think about this approach, therefore, is that we are simultaneously calcu-
lating nzT general equilibrium impulse responses. For our Krusell-Smith, one-asset HANK, and
two-asset HANK models, nzT is 1× 300 = 300, 3× 300 = 900, and 3× 300 = 900, respectively.54

53An alternative is to re-use total Jacobians and write Go,Z = Jo,UGU ,Z + Jo,Z . In our experience, the recursive
approach tended to be more efficient.

54If one only needs to compute one impulse response, it is possible to obtain this impulse response faster using an
alternative method described in appendix C.4. Interestingly, it is not too much more expensive to calculate the full set
of impulse responses in G: in our one-asset HANK example, obtaining 900 rather than one impulse response only takes
about 5 times as long. This is possible because we only need to calculate HU once, independent of shocks.
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Table C.2: Computing times for G, efficient vs. flat DAG.

Krusell-Smith one-asset HANK two-asset HANK

Total with efficient DAG 4.7 ms 57.8 ms 198.0 ms
Total with flat DAG 33.0 ms 167.5 ms 1452.7 ms

No. of unknowns (efficient DAG) 1 3 3
No. of unknowns (flat DAG) 3 7 18
No. of exogenous shocks 1 3 7

Comparing table C.1 to table 2, we see that computing Gs is, in each of our cases, significantly
cheaper than applying the fake news algorithm to obtain J s for the heterogeneous-agent block:
for instance, it takes about 50 milliseconds for the one-asset HANK model, while the fake news
algorithm took 320 milliseconds. This shows the power of J s as sufficient statistics: once we have
them, it is just a matter of linear algebra to obtain a full characterization of equilibrium.

How important is the pattern of variable substitution along the DAG to efficiently solving
heterogeneous-agent models? Table C.2 compares the times needed to compute the G matrices
using our preferred DAG (“efficient DAG”) and using no substitution of endogenous variables
(“flat DAG”). The latter approach results in a greater number of unknowns and is substantially
slower, by a factor that ranges from 2 to 10. The reason is that the dimensionality of the linear
system becomes so high that solving it is quite costly.

C.4 Fast solution for individual impulse responses

In the case where we are only interested in a single impulse response, we only need to do full
forward accumulation (56) for i ∈ U to obtain o ∈ H, which gives HU = JH,U . Then, to deal with
shocks, we do forward accumulation on vectors rather than matrices, writing

Jo,ZdZ = ∑
m∈Ib

J o,mJm,ZdZ (58)

This gives HZdZ = JH,ZdZ. We then solve the linear system HUdU = −HZdZ to obtain dU.
Finally, to obtain equilibrium impulse responses dXo for o /∈ Z ∪ U , we need to calculate

dXo = Jo,ZdZ + Jo,UdU (59)

The first term, Jo,ZdZ, has already been calculated in (58). For the second term, we do forward
accumulation on vectors as in (58), just solving for Jo,UdU rather than Jo,ZdZ.55

Table C.3 shows the time each step of this process takes for our three models, starting from the
Jacobians J for each model block. In general, this process is very cheap, with the only costly parts

55Another approach is to use the Jo,U that we already calculated as part of the initial forward accumulation to obtain
HU = JH,U , and directly apply these to dU. This approach has similar (and low) cost, but is less useful in general
because it does give o that were not necessary in calculating HU.
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Table C.3: Computing times for impulse responses.

Krusell-Smith one-asset HANK two-asset HANK

Total 0.9 ms 15.5 ms 30.1 ms
step 1 (forward accumulate HU) 0.4 ms 6.2 ms 19.7 ms
step 2 (forward accumulate Jo,ZdZ) 0.1 ms 0.1 ms 0.4 ms
step 3 (solve linear system for dU) 0.4 ms 9.0 ms 8.9 ms
step 4 (forward accumulate Jo,U dU, get dXo) 0.1 ms 0.3 ms 1.2 ms

No. of unknowns 1 3 3
No. of exogenous shocks 1 3 7

being the steps that involve matrices rather than vectors: forward accumulation in step 1 to get
HU = JH,U , and second, solving the linear system HUdU = −HZdZ for dU in step 3.

Since these steps are costly because they involve the shock-independent matrix HU, there are
clear economies of scale from computing the impulse response to multiple shocks. We can cal-
culate HU a single time, and then also calculate H−1

U (or, better, an LU factorization of HU) a
single time, at which point the marginal cost of computing additional impulse responses is very
low. This is the approach we use in section 5.3 to evaluate the likelihood when redrawing model
parameters, since this involves finding impulse responses to each shock simultaneously. Taking
this idea to its fullest extent, we can calculate the impulse responses to all shocks simultaneously,
which is the “G matrix” approach in section C.3.

C.5 Solved blocks

The DAG of the two-asset model in figure C.2 includes a brown “production” block. Production
with adjustment costs is well-known to involve the joint determination of investment and q, and it
is natural to solve for these two jointly inside a block. This leads us to introduce a “solved block”
concept, as follows.

Definition 5. A solved block b has an underlying sequence-space model with shocks Z̃ , unknowns
Ũ , outputs Õ, and targets T̃ , and an equilibrium that is locally unique around the steady state,
where we define:

1. The inputs of the solved block to be the shocks of the underlying sequence-space model:
Ib ≡ Z̃ .

2. The outputs of the solved block to be the unknowns and outputs, minus targets, of the
underlying sequence-space model: Ob ≡ Ũ ∪ (Õ \ T̃ ).

3. For each output o ∈ Ob, the function ho({xi}i∈Ib) is the locally unique equilibrium path of o
in the underlying sequence-space model given sequences {xi}i∈Z̃ for the exogenous shocks
in that model (recalling that Ib = Z̃).
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Figure C.3: The concept of a solved block, applied to the production block of our two-asset HANK model
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Informally, a solved block is a sequence-space model, turned into a block. Figure C.3 illustrates
how this concept works in the case of the production block of the two-asset HANK model. Given
the exogenous inputs Y, w, Z, r, the solved block solves for the endogenous paths for K and Q that
jointly satisfy the q theory equations, so that its outputs are K, Q as well as labor demand N and
marginal costs mc.

C.6 Reiter method implementation

We now briefly describe our implementation of the “Reiter method”. The idea is to arrange the
equations governing equilibrium into a system of nonlinear equations with at most a single lead
and a single lag, at which point we can use standard linear rational expectations methods to obtain
the first-order solution.

Krusell-Smith model. Here we construct a stacked vector Xt of length 2ng + 1, where ng is the
number of points in our grid. This includes:

• the entire vector vt representing the value function at time t (in our implementation, this is
the length ng vector giving the derivative of the value function at each point)

• the distribution Dt+1 excluding the last entry, which equals one minus the other elements
and is therefore redundant (length ng − 1 )

• capital Kt (scalar)

• productivity Zt (scalar)
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Note that since in our model, the distribution Dt+1 is determined by information available at time
t, we include it in Xt in line with the usual timing convention for these models.

We now build a function F(Xt−1, Xt, Xt+1, εt) with a 2ng + 1-dimensional output, which in-
cludes all equilibrium conditions:

• ng entries for the equation (10) that determines vt given vt+1 and the inputs Kt−1 and Zt

(which together determine rt and wt, entering into the household’s problem)

• ng − 1 entries for the equation (11) that determines Dt+1 given vt+1, Dt, and the inputs Kt−1

and Zt (note that again, we drop the last entry, which is redundant since the distribution
sums to one)

• 1 entry for the equation (12) that expresses aggregate Kt as the total of individual holdings
given by Dt+1

• 1 entry for the assumed AR(1) law of motion log(Zt/Zss) = ρ log(Zt−1/Zss) + εt for produc-
tivity.

Recursive stochastic equilibrium corresponds to the condition EtF(Xt−1, Xt, Xt+1, εt) = 0. We use
the automatic differentiation package jax to linearize this as

AEtdXt+1 + BdXt + CdXt−1 + Eεt = 0 (60)

where A, B, and C are (2ng + 1) × (2ng + 1) matrices and E is a (2ng + 1) × 1 vector. (60) is
a standard form for a linear rational expectations model, and can be solved using a variety of
standard techniques. We use Alisdair McKay’s Python toolkit, which implements a version of
Sims’s gensys algorithm to solve (60).56 This gives us a solution, expressed as the recursive law of
motion

dXt = PdXt−1 + Qεt (61)

where P is a (2ng + 1)× (2ng + 1) matrix and Q is a (2ng + 1)× 1 vector. Note that the first ng

columns of P are all zeros, since vt−1 is not a state and has no direct impact on Xt. We can then
unstack (61) to obtain the linear law of motion relating the individual components of Xt (vt, Dt+1,
Kt, and Zt) to Dt, Kt−1, Zt−1, and εt.

To obtain the impulse response to a unit shock to ε0 (i.e. a unit productivity shock) for compar-
ison to our sequence-space solution, we plug dXt−1 = 0 and ε0 = 1 into (61) and iterate forward
to get dX0, dX1, . . .

One-asset HANK model. Since our implementation here is mostly the same as above, we will
only describe the differences.

The stacked vector Xt now has length 2ng + 4, including ng entries vt giving the derivative of
the value function at each grid point, the ng − 1 first entries of Dt+1, and then wt, Yt, πt, rt, and Zt.

56See https://alisdairmckay.com/Notes/HetAgents/index.html.
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The function F(Xt−1, Xt, Xt+1, εt) now also has output of length 2ng + 4, including ng entries
for (10), ng − 1 entries for (11), 2 entries for (12) corresponding to the aggregation of assets and
labor (and clearing in the respective markets), 1 entry for the Phillips curve, 1 entry for the AR(1)
law of motion log(Zt/Zss) = ρ log(Zt−1/Zss) + εt for productivity, and 1 entry for the combined
Taylor rule and Fisher equation giving the ex-post real rate, rt = (1 + r∗t−1 + φπt−1)/(1 + πt)− 1.

Note that in addition to the equations for vt, Dt+1, and Zt, we have one equation in F for each
of the targets in figure 3 (asset market clearing, labor market clearing, and the Phillips curve), but
also an additional equation for rt. Similarly, we have one entry in Xt for each of the unknowns in
figure 3 (Y, w, and π), but also rt as an unknown. We calculate each target in F by starting with
the unknowns and progressively calculating the date-t output of each block in figure 3. Since we
need rt+1 as an input to the calculation of the Phillips curve57, however, we include r as part of X
and add the equation from the “monetary” block explicitly to F.

C.7 Recovering the state-space law of motion

From the linearized solution in the sequence space, given a particular shock process expressed in
state-space form, it is possible to recover the equivalent state-space law of motion. The general
idea is to determine the effect that a perturbation to any state, and any innovation to the shock
process, has on all states in the following period. This can be done in three steps: one first finds
(a) the effect of the perturbation on the targets dH, then (b) the response of unknowns to targets
dU, and finally (c) the response of next-period states to unknowns. Since the distribution of agents
is a state, this process requires two pieces of information about the distribution, which are both
computed by the fake news algorithm in section 3.2: the expectation vectors E o

t for step (a), and the
distribution perturbation vectors Di

1 for step (c). One can then use the state-space law of motion
for any standard application, such as simulation or estimation using state-space methods.

As an example, here we explain how to recover the state-space law of motion in the Krusell-
Smith model with AR(1) TFP shocks of persistence ρ. The state then consists of the ng points of
the distribution and the two aggregate states Kt−1 and Zt−1, so the law of motion reads Dt+1

Kt

Zt

 = A

 Dt

Kt−1

Zt−1

+ Bεt (62)

with A an
(
ng + 2

)
×
(
ng + 2

)
matrix indicating the dependence of states on past states, and B an(

ng + 2
)
× 1 vector indicating how states respond to innovations εt to the TFP process. To elicit A

and B from a sequence-space model, we treat the initial states (ε0, D0, K−1 and Z−1) as exogenous
“shocks” and then look for their effects on the state the following period, (D1, K0, Z0).

Using the sequence-space model, we can compute the effect of shocks to (ε0, D0, K−1 and
Z−1) on on the time paths of targets dH. This is straightforward to do for aggregates, while for

57This appears in the nonlinear F but actually falls out to first order, so is irrelevant to the calculation we will perform.
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Figure D.1: Accuracy of methods for computing J for Krusell-Smith model
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the distribution D0, these perturbations are directly given by the expectation vectors EKt from
definition 1. Next, we solve for the equilibrium path of capital dK = −H−1

K dH that results from
the perturbation. The date-0 element of this vector delivers the rows of A and B corresponding
to K. Finally, using the general equilibrium Jacobian matrices Jw,K and Jr,K, we can recover the
effect on the time paths of wages and interest rates dw and dr for all shocks (ε0, D0, K−1 and Z−1).
Then, using the equation dD1 = Dr

1dr +Dw
1 dw, where the Dt vectors are discussed in section 3.2,

we obtain the effect of all shocks (ε0, D0, K−1 and Z−1) on the distribution at date 1. This gives
us the first ng rows of A and B. Finally, the last row is just the exogenous law of motion of the
shock process. Altogether, this procedure allows us to construct a state-space law of motion for the
Krusell-Smith model. The procedure can easily be generalized to any alternative sequence-space
model with a known state space.

D Evaluation of accuracy

D.1 Accuracy of alternative methods to compute J
Figures D.1 and D.2 verify the relative accuracy of various methods for computing the Jacobian of
aggregate assets with respect to the interest rate (J K,r or J A,r) in our Krusell-Smith and one-asset
HANK models. These are the two models for which it is feasible for us to compute the model
with automatic differentiation. Our benchmark is the model computed using the direct method
under automatic differentiation, which we will refer as the “true” impulse response. The impulse
response in levels for the Krusell-Smith model are then those displayed in figure 2, panel (a). For
the one-asset HANK model, the levels are very similar. Here we focus on the differences between
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Figure D.2: Accuracy of methods for computing J for one-asset HANK model
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various methods, for columns s = 0, 50, 100.58 .
We first compare impulse response obtained using our fake news algorithm under automatic

differentiation to the “truth”. The pale blue line on all graphs shows errors of the order of 10−14.
In other words, the direct and the fake news method yield the same answer to machine precision:
this verifies Proposition 1.

Next, we compare the impulse response obtained with one-sided numerical differentiation
(dark blue and dark green lines). There, the errors can get as large as 10−3, or 0.01% of the peak
of the level response (which is around 10). Two-sided numerical differentiation (brown and pink
lines) mitigate this error by one to two digits of accuracy. In practice, two sided numerical dif-
ferentiation is just as simple to implement as one-sided numerical differentiation and only twice
as costly in terms of computation time, so this may provide a useful alternative when very good
accuracy is required.

Finally, we note that, unless automatic differentiation is used, the fake news method actually
generally has better performance than the direct method. This is because it imposes some of the
linearity implications of the true first-order derivative. Hence, the fake news impulse response is
not only around T times faster to compute than the direct impulse response, it also tends to be
more accurate.

58Using the sup norm over the entire Jacobian, as well as other Jacobians obtained via this method, yields the same
findings.
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Not-for-Publication Appendix to “Using the
Sequence-Space Jacobian to Solve and Estimate

Heterogeneous-Agent Models”

E Additional computational details and accuracy

E.1 Two-asset household model algorithm

In this section we describe an efficient algorithm, based on the endogenous grid points approach
of Carroll (2006), to solve the two-asset household model with convex adjustment costs.

Generic setup. Households’ individual state variables are (exogenous) income zit ∈ {z1, . . . , zm},
liquid assets bit−1 ∈ [b, ∞), and illiquid assets ait−1 ∈ [0, ∞). The Bellman equation is

Vt(zit, bit−1, ait−1) = max
cit,bit,ait

u(cit) + βEtVt+1(zit+1, bit, ait)

s.t. cit + ait + bit = zit + (1 + ra
t )ait−1 + (1 + rb

t )bit−1 −Φ(ait, ait−1)

ait ≥ 0, bit ≥ b

The adjustment cost function is

Φ(ait, ait−1) =
χ1

χ2

∣∣∣∣ ait − (1 + ra
t )ait−1

(1 + ra
t )ait−1 + χ0

∣∣∣∣χ2

[(1 + ra
t )ait−1 + χ0] (63)

with χ0, χ1 > 0 and χ2 > 1. Note that Φ(ait, ait−1) is bounded, differentiable, and convex in ait.

First-order and envelope conditions. The Bellman equation can be rewritten more compactly as

Vt(zit, bit−1, ait−1) = max
bit,ait

u
(

zit + (1 + ra
t )ait−1 + (1 + rb

t )bit−1 −Φ(ait, ait−1)− ait − bit

)
+ λit(bit − b) + µitait + βEVt+1(zit+1, bit, ait)

The first-order conditions with respect to bit and ait are

u′(cit) = λit + βE∂bVt+1(zit+1, bit, ait), (64)

u′(cit)
[
1 + Φ1(ait, ait−1)

]
= µit + βE∂aVt+1(zit+1, bit, ait), (65)

and the envelope conditions are

∂bVt(zit, bit−1, ait−1) = (1 + rb
t )u
′(cit), (66)

∂aVt(zit, bit−1, ait−1) =
[
1 + ra

t −Φ2(ait, ait−1)
]
u′(cit). (67)
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It’s convenient to define the post-decision value function Wt(zit, bit, ait) ≡ βEtVt+1(zit, bit, ait).

Algorithm. We start from a guess for the (discretized) partials of the value function and iterate
backward until convergence. We use (z′, b′, a′) to refer to tomorrow’s grid and (z, b, a) to today’s grid.
Let Π denote the transition matrix of the exogenous state z. The key trick is to include Lagrange
multipliers in the backward iteration whenever the household is partially constrained. We also
exploit the fact that the constraint on the illiquid asset will never be binding unless the constraint
on the liquid asset is also binding (otherwise, a simple variation will improve utility).

1. Initial guess. Guess Va(z′, b′, a′) and Vb(z′, b′, a′).

2. Common z′ → z. By definition

Wb(z, b′, a′) = βΠVb(z′, b′, a′) (68)

Wa(z, b′, a′) = βΠVa(z′, b′, a′) (69)

3. Unconstrained a′ → a. Assuming that no constraints bind, λit = µit = 0, and (64) and (65)
become

u′(c) = Wb(z, b′, a′), (70)

u′(c)
[
1 + Φ1(a′, a)

]
= Wa(z, b′, a′). (71)

Combine these to get

0 = F(z, b′, a, a′) ≡ Wa(z, b′, a′)
Wb(z, b′, a′)

− 1−Φ1(a′, a) (72)

which characterizes a′(z, b′, a). Use this to map Wb(z, b′, a′) into Wb(z, b′, a) by interpolation,
then compute consumption as

c(z, b′, a) = Wb(z, b′, a)−
1
σ . (73)

4. Unconstrained b′ → b. Now using a′(z, b′, a) and c(z, b′, a) from the previous step, use the
budget constraint to obtain

b(z, b′, a) =
c(z, b′, a) + a′(z, b′, a) + b′ − (1 + ra)a + Φ(a′(z, b′, a), a)− z

1 + rb .

We invert this function via interpolation to get b′(z, b, a). The same interpolation weights can
be used to do a′(z, b′, a)→ a′(z, b, a).

5. Liquidity constrained a′ → a. This branch is analogous to the unconstrained case. Assum-
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ing that the liquidity constraint is binding, λit > 0, and (64) and (65) become

u′(c) = λ + Wb(z, 0, a′),

u′(c)
[
1 + Φ1(a′, a)

]
= Wa(z, 0, a′).

To help with scaling, let us define κ ≡ λ/Wb(z, 0, a′) and rewrite the first equation as

u′(c) = (1 + κ)Wb(z, 0, a′).

Divide and rearrange to get

0 = F(z, κ, a, a′) ≡ 1
1 + κ

Wa(z, 0, a′)
Wb(z, 0, a′)

− 1−Φ1(a′, a). (74)

We solve this for a′(z, κ, a), and compute consumption as

c(z, κ, a) =
[
(1 + κ)Wb(z, κ, a)

]− 1
σ . (75)

6. Liquidity constrained κ → b. Now using a′(z, κ, a) and c(z, κ, a) from the previous step, use
the budget constraint to obtain

b(z, κ, a) =
c(z, κ, a) + a′(z, κ, a) + b− (1 + ra)a + Φ(a′(z, κ, a), a)− z

1 + rb .

We invert this function via interpolation to get κ(z, b, a). The same interpolation weights can
be used to map a′(z, κ, a) into a′(z, b, a). We already know that b′(z, b, a) = b.

7. Update guesses. The final b′(z, b, a) is the element-wise maximum of its unconstrained and
liquidity-constrained counterparts. Replace the unconstrained a′(z, b, a) with constrained
one at the exact same points. Compute consumption from the budget constraint as

c(z, b, a) = z + (1 + ra)a + (1 + rb)b−Φ(a′(z, b, a), a)− a′(z, b, a)− b′(z, b, a). (76)

Finally use the envelope conditions (66) and (67) to update the guesses

Vb(z, b, a) = (1 + rb)c(z, b, a)−σ, (77)

Va(z, b, a) =
[
1 + ra −Φ2

(
a′(z, b, a), a

)]
c(z, b, a)−σ. (78)

Go back to step 2, repeat until convergence.
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E.2 Efficient multiplication of simple Jacobians

One important detail underlying the speeds in table C.1 is a set of special routines that efficiently
handle the Jacobians of simple blocks. These simple blocks comprise the majority of our DAGs.
Their Jacobians are easy to obtain to high accuracy (for instance, with symmetric numerical differ-
entiation), and have a special sparse structure: they can be expressed as linear combinations of a
few shift operators Si on sequences.

For positive i, Si maps (x0, x1, . . .)→ (0, . . . , 0, x0, x1, . . .), with i zeros inserted at the beginning,
and for negative −i, S−i maps (x0, x1, . . .) → (xi, xi+1, . . .). The former takes an i-period lag in
sequence space, while the latter takes an i-period lead in sequence space.59 For instance, in the one-
asset HANK economy depicted in figure C.1, the Jacobian J H1,π of the Phillips curve condition
with respect to price inflation π is S0 − 1

1+r S−1.60

For the most part, these operators obey simple rules: if i and j are both positive, SiSj = Si+j,
and so on. However, as is well known from an older literature that works with the lag algebra (e.g.
Whiteman 1983), the S are not quite closed under multiplication. To take the simplest example,
S1S−1, a one-period lag of a one-period lead, maps (x0, x1, x2, . . .)→ (0, x1, x2, . . .), zeroing out the
first entry of a sequence and leaving everything else unchanged. Fortunately, we have found a
more general set of operators that includes the S and is closed under multiplication following an
easy-to-compute rule, as we derive in the following proposition.

Proposition 4. Let Si be the shift operator on sequences, and Zm be the “zero” operator that replaces the
first m entries of a sequence with zeros. If we define

Qi,m ≡

SiZm i > 0

ZmSi i < 0
(79)

then Qi,mQj,n = Qk,l , where
k = i + j (80)

and

l =



max(m− j, n) i, j ≥ 0

max(m, n) + min(i,−j) i ≥ 0, j ≤ 0

max(m− i− j, n) i ≤ 0, j ≥ 0, i + j ≥ 0

max(n + i + j, m) i ≤ 0, j ≥ 0, i + j ≤ 0

max(m, n + i) i, j ≤ 0

(81)

This proposition nests the shift operators Si in a more general class of operators Qi,m.61 This has
two advantages. First, it makes multiplying the Jacobians of simple blocks vastly more efficient:

59In matrix form, Si has zeros everywhere, except for ones on the ith diagonal below the main diagonal.
60This corresponds to a linearized curve of the form πt = . . . + 1

1+r Etπt+1.
61The matrix representation of Qi,m is the same as that of Si, except that the first m entries on the diagonal are zeros.
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rather than doing matrix multiplication with large T× T matrices, we just need to apply rules (80)
and (81) a few times. Second, it is computationally easy to multiply Qi,m and an ordinary matrix
Jacobian (or vector), since this is a combination of shifting and zeroing elements. Together, these
features make forward accumulation on the DAG, which consists mostly of simple blocks, vastly
more efficient.

In our online code, we implement this by simply overriding the matrix multiplication opera-
tor, so that sparse linear combinations of Qi,m and ordinary matrices can be used interchangeably.
With this in place, the methods of section C.3 can be applied without any outwardly visible mod-
ification.

Exploiting sparsity has played a prominent role in both the heterogeneous-agent literature (e.g.
Achdou, Han, Lasry, Lions and Moll 2020) and the literature on solving for perfect-foresight paths
using Newton’s method (e.g. Juillard 1996). Our approach builds on the latter, but our much more
compact representation of Jacobians offers additional efficiencies. For instance, to store 0.5 · Q1,1,
we only need a few numbers, while a conventional T × T sparse matrix representation not taking
advantage of this structure would need T − 2 separate entries, and still create some truncation
error.

Proof of proposition 4. Here, we derive the rules for multiplication of the operator (79), where Si

is the shift operator on sequences by i and Zm zeros out the first m elements of sequences, by doing
case-by-case analysis on the product Qi,mQj,n. In our derivation, we will exploit the following fact
about multiplication of Si:

SiSj =


Si+jZ−j i > 0, j < 0, i + j > 0

ZiSi+j i > 0, j < 0, i + j < 0

Si+j otherwise

and the rules S−iZj = Zmax(j−i,0)S−i and ZjSi = SiZmax(j−i,0) for multiplication of S and Z.
Case 1: positive i, positive j. Here we have

Qi,mQj,n = SiZmSjZn

= SiSjZmax(m−j,0)Zn

= Si+jZmax(m−j,n)

= Qi+j,max(m−j,n) (82)

Case 2: positive i, negative j. Here we have

Qi,mQj,n = SiZmZnSj

= SiZmax(m,n)Sj

70



If i + j > 0, then we write
Zmax(m,n)Sj = SjZmax(m,n)−j

and then

SiZmax(m,n)Sj = SiSjZmax(m,n)−j

= Si+jZ−jZmax(m,n)−j

= Si+jZmax(m,n)−j

= Qi+j,max(m,n)−j

If i + j < 0, then we write
SiZmax(m,n) = Zmax(m,n)+iSi

and then

SiZmax(m,n)Sj = Zmax(m,n)+iSiSj

= Zmax(m,n)+iZiSi+j

= Zmax(m,n)+iSi+j

= Qi+j,max(m,n)+i

Both these cases boil down to the simpler form

Qi,mQj,n = Qi+j,max(m,n)+min(i,−j) (83)

Case 3: negative i, positive j. Then we have

Qi,mQj,n = ZmSiSjZn

= ZmSi+jZn

If i + j > 0, then we write ZmSi+j = Si+jZmax(m−i−j,0) and get

Qi,mQj,n = Qi+j,max(m−i−j,n) (84)

If i + j < 0, then we write Si+jZn = Zmax(n+i+j,0)Si+j and get

Qi,mQj,n = Qi+j,max(n+i+j,m) (85)

71



Case 4: negative i, negative j. Then we have

Qi,mQj,n = ZmSiZnSj

= ZmZmax(n+i,0)SiSj

= Zmax(m,n+i)Si+j

= Qi+j,max(m,n+i) (86)

Combined, (82)-(86) give (80) and (81) in proposition 4.

E.3 Simulating panels of individuals

Here, we briefly describe how to simulate a panel of individuals. The first option is to recover the
state-space law of motion, as described at the end of section (C.3), augmented with policies. Then,
one can simulate using the state space.

The second option is to recover the MA for policies. For example, in the Krusell-Smith model,
the MA for the capital policy, truncated to T, in response to innovations εt to TFP, takes the form

dkt =
T

∑
s=0

Ksεt−s (87)

where the ith entry in the vector dkt corresponds to the change in the capital policy of households
in state i. Hence, in order to simulate a panel of individuals, we need to recover the N × 1 vectors
Ks. This can be done as follows. Using the policy function symmetry property from Lemma 1, we
know that

dk0

dk1

dk2
...


=


∂k0
∂w0

∂k0
∂w1

∂k0
∂w2

0 ∂k0
∂w0

∂k0
∂w1

0 0 ∂k0
∂w0




dw0

dw1

dw2
...


+


∂k0
∂r0

∂k0
∂r1

∂k0
∂r2

0 ∂k0
∂r0

∂k0
∂r1

0 0 ∂k0
∂r0




dr0

dr1

dr2
...



=
(

∂k0
∂w0

∂k0
∂w1

∂k0
∂w2
· · ·
)


dw0 0 0

dw1 dw0
. . .

dw2 dw1
. . .

dw3 dw2
. . .

...
...

. . .


+
(

∂k0
∂r0

∂k0
∂r1

∂k0
∂r2
· · ·
)


dr0 0 0

dr1 dr0
. . .

dr2 dr1
. . .

dr3 dr2
. . .

...
...

. . .


(88)

The derivatives of the first-period policy k0 with respect to wt and rt are byproducts of step 1 of
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the fake news algorithm. Further, from the procedure to recover the MA representation described
in section 5.1, we obtain the matrices Mw,ε and Mr,ε satisfying

dw0

dw1

dw2
...


= Mw,ε



ε0

ε1

ε2
...





dr0

dr1

dr2
...


= Mr,ε



ε0

ε1

ε2
...


(89)

Combining (88) and (89) delivers the coefficients Kt in (87). Note that equation (88) is fast to
implement, since it involves a multiplication of N × T matrices by T × T matrices that can be
formed efficiently from (89).

Finally, to simulate a panel of individuals from the MA for policies, one can then take these
perturbed policy functions and apply them to simulated individuals.

E.4 Fast Fourier transform to compute analytical second moments.

Consider any sequences a0, . . . , aT−1 and b0, . . . , bT−1 of real scalars. If we define the sequences

(â0, . . . , â2T−2) = (a0, . . . , aT−1, 0, . . . , 0)

(b̂0, . . . , b̂2T−2) = (b0, . . . , bT−1, 0, . . . , 0)

to be a and b each padded by T − 1 zeros, then

a0bu + a1bu+1 + . . . + aT−1−ubT−1 =
2T−2

∑
`=0

â`b̂u+` (90)

where b̂u+` ≡ b̂u+`−(2T−2) when u + ` ≥ 2T − 2. It then follows from the standard properties of
the discrete Fourier transform F that for any u ∈ 0, . . . , T − 1

2T−2

∑
`=0

â`b̂u+` =
(
F−1

(
F (â)∗ · F (b̂)

))
s

(91)

where ∗ denotes complex conjugation.62

Since the discrete Fourier transform is a linear operator, we can extend this method to apply
to the matrices dX0, . . . , dXT−1 in (34), where we interpret F as applying element-by-element to a
sequence of matrices. Letting dX̂0, . . . , dX̂2T−2 denote the sequence padded with zeros like above,

62The padding with zeros to create â and b̂ is necessary so that the wraparound b̂s+` terms for large s + ` do not affect
the sum.
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we have from (90) and (91), substituting u = t′ − t, that

T−1−(t′−t)

∑
s=0

(dXs)(dXs+t′−t)
′ = [dX0][dXt′−t]

′ + . . . + [dXT−1−(t′−t)][dXT−1]
′

=
(
F−1 (F (dX̂)∗F (dX̂′)

))
t′−t

(92)

where dX̂ is the stacked sequence dX̂0, . . . , dX̂2T−2, the transpose dX̂′ is applied individually to
each matrix in the sequence, and F (dX̂)∗F (dX̂′) is the product of each pair of matrices in the
frequency-by-frequency sequence.63

We simply apply (92), using the fast Fourier transform for F , to calculate the covariances
in (34) for each t′ − t. Since the two key operations—the FFT and matrix multiplication—have
extremely efficient implementations widely available, this can be done very quickly, taking only a
few milliseconds in table 3 for the examples in this paper. It is far faster than a naive calculation
of the sum in (34).

This procedure is closely related to the standard FFT approach to calculating the empirical au-
tocovariance function (although many implementations only apply to 1-dimensional series, miss-
ing the efficiencies from exploiting linearity in equation (92)).64 It is also similar to the standard
formulas for the spectral density of an MA, and for inverting this spectrum (see e.g. Hansen and
Sargent 1981).

E.5 Equivalence between SSJ and Dynare for representative-agent models

In order to illustrate the accuracy of our routines to calculate impulse responses for representative-
agent models, here we perform two tests of the accuracy of impulse responses on two classic rep-
resentative agent models. Specifically, we simulate the Smets and Wouters (2007) model and the
benchmark model described in Herbst and Schorfheide (2015), with the parameters at the esti-
mated mode presented in these sources, using both our method and Dynare. Figure E.1 compares
the impulse responses of output to all shocks for the Smets-Wouters exercise: the left panel shows
the level of the impulse responses, and the right panel displays the difference to Dynare. Figure
E.2 repeats this exercise with the Herbst-Schorfheide model. As can be seen, our method deliv-
ers the same impulse responses for these benchmark representative-agent models with very high
accuracy.

63Since the inputs are real, the full transform is redundant and we can deal only with the first T entries; the final T− 2
are complex conjugates of entries 1 through T− 1. This economizes on the time forF and also for matrix multiplication.

64For instance, in the Python “statsmodels” package, the now-default “fft=True” option uses the FFT to calculate the
autocovariances of a one-dimensional time series.
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Figure E.1: Equivalence between SSJ and Dynare for the Smets and Wouters (2007) model.

(a) Impulse responses of output to all shocks
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Figure E.2: Equivalence between SSJ and Dynare for the Herbst and Schorfheide (2015) model.
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F Bayesian estimation results

F.1 Accuracy of likelihood computation for representative-agent models

Here, we continue the exercise of section E.5 by showing that, for both the Smets and Wouters
(2007) model and Herbst and Schorfheide (2015) model, estimating the posterior mode on the
original dataset yields the same answer with our method as it does with the routines offered in
Dynare (which uses the Kalman filter on a state-space representation of the model). Table F.1
shows that the posterior mode is identical to three digit accuracy. As discussed in the main text,
this verifies that our method to compute the likelihood for these benchmark models is accurate.

Table F.1: Estimated parameters for the Smets-Wouters and Herbst-Schorfheide economies

Model Method Parameters

Smets-Wouters

σa ρa σb ρb σg ρg σI ρI

SSJ 0.446 0.978 0.246 0.250 0.589 0.971 0.461 0.662
Dynare 0.446 0.978 0.245 0.252 0.589 0.970 0.460 0.663

σi ρi σp ρp ρma
p σw ρw ρma

w

SSJ 0.229 0.086 0.135 0.975 0.740 0.256 0.976 0.925
Dynare 0.229 0.086 0.133 0.975 0.735 0.256 0.975 0.924

Herbst-Schorfheide

τ κ ψ1 ψ2 r π y
SSJ 2.3162 1.0000 1.9684 0.4754 0.3043 3.4468 0.6214
Dynare 2.3164 1.0000 1.9684 0.4753 0.3051 3.4472 0.6213

σr ρr σg ρg σz ρz

SSJ 0.1905 0.7978 0.6531 0.9908 0.1855 0.9252
Dynare 0.1905 0.7978 0.6530 0.9903 0.1855 0.9252

F.2 Estimating heterogeneous-agent models

Tables F.2-F.4 summarize the prior and posterior distributions of the estimated parameters. Fig-
ures F.1-F.10 show recursive means and posterior modes for all our estimated models.

For simplicity, the DAG of the two-asset model in figure (C.2) is drawn with only three shocks:
to TFP Zt, monetary policy r∗t and government spending Gt. In our estimation, we add to these
four additional shocks: we let the price markup µp vary over time (a price markup shock), the
wage markup µw vary over time (a wage markup shock), the discount rate of households β vary
over time (a preference shock), and we add a spread rIt to the interest rate rt that enters the firm
valuation equation (53), and let that spread vary over time (an investment shock).
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Table F.2: Estimated parameters for our Krusell-Smith economy

Posterior
Shock Prior distribution Mode Mean [0.05, 0.95] CI

TFP shock
s.d. Invgamma(0.4, 4) 0.179 0.182 [0.165, 0.200]

AR-1 Beta(0.5, 0.2) 0.908 0.908 [0.862, 0.950]
MA-1 Beta(0.5, 0.2) 0.032 0.047 [0.015, 0.095]

Table F.3: Estimated parameters for our one-asset HANK economy

Posterior (shocks) Posterior (shocks + model)
Parameter / shock Prior distribution Mode Mean [0.05, 0.95] CI Mode Mean [0.05, 0.95] CI

Monetary policy shock
s.d. Invgamma(0.4, 4) 0.429 0.434 [0.393, 0.478] 0.419 0.430 [0.385, 0.481]

AR-1 Beta(0.5, 0.2) 0.529 0.525 [0.478, 0.569] 0.463 0.460 [0.393, 0.524]

G shock
s.d. Invgamma(0.4, 4) 0.580 0.584 [0.514, 0.662] 0.569 0.581 [0.508, 0.662]

AR-1 Beta(0.5, 0.2) 0.872 0.870 [0.838, 0.900] 0.833 0.821 [0.771, 0.868]

P markup shock
s.d. Invgamma(0.4, 4) 0.099 0.101 [0.091, 0.112] 0.092 0.096 [0.067, 0.128]

AR-1 Beta(0.5, 0.2) 0.881 0.878 [0.849, 0.905] 0.913 0.909 [0.875, 0.942]

φ Gamma(1.5, 0.25) 1.320 1.352 [1.231, 1.495]
φy Gamma(0.5, 0.25) 0.126 0.143 [0.061, 0.250]
κ Gamma(0.1, 0.1) 0.140 0.144 [0.105, 0.186]
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Table F.4: Estimated parameters for our two-asset HANK economy

Posterior (shocks) Posterior (shocks + model)
Parameter / shock Prior distribution Mode Mean [0.05, 0.95] CI Mode Mean [0.05, 0.95] CI

TFP shock
s.d. Invgamma(0.4, 4) 0.072 0.073 [0.066, 0.080] 0.071 0.072 [0.066, 0.080]

AR-1 Beta(0.5, 0.2) 0.994 0.941 [0.911, 0.968] 0.970 0.951 [0.921, 0.979]

G shock
s.d. Invgamma(0.4, 4) 0.437 0.441 [0.400, 0.487] 0.467 0.643 [0.543, 0.783]

AR-1 Beta(0.5, 0.2) 0.503 0.499 [0.448, 0.548] 0.292 0.952 [0.914, 0.986]

β shock
s.d. Invgamma(0.4, 4) 0.093 0.093 [0.085, 0.103] 0.093 0.096 [0.087, 1.104]

AR-1 Beta(0.5, 0.2) 0.941 0.938 [0.906, 0.967] 0.971 0.943 [0.913, 0.969]

rI (investment) shock
s.d. Invgamma(0.4, 4) 0.174 0.179 [0.147, 0.214] 0.089 0.413 [0.360, 0.473]

AR-1 Beta(0.5, 0.2) 0.779 0.775 [0.731, 0.816] 0.867 0.656 [0.594, 0.714]

Monetary policy shock
s.d. Invgamma(0.4, 4) 0.1442 0.146 [0.123, 0.172] 0.655 0.663 [0.487, 0.844]

AR-1 Beta(0.5, 0.2) 0.830 0.827 [0.798, 0.856] 0.844 0.737 [0.671, 0.874]

P markup shock
s.d. Invgamma(0.4, 4) 0.091 0.092 [0.083, 0.101] 0.059 0.049 [0.032, 0.070]

AR-1 Beta(0.5, 0.2) 0.904 0.903 [0.881, 0.923] 0.888 0.891 [0.851, 0.923]

W markup shock
s.d. Invgamma(0.4, 4) 0.373 0.377 [0.343, 0.414] 0.142 0.155 [0.116, 0.202]

AR-1 Beta(0.5, 0.2) 0.875 0.872 [0.844, 0.899] 0.648 0.586 [0.432, 0.734]

φ Gamma(1.5, 0.25) 1.203 1.297 [1.021, 1.764]
φy Gamma(0.5, 0.25) 0.086 2.932 [2.564, 3.519]
κp Gamma(0.1, 0.1) 0.035 0.030 [0.010, 0.064]
κw Gamma(0.1, 0.1) 0.009 0.011 [0.007, 0.017]
εI Gamma(4, 2) 0.267 0.502 [0.349, 0.670]

Figure F.1: Recursive means for the RWMH estimation of the Krusell-Smith model
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Figure F.2: Posterior distributions for the RWMH estimation of the Krusell-Smith model
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Figure F.3: Recursive means for the RWMH estimation of the one-asset HANK model with shocks
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Figure F.4: Posterior distributions for the RWMH estimation of the one-asset HANK model with shocks
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Figure F.5: Recursive means for the RWMH estimation of the one-asset HANK model with shocks and
parameters
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Figure F.6: Posterior distributions for the RWMH estimation of the one-asset HANK model with shocks
and parameters
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Figure F.7: Recursive means for the RWMH estimation of the two-asset HANK model with shocks
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Figure F.8: Posterior distributions for the RWMH estimation of the two-asset HANK model with shocks
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Figure F.9: Recursive means for the RWMH estimation of the two-asset HANK model with shocks and
parameters
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Figure F.10: Posterior distributions for the RWMH estimation of the two-asset HANK model with shocks
and parameters
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