Partitioned Successive-Cancellation List Decoding of Polar Codes

Seyyed Ali Hashemi*, Alexios Balatsoukas-Stimming†, Pascal Giard*, Claude Thibeault◇, Warren J. Gross*

*McGill University, Montréal, Québec, Canada
†École polytechnique fédérale de Lausanne, Lausanne, Switzerland
◇École de technologie supérieure, Montréal, Québec, Canada

March 23, 2016
What is the problem?

- Polar codes are state-of-the-art codes with interesting properties
- Successive-Cancellation List (SCL) decoding can outperform LDPC codes
- SCL requires large amount of memory
 - High memory requirement translates into high area occupation

In this talk:

We reduce the memory usage of SCL and improve its performance!
Polar Codes

- First family of codes which can provably achieve the channel capacity with explicit construction and low-complexity decoding\(^1\)
- The encoding process consists of recursive application of a linear transformation of \(G = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \) to get the generator matrix \(G^\otimes n\)
 - The channels are then sorted as being either *good* or *bad*
 - As the number of channels increases, the fraction of good channels tends to the channel capacity
- Different decoding schemes are available:
 - Successive-Cancellation (SC)
 - SC List

For a rate $\frac{K}{N}$ code $P(N, K)$, the K best channels are found and the information bits are assigned to those channels.

The $N - K$ worse channels are set to a predefined value (usually 0). These are called frozen bits F.
Successive-Cancellation Decoding

\[\alpha_l[i] = \text{sgn}(\alpha[i]) \text{sgn}(\alpha[i + 2^{s-1}]) \min(|\alpha[i]|, |\alpha[i + 2^{s-1}]|), \]

\[\alpha_r[i] = \alpha[i + 2^{s-1}] + (1 - 2\beta_l[i])\alpha[i], \]

\[\beta[i] = \begin{cases}
\beta_l[i] \oplus \beta_r[i], & \text{if } i < 2^{s-1} \\
\beta_r[i + 2^{s-1}], & \text{otherwise},
\end{cases} \]
SC List Decoding

- SC decoding
 \[\hat{u}_i = \begin{cases}
0, & \text{if } i \in \mathcal{F} \text{ or } \alpha_i \geq 0, \\
1, & \text{otherwise.}
\end{cases} \]

- SCL decoding
 \[\hat{u}_i' = \begin{cases}
0, & \text{if } i \in \mathcal{F} \\
0 \text{ or } 1, & \text{otherwise.}
\end{cases} \]
 \[PM_i' = \begin{cases}
PM_{i-1}', & \text{if } \hat{u}_i' = \frac{1}{2} \left(1 - \sgn \left(\alpha_i' \right) \right), \\
PM_{i-1}' + |\alpha_i'|, & \text{otherwise,}
\end{cases} \]

- Cyclic Redundancy Check (CRC) code can be used to help SCL find the correct candidate
Partitioned SCL Decoding

- The decoder tree is broken into partitions (subtrees)
- SCL decoding is performed only on the partitions
- Standard SC rules are applied to the remainder of the decoding tree
- Each partition outputs a single candidate codeword which is selected with the help of a CRC and then sent to the next partition
- The decoding process starts with the standard SC update rules
- The decoder does not require memory to store L entire trees of internal LLRs
- Only L copies of the partitions on which SCL decoding is performed are stored
Proposed Algorithm

Partitioned SCL Decoding

level n

CRC-aided SCL

level $n-1$

CRC-aided SCL

level $n-2$

CRC-aided SCL

CRC-aided SCL

CRC-aided SCL

CRC-aided SCL
Memory Requirements

\[M_{SC} = (2N - 1) Q_\alpha + N - 1, \]
\[M_{SCL} = (N + (N - 1) L) Q_\alpha + L Q_{PM} + (2N - 1) L, \]
\[M_{PSCL} = \left(\sum_{k=0}^{P-1} \frac{N}{2^k} + \left(\frac{N}{2^{P-1}} - 1 \right) L \right) Q_\alpha + L Q_{PM}, \]
\[+ \sum_{k=1}^{P-2} \frac{N}{2^k} + \left(\frac{N}{2^{P-2}} - 1 \right) L, \]
\[\beta (\text{partial sums}) \]
Memory Requirements

![Graph showing memory requirements for different number of partitions and PSCL decoding of Polar Codes. The graph plots memory bits against the number of partitions, with lines for PSCL2, PSCL4, PSCL8, SC Bound, SCL2 Bound, SCL4 Bound, and SCL8 Bound. The x-axis represents the number of partitions ranging from 2^0 to 2^{11}, and the y-axis represents memory bits ranging from 0 to 10^5. The graph illustrates how memory requirements decrease as the number of partitions increases.]
Performance Results $\mathcal{P}(2048, 1024)$

![Graph showing FER and BER vs. E_b/N_0 for different decoding schemes.](image-url)
Implementation Results $P(2048, 1024)$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Total (mm^2)</th>
<th>Memory (mm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>0.723</td>
<td>0.413</td>
</tr>
<tr>
<td>SCL2-CRC32</td>
<td>1.563</td>
<td>0.702</td>
</tr>
<tr>
<td>SCL4-CRC32</td>
<td>3.075</td>
<td>1.214</td>
</tr>
<tr>
<td>PSCL($2, 2$)-CRC16</td>
<td>1.189</td>
<td>0.540</td>
</tr>
<tr>
<td>PSCL($4, 2$)-CRC8</td>
<td>0.909</td>
<td>0.415</td>
</tr>
<tr>
<td>PSCL($4, 4$)-CRC8</td>
<td>1.356</td>
<td>0.543</td>
</tr>
</tbody>
</table>
Conclusions

- We proposed a novel PSCL decoding algorithm for polar codes
- The code is broken into partitions and each partition is decoded with a CRC-aided SCL decoder
- The memory requirements of PSCL decoder is significantly smaller than that of an SCL decoder
- At equivalent error-correction performance, PSCL leads to memory and total area savings of 41% and 42% compared to a similar SCL decoder implementation
- PSCL enables a coding gain of approximately 0.25 dB at a BER of 10^{-5} while occupying 13% less total area than the SCL decoder

In short:

PSCL achieves better performance and reduces memory usage at the same time!
Thank you!