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The inflationary universe 

A D Linde 
I E Tamm Department of Theoretical Physics, P N Lebedev Physical Institute, Academy of Sciences of the 
USSR, Moscow 117924, USSR 

Abstract 

According to the inflationary universe scenario the universe in the very early stages of 
its evolution was exponentially expanding in the unstable vacuum-like state. At the 
end of the exponential expansion (inflation) the energy of the unstable vacuum (of a 
classical scalar field) transforms into the energy of hot dense matter, and the subsequent 
evolution of the universe is described by the usual hot universe theory. 

Recently it was realised that the exponential expansion during the very early stages 
of evolution of the universe naturally occurs in a wide class of realistic theories of 
elementary particles. The inflationary universe scenario makes it possible to obtain a 
simple solution to many longstanding cosmological problems and leads to a crucial 
modification of the standard point of view of the large-scale structure of the universe. 
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1. Introduction 

The discovery of unified gauge theories of all fundamental interactions during the last 
10-15 years has opened up a new era in the development of elementary particle theory. 
At the end of the 1960s the Glashow-Weinberg-Salam unified theory of weak and 
electromagnetic interactions was suggested (Glashow 1961, Weinberg 1967, Salam 
1968). In 1974 the idea of grand unified theories was suggested, which unified strong, 
weak and electromagnetic interactions (Georgi and Glashow 1974). Finally, in 1976 
it was suggested that all fundamental interactions could be uniquely described in the 
context of a supergravity theory (Freedman et al 1976, Deser and Zumino 1976). For 
a detailed discussion of the present status of elementary particle theory one can consult 
many excellent books and reviews (Abers and Lee 1973, Taylor 1976, Fayet and Ferrara 
1977, Langacker 1981, van Nieuwenhuizen 1981, Okun' 1982). 

Grand unified theories are renormalisable, just as quantum electrodynamics, and 
some of the most interesting versions of these theories prove to be asymptotically free, 
which means, roughly speaking, that the strength of interaction between different 
particles decreases with the increases in their energies (Gross and Wilczek 1973, Politzer 
1973). This important property makes possible a quantitative description of the 
elementary particle interactions at energies up to E - Mp - lOI9 GeV in the centre-of- 
mass system, i.e. up to the Planck energy at which quantum gravity effects become 
important. 

One of the consequences of the successful development of elementary particle 
theory is considerable progress in the theory of superdense matter. Ten years ago 
matter with a density greater than the nuclear density p - 10L4-10'5 g cm-3 was usually 
called superdense, and there were almost no ideas of how to describe matter with 
p b 10'' g ~ m - ~ .  After the discovery of asymptotically free theories it became possible 
to describe matter at temperatures T up to T - Mp- lOI9 GeV, which corresponds to 
the Planck density pp - M: - g ~ m - ~ ,  Thus, after the development of asymptoti- 
cally free theories it became possible to investigate properties of matter at densities 
which are greater than the nuclear density by 80 orders of magnitude! 

The results of this investigation were rather unexpected. It was shown that with 
an increase (decrease) of temperature a sequence of phase transitions should occur, 
each of which leads to a qualitative modification of the properties of superdense matter 
(Kirzhnits 1972, Kirzhnits and Linde 1972, 1974, 1976, Weinberg 1974, Dolan and 
Jackiw 1974, Linde 1979). 

These phase transitions should have taken place during the process of cooling of 
the expanding universe soon after the Big Bang. The cosmological consequences of 
these phase transitions may be so important that by a comparison of the predictions 
of the theory of phase transitions in gauge theories with the present cosmological 
observational data one can obtain strong constraints on the parameters of elementary 
particle theory (Linde 1977, 1980a) and even on the possible classes of theories 
(Zeldovich et al 1974, Zeldovich and Khlopov 1978, Preskill 1979). This fact now 
becomes very important, since in the near future an investigation of particle properties 
in the energy range E - lOI5 GeV, which is necessary for a thorough study of grand 
unified theories, can be performed neither with the help of cosmic-ray experiments, 
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nor by constructing new accelerators. The only ‘laboratory’ wherein elementary parti- 
cles of such energies once existed was our universe in the very early stages of its 
evolution. Therefore, at present many experts in elementary particle physics consider 
the universe as ‘a unique physical laboratory for testing the new elementary particle 
theories, and many new theories have already been rejected after this ‘cosmological 
ability’ test (Zeldovich and Khlopov 1978, Preskill 1979, Parke and Pi 1981, Lazarides 
et a1 1982, Sikivie 1982, Weinberg 1982a, b). 

During the investigation of the cosmological consequences of gauge theories a 
number of new, unexpected and very interesting possibilities have been revealed, some 
of which would have seemed absolutely crazy only a few years ago. One of the best 
examples is the idea that the baryon asymmetry of the universe could appear due to 
non-equilibrium CP-violating processes with baryon non-conservation in the very early 
universe (Sakharov 1967). This idea was successfully realised in the context of grand 
unified theories (Yoshimura 1978, Ignatiev er a1 1978, Dimopoulos and Susskind 1978, 
Ellis et a1 1979, Toussaint et a1 1979, Weinberg 1979). A detailed discussion of the 
baryosynthesis scenario is contained in a number of review articles (see, for example, 
Dolgov and Zeldovich (1981), Langacker (1981) and Barrow (1983)). The main aim 
of the present review is to discuss some other ideas which have been suggested over 
the last few years and are related to the so-called inflationary universe scenario (Guth 
1981, Linde 1982a, b, c, d, 1983d, e, Albrecht and Steinhardt 1982). This scenario, as 
well as the closely related Starobinsky model (Starobinsky 1979, 1980), opens up the 
possibility of getting a simple solution to many different cosmological problems, some 
of which for a long time seemed almost metaphysical. 

An important feature of this scenario is the assumption that in the very early 
universe there was a stage of evolution in which the universe was in an unstable 
vacuum-like state with a large energy density. According to the Einstein equations, 
the universe in such a state expands exponentially, a(  t )  - exp ( H t ) ,  where a(  t )  is the 
scale factor of the universe and H is the Hubble ‘constant’. (Actually the parameter 
H = a / a  slowly decreases over time, and it is now many orders of magnitude smaller 
than it was at the stage of exponential expansion.) Later the vacuum-like state decays, 
its energy transforms into heat, the universe becomes hot and the scale factor a ( t )  of 
the hot universe grows more slowly, a( t ) -J t .  

The possibility of exponential expansion in a vacuum-like state in the very early 
stages of evolution of the universe was first suggested by Gliner (1965, 1970). This 
possibility was also discussed by many other authors (Sakharov 1965, Altshuller 1972, 
Gurevich 1975, Gliner and Dyminikova 1975). However, the origin of the vacuum-like 
state investigated by these authors remained obscure. 

Later it became clear that the constant homogeneous classical scalar field p, which 
necessarily appears in all unified gauge theories, looks just like the vacuum state, which 
in some cases may have a very large energy density (Linde 1974, Veltman 1974, 1975, 
Dreitlein 1974). It was also shown that this energy is temperature-dependent (Linde 
1974) and that during the first-order phase transition with large supercooling this 
vacuum energy may dominate the energy of the universe (Kirzhnits and Linde 1976, 
Linde 1979). After the phase transition the energy of the supercooled vacuum state 
transforms into heat, which may lead to a considerable growth of the total entropy of 
the universe (Linde 1979). 

The actual significance of all these facts was not quite clear until the remarkable 
paper by Guth (198 l ) ,  who suggested using the exponential expansion of the universe 
in the supercooled vacuum state in order to solve some longstanding cosmological 
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problems, such as the flatness problem, the horizon problem and the primordial 
monopole problem. The word ‘inflation’, suggested by Guth, was originally related to 
the exponential expansion of the universe in the supercooled state before the phase 
transition. Later the same word was used to denote any intermediate stage of quasi- 
exponential expansion, in which the scale factor of the universe a ( t )  was given by 

a(t)-exp.(  1 H ( t )  dt)  

where the Hubble ‘constant’ H = a l a  varies slowly enough, Hi<< H 2 .  
The main idea of the inflationary universe scenario, suggested by Guth (1981), was 

very clear and attractive and many scientists worked enthusiastically in order to 
implement this scenario in the context of some realistic theory of elementary particles. 
However, as was pointed out by Guth himself, the universe after the phase transition 
in his scenario becomes extremely inhomogeneous (Guth 1981). This problem seemed 
unsolvable for some time (Hawking et a1 1982, Guth and Weinberg 1983). Fortunately, 
the specific difficulties, which precluded the resolution of this problem in the original 
inflationary universe scenario, were removed in 1982, when the new inflationary 
universe scenario was suggested (Albrecht and Steinhardt 1982, Linde 1982a, b, c, d). 
With the help of this new scenario it became possible to solve not only the flatness, 
horizon and primordial monopole problems, but also many other difficult problems 
in the usual hot universe theory. However, the new inflationary universe scenario was 
still not quite perfect and a consistent realisation of the inflationary universe scenario 
was suggested only very recently, after the development of the chaotic inflation scenario 
which is not based on the idea of supercooling (Linde 1983d, e, g, Goncharov and 
Linde 1984a, b).  

Thus, the inflationary universe scenario at present differs considerably from the 
original version of this scenario suggested by Guth, and we do not know what other 
modifications will be made to this scenario in the future. Nevertheless, it now seems 
possible to summarise some preliminary results of the development of the inflationary 
universe scenario, which could be of general physical interest. 

This paper is based partially on my talks at the Nuffield Workshop in Cambridge 
(Linde 1983a) and at the Shelter Island Conference (Linde 1984a), and also on my 
previous review article (Linde 1984b). On the other hand, this paper may be considered 
as the second part of my review article on phase transitions in gauge theories and 
cosmology, which was published earlier in Reports on Progress in Physics (Linde 1979). 

To make the presentation at least partially self-contained we will start with the 
discussion of some properties of gauge theories (§  2) and of phase transitions in these 
theories (§  3). In § 4 we will remind the reader of the main features of the standard 
hot universe scenario. In § 5 we will discuss some longstanding problems of this 
scenario, as well as some new problems, related to the cosmological consequences of 
gauge theories. Section 6 is devoted to the first version of the inflationary universe 
scenario as suggested by Guth (1981). In § 7 we discuss the first version of the new 
inflationary universe scenario (Linde 1982a, Albrecht and Steinhardt 1982). In 9 8 an 
improved version of this scenario is discussed (Linde 1982b, c, d, Starobinsky 1982) 
and an important problem concerning the density perturbations generated after inflation 
is considered (Hawking 1982, Starobinsky 1982, Guth and Pi 1982, Bardeen et al 1983). 
In § 9 we discuss the Starobinsky model, which is closely related to the new inflationary 
universe scenario (Starobinsky 1979, 1980, 1983b). In 8 10 we discuss a version of the 
new inflationary universe scenario based on a theory of phase transitions in N = 1 
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supergravity (Ellis et al 1983a, Nanopoulos et al 1983a, b, Linde 1983b). Section 11 
contains a discussion of the chaotic inflation scenario (Linde 1983c, d). In § 12 we 
consider a possible realisation of the chaotic inflation scenario in supergravity (Linde 
1983f, Goncharov and Linde 1984a, b). Our presentation would be somewhat incom- 
plete if we did not discuss some less elaborate but extremely interesting questions 
related to quantum cosmology. These questions are considered in § 13 and in the 
appendices. In the conclusions (§  14) we discuss the present status and outlook of 
further developments of the inflationary universe scenario. 

2. Spontaneous symmetry breaking in gauge theories 

One of the main features of unified gauge theories is the spontaneous symmetry breaking 
between different interactions due to the appearance of some constant classical scalar 
fields. To illustrate the main idea of the mechanism of spontaneous symmetry breaking 
let us consider a simple model of a real scalar field cp with the Lagrangian 

L=f(a,cp) 2 - 2 c p  M 2  2 --cp A 4  

4 

which describes the scalar field cp with the mass M and the coupling constant A. The 
potential energy of the field cp (effective potential) in this theory at the classical level 
(i.e. without quantum corrections) is given by 

From equation (2.2) it is clear that at M 2  > 0 the most energetically advantageous state 
is the state cp = 0 (figure l (a ) ) .  Let us consider the theory (2.1) with a 'wrong' sign of 
M 2 ,  M 2 =  - p 2 < 0 .  In this case the state cp = O  is unstable and the energetically 
favourable state, corresponding to a minimum of V(cp), is cp = cpo= * p / J A  (figure 
1 ( b ) ) .  Therefore, in such a theory a constant classical field cp = p/JA should appear, 
which means that the symmetry cp t) -cp of the original theory becomes spontaneously 
broken. 

1 

1 C 

V 

l a )  i b l  

Figure 1. Effective potential V(p) in the theory (2.1). ( a )  M 2 > 0 ,  ( 6 )  M 2 = - p 2 < 0 .  
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After the symmetry breaking the particle spectrum in the theory (2.1) changes. The 
effective mass squared of the scalar fluctuations near an extremum of V(cp) is given 
simply by the value of the curvature of the effective potential near the extremum. For 
example, m 2 ( q  = 0) = dZV/dcpZ(9=o = M Z  = -p2  < 0. After symmetry breaking the sign 
of the mass squared becomes positive: 

= 3Acp2-pz= 2p2. 

All other particles which interact with the field cp also change their masses after the 
symmetry breaking. Let us consider, for example, the Lagrangian of massless fermions 
$, interacting with the field cp: 

From equation (2.4) it follows that, after symmetry breaking, the fermions acquire a 
mass 

M+ = lhcpl= hpA-’”. (2.5) 
By a similar mechanism one can give a non-vanishing mass to the massless vector 
fields interacting with the field cp. As an important example we shall consider here the 
Higgs model (Higgs 1964a, b, 1966, Kibble 1967, Guralnik et a1 1964, Englert and 
Brout 1964), which describes a massless vector field A, interacting with a complex 
scalar field ,y = b(x, +ix2) with a ‘wrong’ sign of the mass term pzx*x:  

L= -f(a,A, -aJi,)’+(d, +ieA,)X*(a, -ieA,)x + p Z , y * ~ - A ( ~ * ~ ) 2 .  (2.6) 
The Lagrangian (2.6) is invariant under the U( 1) group of gauge transformations: 

This symmetry becomes spontaneously broken if the field x acquires a classical part 
cp. This effect can most easily be described by the following change of variables: 

where cp is some constant classical field. After this change of variables the Lagrangian 
(2.6) is transformed into 

Note that the auxiliary field l ( x )  is completely transformed away. The theory (2.9) 
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describes the vector fields A, with the mass mA = ecp, interacting with the real scalar 
field x, which has a constant classical part cp with the effective potential (2.2) with 
M 2  = -p2. At p2 > 0, as before, there is a spontaneous symmetry breaking, the classical 
field cp becomes equal to cpo = p/dA and vector particles acquire the mass 

(2.10) 

The scalar fields cp, which make vector mesons massive, are usually called Higgs bosons. 
The main idea of the unification of gauge theories is that, before symmetry breaking, 

all vector mesons, which are responsible for different types of interactions, are massless. 
After the symmetry breaking some of the vector mesons, interacting with the classical 
Higgs field cp, become massive and the corresponding interactions become short-range. 
For example, the Glashow-Weinberg-Salam theory before symmetry breaking is 
invariant under the SU(2) x U( 1) group of gauge transformations and describes long- 
range electroweak interactions mediated by four different massless vector bosons. After 
the appearance of the classical Higgs field H - 250 GeV some of these vector bosons 
(W: and Z i )  acquire mass m,- m,- eH - lo2 GeV and the corresponding interac- 
tions become short-range (weak interactions), whereas one more field (the electromag- 
netic field AIL)  remains massless (Weinberg 1967, Salam 1968). 

In grand unified theories several different types of Higgs scalar fields are necessary. 
For example, in the minimal SU(5) theory one of these fields Q, is represented by a 
traceless matrix 5 x5. The SU(5) effective potential with respect to the field CP at the 
classical level looks as follows: 

mA = ecpo = e p / f i .  

m2 a b 
2 4 2 V(@) = - Tr C P 2  +- (Tr Q,2)2 +- Tr a4 (2.1 1) 

There are two different symmetry breaking patterns in this theory. The first is the 
symmetry breaking SU(5) -+ SU(4) x U( 1 )  due to generation of the field 

i l  

(2.12) 

This possibility is undesirable, and one should arrange things in such a way as to avoid 
such a symmetry breaking by an appropriate choice of effective potential V(Q,), or by 
some other means (see § 12). 

Another (desirable) type of symmetry breaking is SU(5) -+ SU(3) xSU(2) x U( l) ,  
which occurs due to the appearance of the field 

I .  (2.13) 

The value of the field Q in (2.13) is extremely large, p - lOI5 GeV. Before symmetry 
breaking all vector particles in this theory are massless, there is no difference between 
weak, strong and electromagnetic interactions, and leptons can easily be transformed 
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into quarks and vice versa. After the symmetry breaking X and Y vector mesons, 
responsible for the interactions transforming quarks into leptons, acquire a very large 
mass, m, = my = d$gcp/2 - 10’’ GeV, where g2 - 0.3 is the SU(5) gauge coupling con- 
stant. The corresponding interactions become strongly suppressed, which is the reason 
why the proton at present is almost stable. After the appearance of the field (2.13) 
the original SU(5) symmetry breaks down to SU(3) xSU(2) XU(l),  which implies 
symmetry breaking between strong interactions (with the group of symmetry SU(3)) 
and electroweak interactions (SU(2) x U( 1 ) ) .  Then there appears another classical field 
H - lo2 GeV, which breaks the SU(2) x U( 1) symmetry down to the U( symmetry 
of electromagnetic interactions, just as in the Glashow-Weinberg-Salam theory (Georgi 
and Glashow 1974). 

A detailed discussion of different symmetry breaking patterns in grand unified 
theories is contained in the papers by Gell-Mann er a1 (1978), Langacker (1981) and 
Slansky (1981). 

From equation (2.2) it could be inferred that symmetry breaking in gauge theories 
is possible only for M Z  = -p2 = d2V/dcp2lvp0< 0. However, this is not quite correct. 
For example, it can be shown that in the one-loop approximation the effective potential 
in the Higgs model at €’>>A looks as follows: 

(2.14) 

where po is some normalisation mass. From (2.14) it follows that even at M 2 >  0 the 
effective potential may have its absolute minimum somewhere at cp = cpo # 0 (Coleman 
and Weinberg 1973, Linde 1976, Weinberg 1976). In particular, at M 2  = 0 the effective 
potential (2.14) can be represented in the following form: 

(2.15) 

This is the Coleman-Weinberg theory (Coleman and Weinberg 1973), which at cp = 0 
looks just like a massless scalar electrodynamics. However, from (2.15) it follows that 
the state cp = 0 is unstable and the absolute minimum of V(cp) is displaced at cp = cpo # 0. 
The SU(5) version of the Coleman-Weinberg effective potential with respect to the 
symmetry breaking SU(5) + SU(3) x SU(2) x U( 1) (2.13) is 

(2.16) 

The last term is added in order to make the vacuum energy zero at present, V( cpo) = 0. 
This constraint follows from cosmological observational data, which implies that at 
present I V(cpo)l 5 g ~ m - ~ ,  whereas the typical value of V(0) ~(2.16) is of the order 
of g ~ m - ~ .  By using the relation m, = dzgcp0/2 one may represent equation (2.16) 
in the following form: 

25 9 
1 2 8 ~  ( Jo :) 32rr2 v ( p ) = 7 c p 4  In--- +-mi. (2.17) 

The cosmological implications of this theory will be thoroughly discussed in 0 0  7 
and 8. 



934 A D Linde 

3. Phase transitions in gauge theories 

The investigation of superdense matter described by gauge theories with spontaneous 
symmetry breaking was initiated by Kirzhnits (1972) (see also Kirzhnits and Linde 
1972). He has predicted that at a sufficiently large temperature T the classical scalar 
field cp, which leads to the symmetry breaking, must disappear. A detailed theory of 
the corresponding phase transition has been developed by Weinberg ( 1974), Dolan 
and Jackiw (1974) and Kirzhnits and Linde (1974, 1976). A thorough discussion of 
the phase transitions in gauge theories is contained in Linde (1979), and therefore we 
will just remind readers here of some of the main features of the symmetry behaviour 
in gauge theories at a finite temperature. 

The main point is that at a finite temperature an equilibrium value of cp ( T )  
corresponds not to the minimum of the potential energy V(cp) but to the minimum of 
the free energy F(p, T )  V(q, T ) ,  which is equal to V(cp) at T = 0. It is known that 
the temperature-dependent contribution of ultrarelativistic scalar particles with mass 
m << T to the value of F(cp, T )  is given by (Landau and Lifshitz 1976) 

90 24 AF=AV(cp ,  

Now let us take into account that in the theory (2.1) 

d2V 
dcp 

m (cp)=!=3~cp~-p’. 

Therefore, at T >> m 

V(cp, T )  = --cp p2 --p4+-cp2---- h AT2 7r2T4 p 2 T 2  
2 4  8 90 24 (3.2) 

(see figure 2). 
From equation (3.2) it follows that with an increase of temperature the value of 

the field cp( T )  in the minimum of V(cp, T )  decreases, and at all temperatures exceeding 
the critical temperature 

(3.3) 

the only minimum of V(q, T )  is displaced at cp = 0, which means that at T > T, there 
is no symmetry breaking in the theory (2.1). From equation (3.2) it follows that the 
value of cp( T )  with the growth of temperature up to T = T, decreases continuously, 
which corresponds to the second-order phase transition. 

Note that in the case h << 1 the value of T, (3.3) is much greater than m at cp 6 cpo,  
which justifies our use of the high-temperature decomposition in (3.1). However, in 
many realistic theories (and in practically all grand unified theories (Linde 1980b, 
1981a, Daniel 1981)) the phase transition occurs at T -  m, or even at T<c m. In such 
a case the effective potential V( cp, T )  may have more than one local minimum (Kirzhnits 
and Linde 1976, Linde 1979). A typical example is shown in figure 3. In some 
temperature intervals TA< T,< T% the effective potential V(q, T )  has two minima. 
The phase transition starts at the critical temperature T,, at which the values of V( cp, T )  
in these minima become equal to each other. Such a phase transition is the first-order 
one. It proceeds, like the boiling of water, by the formation and expansion of bubbles 
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Figure 2. Effective potential V ( q ,  T )  in the theory (2.1) at M 2  = -p2<0 .  A, T=O; B, O <  T <  T,; C, T >  T,. 

Figure 3. Behaviour of V(p, T )  corresponding to the first-order phase transition. At Tf: < T i  Tf the effective 
potential has two different minima, which have the same depth at T =  T,. A, T=O; B, TA< T <  T,; 
C, Tc< T <  Tf; D, T >  TZ. 



936 A D Linde 

filled with matter in a new, energetically favourable phase. An investigation of this 
process shows that in many theories the probability of bubble formation is very small 
(Voloshin et a1 1974, Coleman 1977, Linde 1977, 1981b, 1983h). Therefore the phase 
transition with an increase of temperature in such theories proceeds from a strongly 
superheated asymmetric state cp # 0, whereas the phase transition with a decrease of 
temperature in these theories proceeds from a strongly supercooled symmetric state 
cp = 0. Such a phase transition in grand unified theories, which we have called the 
Grand Bang (Linde 1981a), in some cases looks like a large explosion all over the 
universe. As we shall see, such processes may lead to many interesting cosmological 
consequences. 

4. The standard hot universe scenario 

According to the hot universe theory, the universe has been expanding and gradually 
cooling from a state with infinite temperature and density (Weinberg 1972, Zeldovich 
and Novikov 1975). The universe is assumed to be homogeneous and isotropic (in 
accordance with the observational data) and is described by the Friedmann-Robertson- 
Walker metric 

+ r2(dB2 +sin2 B dcp2 
1 - kr2 

where k = +1, -1 or 0 for a closed, open or flat universe, respectively, a ( t )  is the 
‘radius’ of the universe or, to be more precise, its scale factor. The evolution of a ( t )  
is governed by the Einstein equations 

477 
3 

ii=--GG(p+3p)a (4.2) 

Here p is the energy density, p denotes the pressure, G is the gravitational constant, 
G =  M i 2  (where Mp- loL9 GeV is the Planck mass) and H = d / a  is the Hubble 
‘constant’ (which, generally speaking, is time-dependent). Conservation of energy 
(which can be deduced from (4.2) and (4.3)) leads to the equation 

(4.4) P - -- a _ -  
a 3 ( P + P ) ’  

In the standard scenario it is usually assumed also that the expansion is adiabatic, in 
which case 

d 
d t  
- (sa3)  =o  (4.5) 

where s is the entropy density. 
In the asymptotically free theories in the lowest approximation one may neglect 

particle interactions in the superdense matter, which means that superdense matter 
looks like an (almost) ideal gas of ultrarelativistic particles. Therefore the values of 



The inflationary universe 937 

p, p and s are given by (Landau and Lifshitz 1976) 

(4.6) 
7T2 

p = 3p =- N (  T )  T4 
30 

2 T2  

45 
s =- N (  TIT3. 

Here N (  T )  is the effective number of particle species: 

N (  T )  = NB( T )  +ZNF( T )  

(4.7) 

(4.8) 
where NB(NF) is the effective number of boson (fermion) degrees of freedom (for 
example, NB= 1 for a real scalar field, NB=3 for a massive vector field, etc) with 
masses mcc T. 

It can be shown (see 0 5) that, in the very early stages of evolution of the universe 
in the standard scenario, the universe was very flat and one may neglect the term k / a 2  
in equation (4.3). In that case, from (4.3) and (4.4) it follows that 

a ( t )  -Jt (4.9) 
and the age of the universe is given by 

(4.10) 

Rigorously speaking, these results are valid only at T S  Tp- Mp/JN- 10" GeV, and 
at the density p 6 pp - M:/ N - log2 g ~ m - ~ ,  since at T b Mp/@, p h M:/ N quantum 
corrections to the Einstein equations become considerable (Zeldovich and Novikov 
1975) (see also Linde 1983b). Moreover, the thermodynamic equilibrium in the 
expanding universe is established only at T d 10l6 GeV (Dolgov and Zeldovich 1981), 
though some effectively equilibrium state can be formed due to the quantum gravity 
effects at T 3  Tp (Weinberg 1979). 

In this section we will consider phase transitions in grand unified theories, which 
occur at T S  lOI5 GeV, when the state of thermodynamic equilibrium has already been 
established. At Th 10'' GeV symmetry in grand unified theories was unbroken. At 
t ,  - s after the Big Bang, when the temperature drops down to T -  T,, - 
1014-1015 GeV, the first phase transition with symmetry breaking occurs in grand unified 
theories. For example, in the SU(5) theory this may be a transition SU(5)+ 
SU(3) X SU(2) XU( 1). After this phase transition strong interactions become separated 
from electroweak interactions and leptons become separated from quarks. This phase 
transition is first order (Linde 1980b, 1981a, Daniel 1981). After the phase transition 
the superheavy X, Y bosons and the superheavy Higgs bosons decay, which leads to 
the baryon asymmetry generation (Sakharov 1967, Kuzmin 1970, Yoshirnura 1978, 
Ignatiev et a1 1978, Dimopoulos and Susskind 1978, Ellis et a1 1979, Toussaint et al 
1979, Weinberg 1979). 

At t 2 -  lO-''s, when the temperature drops down to Tc2- lo2 GeV, the phase 
transition separating weak and electromagnetic interactions occurs (SU(3) X SU(2) X 
U( 1) + SU(3) xu( 1)). This phase transition is a second-order or a weakly first-order 
one. At the temperature T,, - lo2 MeV the phase transition (or two different phase 
transitions) occurs with the formation of baryons from quarks and with breaking of 
chiral invariance in the theory of strong interactions. 
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The subsequent evolution of the universe is described in many textbooks on 
cosmology (see, for example, Zeldovich and Novikov 1975). The most important stages 
of evolution of the universe are shown in figure 4 (see also Zee 1980, Kirzhnits and 
Linde 1982). The main part of this review will be devoted to the discussion of events 
which took place about 10" yr ago, in the period t 5 s after the creation of the 
universe. 

-2i3t40 ' 
-Decay of a l l  baryons 

-22 30 I 
-15 20 

-0 I 10 

Death of Sun 
(10'7 s from n o w h  

Mankind emerges- 
Life begins/ 
Bir th of Sun/ 

( 1 0 ~  s ago I 

-Nuclwsynthesis of light elements 

-Creation of  baryons and mesons 
from quarks 
Symmetry breaking between weak -3t0 2 - F a r d  electromagnetic interactions 

-Baryon asymmetry generation 
,,21-30 

Inf lat ion o f /  
the Universe and electroweak interactbns 
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-Planck time 
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Figure 4. Some important stages of evolution of the universe (with an account taken of the inflationary 
universe scenario). The age of the universe is given in Ig t(s) and the temperature of the universe is given 
in Ig T(GeV). 1 GeV corresponds approximately to 10" K. The classical description of evolution of the 
universe becomes possible at t 3 lP - s. In typical grand unified theories nothing interesting occurs at 
10' GeVc< T<< l O I 4  GeV (the gauge desert). However, some oases in the gauge desert may exist, e.g. at 
T- 10'o-lO" GeV (see $ 12). At t - 1038-1040s all baryons decay and the universe becomes filled with a 
dilute gas of leptons and photons (the lepton desert). In the middle of the way from the gauge desert to 
the lepton desert there exists a small oasis of life, in which we now live. Inflation of the universe presumably 
occurred at t 6 s, and only after inflation was the baryon asymmetry of the universe generated. 
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5. Problems of the standard scenario 

Despite the great phenomenological success of the standard hot universe scenario, this 
scenario was still somewhat incomplete. Here we will list some of the longstanding 
problems of this scenario. 

5.1. The singularity problem 

From equations (4.6) and (4.10) it follows that the scale factor of the universe a ( t )  
vanishes at t + 0, whereas the energy density at t + 0 becomes infinitely large (Hawking 
and Ellis 1973, Zeldovich and Novikov 1975). One may wonder, therefore, what was 
before the singularity? If our universe did not exist at t < 0, then how could it originate 
from ‘nothing’? The singularity problem is certainly one of the most puzzling problems 
of contemporary science. 

5.2. The flatness problem 

From equation (4.3) it follows that at t + 0 

-- a - 2  IP-Pcl - 
P c  

where pc is the energy density corresponding to k = 0 (flat universe) and p is the energy 
density in the closed or open universe ( k  = * 1 in (4.3)) with the same H. 

The present energy density p is not known exactly, 0.03 d p / p c d  2. Therefore the 
value of I p - pcl/pc may now be rather large. However, according to (4.9), K2- t in 
the very early stages of evolution of the universe, which means that in the very early 
universe the value of I p -pcl /pc was extremely small. One can show that, from the 
fact that the present ‘radius’ of the universe a(  t )  exceeds 10’’ cm, it follows that the 
value of I p - pcl/pc in the standard scenario should be smaller than w 9 M 3  T2 (Guth 
1981, Linde 1984b). Therefore near the Planck time t p -  M i ’ ,  when T - Tp- Mp, 

(5.2) 

This means, for example, that if the density of the universe at the Planck time was 
slightly greater than po say p b pc( 1 + 10-55), then the universe would be closed and 
it would have collapsed millions of years ago. If, on the other hand, p d pc( 1 - 
near the Planck time, then the universe would be open and the present energy density 
of the universe would be negligibly small. In the standard hot universe scenario it is 
absolutely unclear why our universe was created flat, or almost flat, with such fantastic 
accuracy. It can be shown that the question of why our universe is so flat is equivalent 
to the question of why the total entropy S of the observable part of the universe is so 
large, S a   UT,)^^ 10’’. Here a - cm is the radius of the observable part of the 
universe and T, - 2.7 K (the temperature of the microwave background radiation). 
The equivalence of the flatness and total entropy problems can most easily be under- 
stood in the case of a closed universe, since the maximal ‘radius’ of a closed universe 
grows with an increase in S : amax- Mp’S2’3 (Landau and Lifshitz 1973). 
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5.3. The homogeneity and isotropy problems 

In 0 4 it was assumed that the universe was initially absolutely homogeneous and 
isotropic. Meanwhile, even at present the universe is not totally homogeneous and 
isotropic, at least at a sufficiently small length scale. This means that there are no 
reasons for believing that the universe was homogeneous and isotropic ab initio. A 
more natural assumption is that the universe initially was in some chaotic state, and 
that the initial conditions in parts of the universe sufficiently far removed from each 
other were practically uncorrelated (see, for example, Misner (1969a, b)  and Rees 
(1972)). However, as was shown by Collins and Hawking (1973), the class of all initial 
conditions for which the universe at large time behaves as a homogeneous and isotropic 
Friedmann universe (4.1) is a class of measure zero. Therefore, it is very difficult to 
understand why our universe is so homogeneous and isotropic. For a detailed dis- 
cussion of all the subtleties of this problem see also Zeldovich and Novikov (1975). 

5.4. The horizon problem 

The isotropy problem was somewhat moderated after it was understood that the 
presence of matter and the effects connected with elementary particle creation in the 
expanding universe can make the universe locally isotropic (Zeldovich and Novikov 
1975). However, such effects presumably cannot make the universe globally isotropic, 
since in the standard scenario the properties of space-time in the causally unconnected 
regions of the universe, displaced a distance exceeding the size of the particle horizon 
1 - ct from each other, cannot be correlated and cannot influence each other in any 
way. However, from the investigation of the isotropy of the microwave background 
radiation it follows that, at t - lo5 yr, the universe was homogeneous and isotropic at 
a scale much greater than ct. The corresponding problem is called the horizon problem 
or the causality problem (Rindler 1956, Misner 1969a, b). 

5.5. The galaxy formation problem 
It is well-known that the universe is not exactly homogeneous. Such inhomogeneities 
as stars, galaxies and clusters of galaxies are too important to be overlooked in our 
discussion of the structure of the universe. To explain their formation one should 
assume that in the very early universe there existed small density perturbations 6p with 
an almost scale-independent spectrum 6 p l p  - (Zeldovich 1972). However, it was 
not quite clear what was the source of these inhomogeneities with such a specific 
spectrum. 

5.6. The baryon asymmetry problem 

The essence of this problem is to understand why in the observable part of the universe 
the density of baryons is many orders greater than the density of antibaryons and why, 
on the other hand, the density of baryons is much less than the density of photons, 
nB/ n, - 

These problems, given above, have for a long time seemed to be almost metaphysical. 
For example, the essential part of the cosmological singularity problem can be formu- 
lated as the following question: has anything existed at t < 0 when our universe did 
not exist? As for all other questions, it was argued that the universe is unique, and 
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there is no point in thinking about any different initial conditions in the universe. 
Another possible answer was based on the so-called anthropic principle (Dicke 1961, 
Collins and Hawking 1973, Carr and Rees 1979, Rozental 1980, 1984). It was argued 
that in a matter-antimatter symmetric, anisotropic and inhomogeneous universe there 
would be no observers who could ask such questions. This argument is very witty but 
is not quite convincing enough for two reasons. First of all, such an answer implies 
that there may exist many universes and we live in just one of them, which is sufficiently 
suitable for the existence of intelligent life. However, it was not quite clear in what 
sense one could speak about many universes if our universe is unique. One of the 
possible answers to this objection is connected with the quantum gravity effects and 
with the many-world interpretation of quantum mechanics (Everett 1957, De Witt 1967) 
(see also § 13). Another possibility is connected with the inflationary universe scenario 
and will be discussed in § 12. One more difficulty of the anthropic principle is that it 
cannot explain why the universe is almost exactly homogeneous and isotropic, why 
the spectrum of inhomogeneities in our universe is almost scale-independent, why the 
numerical value of ne/ n, is O( lop9), etc. Therefore the anthropic principle by itself 
(without the help of'the inflationary universe scenario) cannot answer all the questions 
discussed above. 

Besides the problems outlined in § §  5.1-5.6 there also exist some other problems, 
which are related to the cosmological consequences of the new theories of elementary 
particles. 

5.7. The domain wall problem 

As was shown in 0 3, at a sufficiently high temperature T > T, the symmetry in the 
theory (2.1) was restored, cp( T )  = 0. With a decrease of temperature in the expanding 
universe the symmetry breaking phase transition should occur. However, in sufficiently 
far removed (causally unconnected) domains of the universe this phase transition may 
proceed into two different states: into &e state cp = + p / J h  or into the state cp = -p/Jh. 
The domains of the field cp = + p / J h  are separated from the domains of the field 
cp = - p / J h  by thin walls, inside which the field cp varies from p/& to -PI&. The 
surface energy density of such domain walls is so large that, if at least one such wall 
existed at present in the observable part of the universe (which seems to be unavoidable 
in the standard scenario), the observable part of the universe would be largely 
anisotropic. 

This result implies that most of the theories with spontaneous breaking of a discrete 
symmetry of the type given in (2.1) (which is symmetric with respect to the change 
cp * -cp) contradict cosmological data (Zeldovich et a1 1974). Among such theories 
is the simplest version of the SU(5) theory with the effective potential (2.11) (Parke 
and Pi 1981, Lazarides et al 1982), many theories with spontaneously broken CP 
invariance, including the Weinberg model of CP violation (Weinberg 1976), most 
theories of axions (Sikivie 1982), etc. Many of these theories are very attractive in all 
other respects and it would be very desirable to save at least some of them. 

5.8. The primordial monopole problem 

In those theories with other types of symmetry breaking some other structures can be 
formed. For example, in the Higgs model with broken U ( l )  symmetry, and in some 
other theories, strings of the Abrikosov vortex tube type can be formed (Kibble 1976, 



942 A D Linde 

1980). Formation of such strings in grand unified theories may be very important for 
the theory of galaxy formation (Zeldovich 1980, Vilenkin 1981). However, the most 
important effect here is formation of the 't Hooft-Polyakov monopoles ('t Hooft 1974, 
Polyakov 1974), which should be copiously produced during the phase transitions in 
grand unified theories at T = T,, - 1014-10'5 GeV (Kibble 1976, 1980). As was shown 
by Zeldovich and Khlopov (1978) and Preskill(1979), annihilation of such monopoles 
is rather ineffective, and at present the density of monopoles in the universe would be 
of the same order as the density of protons. This would lead to catastrophic cosmologi- 
cal consequences, since the mass of each monopole is approximately 10l6 times greater 
than the proton mass, and therefore the density of matter in our universe would be 
approximately 10'' times greater than the critical density pc- g ~ m - ~ .  With such 
a density the universe would have collapsed a long time ago. The primordial monopole 
problem is one of the most difficult problems for new theories of elementary particles, 
since this problem arises in practically all grand unified theories. 

5.9. The primordial gravitino problem 

One of the most interesting directions in the development of unified theories is 
connected with supersymmetry, which is a symmetry between bosons and fermions 
(Gol'fand and Likhtman 1971, Volkov and Akulov 1972, Wess and Zumino 1974). 
Supersymmetric theories have many beautiful properties (Fayet and Ferrara 1977, van 
Nieuwenhuizen 1981). In particular, in the context of N = 1 supergravity coupled to 
matter it is possible to solve one of the most difficult problems of the unified theories, 
namely the gauge hierarchy problem (Ibanez 1982, Barbieri et al 1982, Nath et al 
1982). The essence of the problem is to explain why several different mass scales exist, 
Mp >> m ,  - 10'' GeV, m ,  >> m,- lo2 GeV (Gildener 1976). One of the important 
features of the proposed solution of the gauge hierarchy problem is the existence of 
the gravitino (spin-; superpartner of the graviton) with mass m 3 / 2 -  m,- lo2 GeV. 
However, according to Weinberg (1982a), such particles, being present in the very 
early stages of evolution of the universe, decay after the process of nucleosynthesis, 
which would lead to some undesirable cosmological consequences. This would not 
lead to a contradiction with the cosmological data only if the relative abundance of 
gravitinos in the very early universe was extremely small, qI2/ n, d 10-10-10-12 
(Khlopov and Linde 1984), whereas in the standard scenario one would expect 
n312/ n, - The question then arises whether it is possible to avoid the undesirable 
consequences of gravitino decay in the very early universe, or if one should abandon 
the above-mentioned possibility to solve the gauge hierarchy problem. 

5.10. The problem of proper symmetry breaking 

In the unified theories the effective potential V ( q )  often has more than one local 
minimum. For example, in the theory (2.1) with M 2  = -p2 < 0 there are two minima, 
at ~ = + p / d A  and at q = - p / d A .  In the minimal supersymmetric SU(5) theory 
(Fradkin 1980, Dimopoulos and Georgi 1981, Sakai 1982) there are three different 
minima of V ( @ )  with V(Qi )=0 .  The first minimum corresponds to the SU(5)- 
symmetric vacuum state, the second one corresponds to the symmetry breaking SU(4) x 
U( 1) and the third one corresponds to the desirable symmetry breaking SU(3) x SU(2) x 
U( 1) (see figure 5 ) .  The number of different degenerate minima of the effective potential 
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Figure 5. Effective potential V ( @ ,  T )  in the minimal supersymmetric SU(5) model. A, T = O ;  B, T >  T,. 

becomes even greater if one also considers other Higgs fields, such as the light Higgs 
bosons H (Dragon 1982, Frampton and Kephart 1982, Buccella et a1 1982). 

The question now arises of why we are now in the vacuum state with the symmetry 
breaking SU(3) XU( 1) (which originated from SU(3) X SU(2) XU( 1)) and not in some 
other undesirable state, corresponding to some other minimum of V(Q, H ) .  This 
problem becomes even more complicated if one takes into account that, in the early 
universe, the SU(5) symmetry was restored due to high-temperature effects (see figure 
5) and in the standard scenario there are no reasons for the universe to jump from the 
SU(5) minimum to the SU(3) XSU(2) XU(1) minimum of V(@) (Nanopoulos and 
Tamvakis 1982, Srednicki 1982a). There were some attempts to solve this problem 
based on the idea of SU(5) confinement (Srednicki 1982b, Nanopoulos et al 1982). 
In our opinion, however, the problem remained unsolved (Linde 1983f). 

5.1 1 .  The problem of space-time dimensionality 

The question of why our space-time is four-dimensional would have seemed rather 
meaningless and scholastic only a few years ago. However, at present the theories of 
the type given by Kaluza (1921) and Klein (1926) have become more and more popular. 
In such theories it is assumed that our space has dimension d > 4, but d - 4 dimensions 
are spontaneously compactified, i.e. the curvature radius in d - 4 dimensions is 
extremely small, of the order of M i ' .  That is why we cannot move in d - 4  directions 
and our space-time is apparently four-dimensional (Cremmer and Scherk 1976, Witten 
1981). Such theories became especially interesting in relation to the extended super- 
gravities N = 4 and N = 8, which can most easily be formulated in d = 10 and d = 11 
spaces (van Nieuwenhuizen 1981). This leads us to the question of why just d -4  
dimensions have been compactified, and not d - 3 or d - 5. 
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5.12. The vacuum energy (cosmological constant) problem 

From the cosmological observations it follows that the vacuum energy density V(cpo) 
in the universe at present cannot be much greater than the critical density pc- 

g ~ m - ~ :  
1 pvacl = I V( cpo)l s g ~ m - ~ .  (5.3) 

This value of V(cp) was achieved after a sequence of symmetry breaking phase 
transitions (Linde 1974). In the minimal SU(5) theory after the phase transition 
SU(5) + SU(3) x SU(2) XU( 1) the vacuum energy V( cp) decreases approximately by 
10'' g ~ m - ~ .  After the phase transition SU(3) x SU(2) x U( 1) + SU(3) x U( 1) the 
vacuum energy decreases by - lo2* g ~ m - ~ .  Finally, after the phase transition with the 
baryon formation from quarks the vacuum density decreases by - lOI4 g cm-3 and, 
surprisingly enough, becomes zero with an accuracy of =t g ~ m - ~ !  Such a precise 
cancellation of the vacuum energy is unbelievable (Veltman 1974, 1975) unless there 
exist some unknown reasons for this cancellation. The vacuum energy problem at 
present is regarded as one of the most difficult problems of unified theories with 
spontaneous symmetry breaking. Since the vacuum energy V( cp) multiplied by 8rG 
enters as a cosmological term into the Einstein equations, the vacuum energy problem 
is sometimes also called the cosmological constant problem (Linde 1974, Veltman 
1974, 1975, Dreitlein 1974). 

The first and the last of the problems mentioned above have not yet been finally 
solved. However, some very interesting attempts to solve them are directly related to 
the inflationary universe scenario and/or to the Starobinsky model (see 0 13 and the 
appendices). A solution to the baryon asymmetry problem was suggested by Sakharov 
(1967) many years before the proposal of the inflationary universe scenario, but the 
inflationary universe scenario makes this solution more effective (Dolgov and Linde 
1982). What makes the inflationary universe scenario so attractive is that the remaining 
problems can be either completely or partially solved in the context of this scenario, 
which we are now going to discuss. 

6. The first version of the inflationary universe scenario 

The inflationary universe scenario, in its present form, differs considerably from the 
first version of this scenario suggested by Guth (1981). Nevertheless, we consider it 
expedient to begin our presentation with the discussion of the main ideas of the original 
scenario. 

As we have mentioned in 0 3, the phase transitions from the state cp = 0 to the 
symmetry breaking state cp = cpo in some theories proceed with a large supercooling. 
The energy density of the ultrarelativistic particles - T4 in a strongly supercooled state 
cp = 0 becomes smaller than the vacuum energy density V(0). This means that in the 
limit of an extremely strong supercooling the energy density of matter p in the expanding 
and cooling universe becomes constant, p = V(0). In such a case, according to (4.3), 
the universe at large t becomes exponentially expanding (Kolb and Wolfram 1980) 

a ( t ) - aoexp(Ht )  (6.1) 
where the Hubble constant at that time is given by 
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After the phase transition the vacuum energy V(0) transforms into heat and the universe 
becomes very hot again (Linde 1979). 

If the transformation of the vacuum energy into heat occurs rapidly enough (during 
the time A t  6 H - ' ) ,  the universe after the phase transition reheats up to the temperature 
TR-VIO/P. Note that the reheating temperature does not depend on the duration of 
the exponential expansion before the phase transition. This observation is the starting 
point of the inflationary universe scenario suggested by Guth (1981), which makes it 
possible to solve simultaneously the horizon and flatness problems discussed in the 
previous section. Indeed, the only quantity which depends on the duration of the 
stage of exponential expansion (inflation) is the scale factor a ( t ) ,  which becomes 
exponentially large after the expansion. Therefore, after the expansion one can neglect 
the term k / a z  in equation (4.3), which means that the universe becomes very flat. An 
alternative way of understanding this effect is to consider the total entropy of the 
universe. After the phase transition the total entropy S 3 a3 T i -  a3 V:iP becomes 
exponentially large. Let us assume, for example, that the exponential expansion starts 
in a closed universe with a radius a, = cI M i l  and with the vacuum energy V(0) = cZM;, 
where cI and cz are some constants. In realistic theories 1 S cI 6 10" and 1 0 - 2 0 ~  c z 6  1. 
Actual values of ci will be not very important for us (see below). 

The total entropy of a closed universe after exponential expansion during the time 
A t  becomes of the order of 

S - a i e x p  (3HAt)Ti -  ~ : c : /~exp  (3HAt) (6.3) 

which means that the entropy S becomes greater than (see 0 5) if 

A t  3 H-I(67 -In C~C: '~) .  (6.4) 

Typically Iln C ~ C : / ~ ~ S  10. This means that for the solution of the flatness (entropy) 
problem in this scenario the universe should be exponentially expanding during the time 

A t  9 70H-' = 70 (8:::)) I"* 

If the value of A t  considerably exceeds 70 H-' (which is the case in all realistic versions 
of the inflationary universe scenario, see 00  10-12), then the universe after expansion 
becomes extremely flat, = p / p c =  1. This is one of the most important predictions 
of the inflationary universe scenario, which can be experimentally tested (Guth 1981, 
1983). 

One should note, however, that this solution of the flatness problem is complete 
only if the universe is open. If the universe is closed, a typical lifetime of the universe 
would be A t  - Mpl ,  and the energy density of such a universe - T4 - M: never becomes 
as small as V(0). Such a universe recollapses before the exponential expansion starts. 
One could argue that this just means that our universe should be open (with Q =  1)  
(see Linde 1983a). Fortunately, however, the flatness problem can be completely solved 
in the chaotic inflation scenario (Linde 1983d, e) even if the universe is closed, since 
in the chaotic inflation scenario the exponential expansion may start even at V( cp) b M: 
(see 0 11).  

The condition S -  UT)^ b IOs7 implies that, at present, when the temperature of 
photons T, - 3 K, the 'radius' of the universe a is greater than the size of the observable 
part of the universe 1 - loz8 cm. This means that after the exponential expansion during 
the time At', which slightly exceeds A t  (6.5) (by -H-l In cl) ,  and after the subsequent 
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expansion according to the hot universe theory any domain of a size A1 - M i '  acquires 
a size exceeding the size of the observable part of the universe. 

Since we consider here the processes in the post-Planckian epoch ( p s M;,  T S  M,,, 
t a M i ' ) ,  the size of the domains A l -  M i '  at the beginning of the exponential 
expansion is smaller than the size of the causally connected domains of the universe 
Alhorizon- t B M i ' .  Thus, in this scenario the observable part of the universe arises 
due to the exponential expansion of one extremely small causally connected domain. 
This solves the horizon problem. 

The same scenario could also help us to solve the primordial monopole problem. 
Indeed, as we have mentioned in 3 5 ,  the primordial monopoles are effectively created 
only during the phase transition with symmetry breaking, and only in those points 
at which several different bubbles of the field cp  collide (Kibble 1976, 1980). If 
supercooling is very large, then the typical size of the bubbles produced during 
the phase transition at the moment when different bubbles collide with each other 
is also very large and the resulting density of the monopolies is very small (Guth 
1981). 

Unfortunately, however, as was noted by Guth himself, this scenario leads to some 
unacceptable cosmological consequences. According to this scenario, the field cp  inside 
the bubbles of the new phase, formed during the phase transition, immediately grows 
up to its equilibrium value qo, which corresponds to the minimum of V(cp), and the 
reheating of the universe occurs only after the bubble wall collisions. This would lead 
to an extremely large inhomogeneity and anisotropy of the universe after the phase 
transition. Nevertheless, the main idea of the inflationary universe scenario was so 
attractive that many scientists extensively studied this scenario during the year after 
the appearance of the paper by Guth (1981). The main results of this investigation 
have been summarised in the papers by Hawking et a1 (1982) and Guth and Weinberg 
(1983), in which it was concluded that the difficulties in the original scenario were 
insurmountable. Fortunately, at the same time, a new version of the inflationary 
universe scenario was suggested (Linde 1982a) (see also Albrecht and Steinhardt 
1982), which was free of the main difficulties of the original scenario, and which 
provided the possibility of solving not only the horizon, flatness and primordial 
monopole problems but also many other problems mentioned in the previous 
section. 

7. The new inflationary universe scenario: a simplified version 

The first version of the new inflationary universe scenario was based on the theory of 
high-temperature phase transitions in the SU( 5 )  Coleman-Weinberg theory (2.16) and 
(2.17). This theory is very complicated. Therefore we would first like to give a somewhat 
simplified description of the phase transition in SU(5) Coleman-Weinberg theory 
(Linde 1982a), which will make it possible to outline the main ideas of the new 
inflationary universe scenario. A more detailed discussion of this scenario is contained 
in the next section. 

First of all, let us study the high-temperature behaviour of the effective potential 
in the SU( 5 )  Coleman-Weinberg theory with respect to the symmetry breaking SU( 5 )  + 
SU(3) xSU(2) xU(1) (2.13). 

As was shown in 0 3, at very high temperatures there should be no symmetry 
breaking in gauge theories. In particular, the effective potential V( cp,  T )  in the SU( 5 )  
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Coleman-Weinberg theory at T >> m,, m, looks as follows: 

9 m i  
V(q, T)=gg T cp +y In--- +-+cT4 ' ?::( i) 321~' 

where c is some constant, c = O( 10). At T>> cp, the only minimum of V(p, T) is the 
minimum at cp = 0, which means that at T >> cp, the symmetry is restored. At T<< cpo - 
10" GeV all high-temperature corrections to V( cp) at cp - cpo vanish, since in this case 
the masses m, and mv are much greater than T. However, the masses of all particles 
in the Coleman-Weinberg theory vanish near cp = 0. Therefore in the vicinity of the 
point cp = 0 equation (7.1) holds even at T<c loi5 GeV. This means that at any T # 0 
the point cp = 0 remains a local minimum of V(cp, T ) :  

To be more precise, one should also take into account the scalar field contribution to 
V(cp, T ) ,  which changes the curvature of V(cp, T )  near cp = 0: 

At T - cpo the last term in (7.3) can be omitted, since in the Coleman-Weinberg theory 
a, b << g2 at T, cp = cpo. However, at T, cp << cpo the effective constants a (  T, cp) and b( T, cp) 
become large and negative, which may change the sign of d' V/dcp21 lpp=o at a sufficiently 
small temperature (Linde 1982~).  We will forget about this effect for a while in order 
to simplify our presentation but will return to the discussion of this point in the next 
section. 

The phase transition from the local minimum of the effective potential at cp = 0 to 
the global minimum at cp - cpo proceeds by the formation and subsequent expansion 
of the bubbles of the field cp. According to Sher (1982) and Billoire and Tamvakis 
(1982), the probability of this process becomes significant only at a very small tem- 
perature, T a  IO6 GeV (this statement is not quite correct-see the next section-but 
we shall assume for a moment that it is true). In that case, from our investigation of 
the bubble formation at a finite temperature (Linde 1981a, b, 1983h) it follows that 
the bubble of the field cp at the moment of its formation has a size O(T:'), and the 
field inside the bubble is much smaller than cpo (see figure 6 ) :  

(7.4) 

where the point cpl is defined by the condition V(0, T,) = V(cp,, TJ .  This means that 
the mass squared of the field cp inside the bubble is 

<75g2Tf-25Tf.  (7.5) 

It is clear that the field cp inside the bubble will increase to its equilibrium value cp - cpo 
during the time interval At, which is of the order of or greater than lm-'l- 0.27';'. 
(Actually A t  is even greater than 16'1 (Linde 1982b).) During the main part of this 
interval the field cp remains much smaller than cpo. This means that during some time 
At30.2T;' the vacuum energy V(cp) remains almost equal to V(O), and the part of 
the universe inside the bubble expands exponentially just as it expanded before the 
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Figure 6. Effective potential in the Coleman-Weinberg theory at T<< ‘po. The arrow indicates the direction 
of tunnelling with the bubble formation. The field inside the bubble cp 3 9 , ,  where V ( q ,  T) = V(0, T). 

bubble creation. This is the main difference between this scenario and the scenario 
suggested by Guth (1981), in which it was assumed that the exponential expansion 
finished immediately after bubble formation. 

The value of the Hubble ‘constant’ in this theory at cp << cpo, mX - 5 x lOI4 GeV is 
given by 

H =  ( -V(O) 8.ir ) “ 2 -  -- m; ( - 3)”’=10’0GeV. 
3M’p 2Mp rr 

(7.6) 

During the period of time A l a  0.2T;’ the universe grows exp (HAt) times, where 

exp ( H A t )  B exp (0.2Hl T,) - exp (2000) - losoo. (7.7) 
A typical size of the bubble at the moment of its creation is O( T;’) - cm. After 
the period of exponential expansion this bubble acquires a size of the order of 
1 O-” exp ( HT) cm - losoo cm, which is very much greater than the size of the observable 
part of the universe at present, 1 - 10” cm. Therefore the whole observable part of 
the universe is contained inside one bubble, so we see no inhomogeneities caused by 
bubble wall collisions. 

When the field cp grows sufficiently large, the rate of its growth increases, and finally 
the field cp becomes convergently oscillating near its equilibrium state cp = cpo with 
frequency equal to the Higgs meson mass m at cp - (pa, m = amx = lOI4 GeV. Note that 
this frequency is much larger than H -  1 Q ’ O  GeV. Therefore the whole process of 
symmetry breaking can be approximately divided into two parts. 

( a )  The field cp grows very slowly, whereas the size of the bubble increases 
exponentially, and all the observable part of the universe becomes filled with the almost 
homogeneous field cp << p0. 

( b )  This almost homogeneous field rapidly grows. During this time the universe 
expansion rate can be neglected compared with the rate of growth and subsequent 
oscillations of the field cp. The oscillating field cp creates Higgs bosons and X, Y bosons, 
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which rapidly decay and reheat the universe up to the temperature TR - V$," -' 6mX- 

loL4 GeV (Linde 1982a). 
Thus the mechanism of reheating the universe in the new inflationary universe 

scenario also differs considerably from the mechanism of reheating in the first version 
of the inflationary universe scenario. 

The process of baryon asymmetry generation in the inflationary universe is also 
different from that in the standard baryosynthesis scenario (Dolgov and Linde 1982). 
In the first papers discussing this question it was assumed that the baryon asymmetry 
in the inflationary universe was generated either directly by the oscillating field Q 
(Linde 1982a, Hawking and Moss 1982, Abbott et al 1982) or by the decay of the 
Higgs bosons after the reheating of the universe (Albrecht et a1 1982). However, the 
process of baryon production actually proves to be much more complicated and, in 
the most interesting cases, proceeds due to the decay of Higgs bosons and/or X, Y 
bosons before the final reheating of the universe (Dolgov and Linde 1982). It appears 
that the baryon asymmetry in the inflationary universe, under certain constraints on 
the masses of superheavy bosons, can be one or two orders of magnitude greater than 
that in the standard scenario. It is important also that any initial baryon asymmetry 
of the universe vanishes after the inflation. Therefore the final baryon asymmetry in 
the inflationary universe does not depend on the initial baryon asymmetry of the 
universe in contrast to what occurs in the standard baryon synthesis scenario based 
on BL conserving grand unified theories. 

Just as in the Guth scenario, the exponential expansion of more than exp (70) times 
(7.7) provides us with a solution of the horizon and flatness problems (see the previous 
section). However, the new scenario opens up  a possibility of solving the homogeneity 
and isotropy problems as well. As we have noted in § 5, the processes connected with 
particle creation in the very early universe and with the existence of dense hot matter 
can make our universe locally isotropic at a scale exceeding the Planck scale I ,  - M;' - 

cm. Then the exponential expansion extends this isotropy to all the observable 
part of the universe (Linde 1982a). Moreover, the remaining small anisotropy inside 
the bubble decreases rapidly during the exponential expansion (see, for example, 
Gibbons and Hawking 1977, Boucher and Gibbons 1983, Starobinsky 1983a, Steigman 
and Turner 1983, Wald 1983, Boucher 1983). The solution of the homogeneity 
problem is very similar to that of the isotropy problem. Density inhomogeneities 
inside the bubble immediately after its formation are negligibly small compared with 
V(O), i.e. the space inside the bubble is almost homogeneous. Then the exponential 
expansion extends this homogeneity to the whole observable part of the universe 
(Linde 1982a). 

As we have noted in § 5, monopoles and domain walls are created only after the 
phase transition in the regions in which bubbles with different types of the Higgs field 
Q collide (Kibble 1976, 1980). In the new inflationary universe scenario the typical 
size of a bubble is much greater than the size of the observable part of the universe. 
Therefore no monopoles or domain walls are created in the observable part of the 
universe in this scenario. Inflation of the universe dilutes the density of all objects 
which existed before the exponential expansion stage. In particular, it dilutes the 
density of gravitinos, which were created near the time of the Big Bang (Ellis et al 
1982). However, gravitinos can be created again if the reheating temperature TR is 
large enough (S Weinberg 1983 private communication, Nanopoulos et al 1983a, 
Khlopov and Linde 1984). An example of a theory in which the gravitino problem 
can actually be solved is discussed in § 12. 
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Thus we see that the new inflationary universe scenario may actually provide us 
with a simple solution of many problems considered in 0 5 (see also subsequent 
sections). The main idea of the new scenario is very simple. This scenario can be 
realised if the field cp in the first stages of the symmetry breaking process changes very 
slowly (this is necessary in order to have a large inflation), and if the frequency of 
oscillations of the field cp near cp = cpo is sufficiently large (this is necessary for efficient 
reheating of the universe after inflation). The same idea was also used in the improved 
version of this scenario to be discussed now, as well as in all other versions of the 
inflationary universe scenario considered so far. 

8. Improvement of the new inflationary universe scenario 

The version of the new inflationary universe scenario discussed in the previous section 
(as well as a similar version suggested later by Albrecht and Steinhardt (1982)) was 
oversimplified. As was noted in the first paper in which this scenario was suggested 
(Linde 1982a), to have a more precise theory of the Coleman-Weinberg phase transition 
one should take into account the effects connected with the non-vanishing curvature 
and rapid expansion of the universe, which become important at T S  H. One should 
also carefully study the behaviour of the effective coupling constants a(  T )  and b( T )  
in (7.3) at small temperatures. 

The last question was studied in our paper (Linde 1982c), in which it was shown 
that the effective coupling constants a ( T )  and b ( T )  at small T become large and 
negative, and therefore the phase transition from cp = 0 to cp = cpo may occur due to the 
change of sign of d2V/dcp21q=, without tunnelling. The critical temperature T,, at 
which the curvature of V(p, T )  near cp = 0 changes its sign, is model-dependent. In 
the theories with T, >> H inflation does not occur. Therefore, in what follows we will 
consider only those theories in which T,cc H. However, in such theories all high- 
temperature effects are irrelevant for the theory of the phase transition (Linde 1982b, 
c). Indeed, the time interval which is necessary for the phase transition to start due 
to high-temperature effects exceeds T i '  >> H-I,  but during this interval the temperature 
falls to T, exp(-H/ T,), i.e. it practically vanishes. This means that the theory of the 
inflationary phase transition in the Coleman-Weinberg theory is determined not by 
the high-temperature effects but by the effects connected with the non-vanishing 
curvature and the exponential expansion of the universe. 

Before discussing these effects we would like to make'a comment, which is necessary 
in order to avoid some terminological misunderstandings which often appear in the 
literature. The metric of the exponentially expanding Friedmann universe (4.1) at 
large t can be written as 

ds2 = dt2-  exp(2Ht)(dx2 +dy2 +dz2). (8.1) 
This is the metric of a flat de Sitter space. As was shown by Gibbons and Hawking 
(1977), from the point of view of a comoving observer the temperature in a de Sitter 
space is equal to the Hawking temperature TH= H / ~ T  and does not decrease in the 
course of the exponential expansion. This effect is connected with the fact that any 
comoving observer in the exponentially expanding universe cannot have any informa- 
tion about anything removed at a distance greater than the event horizon radius H-' 
from the observer. However, if one tries to describe the whole universe (bearing in 
mind that after the phase transition the event horizon disappears) one can use a 



The inflationary universe 95 1 

formalism in which there is no lower bound on the temperature, T - To exp(- H t )  
(Birrell and Davies 1982, Linde 1982d, 1983a). Just this formalism has been used in 
most of the papers in which gravitational effects in the inflationary universe have been 
studied (Linde 1982b, d, Vilenkin and Ford 1982, Starobinsky 1982, Vilenkin 1983b), 
though an alternative approach to these effects is also possible (Hawking and Moss 
1982, 1983). All the physical results, of course, do not depend on the formalism used 
for their derivation. 

Investigation of gravitational effects in the inflationary universe scenario is rather 
complicated, which caused many different misunderstandings. For example, the theory 
of tunnelling with bubble formation in de Sitter space has been developed by many 
authors. However, about half of the papers discussing this question contain errors, 
whereas the correct investigation of bubble formation in de Sitter space (Coleman and 
De Luccia 1980, Hawking and Moss 1982, Parke 1983, Guth and Weinberg 1983) is 
directly applicable only to the case of bubble formation in the eternally existing de 
Sitter space but not to the hot universe with the de Sitter stage of exponential expansion 
(Linde 1983a, Goncharov and Linde 1984~).  In the first paper discussing tunnelling 
in the new inflationary universe scenario with an account taken of gravitational effects 
(Hawking and Moss 1982) it was claimed that the tunnelling occurs simultaneously 
in the whole universe and proceeds from the minimum of V( c p )  at cp = 0 to the nearby 
maximum of V(cp) at cp = (p" with the probability 

per unit four-volume. The simultaneity of the phase transition in the whole universe 
was considered as a cause of the homogeneity of the universe after inflation. The same 
statement was made later by Mottola and Lapedes (1983) and Abbott and Burges 
(1983). In Linde (1983a) it was noted, however, that the probability of a globally 
homogeneous tunnelling in the inflationary universe is strongly suppressed. Later 
Hawking and Moss noted that their result (8.2) should be valid for the probability of 
tunnelling which is not absolutely homogeneous but looks homogeneous in the domains 
of the universe of size 13 H-' (Hawking and Moss 1983). Very recently this statement 
has been proven by Starobinsky (1984a, c) for the case d2V/dcp21,=o<< HZ by a method 
totally different from those used by the previous authors. 

We will not discuss this complicated question any more (for a detailed discussion 
of tunnelling in the inflationary universe see, for example, Goncharov and Linde 
(1984c)), since in the course of the investigation of this problem it was understood 
that the tunnelling with bubble formation is not a necessary ingredient of the new 
inflationary universe scenario, and a simpler version of this scenario can be suggested 
which is not based on the theory of bubble formation in the exponentially expanding 
universe (Linde 1982b, d, Starobinsky 1982). 

To explain this modification of the new inflationary universe scenario let us consider 
the scalar field theory with an effective potential which, at small cp, looks as follows: 

m2p2 A 
V(cp) =--- p 4 + V ( 0 )  

without the terms -6Rcp' where R is the curvature scalar. This potential at small lm21 
and A > 0 imitates the effective potential in the Coleman-Weinberg theory. 
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If the field cp initially was zero then, according to the classical equations of motion, 
it should remain zero forever even if m2<0. It is clear, however, that spontaneous 
symmetry breaking should occur in this theory due to quantum fluctuations. To describe 
this process let us consider the behaviour of quantum fluctuations of the field cp, i.e. 
the vacuum average (cp') in the exponentially expanding universe. We will assume 
here that lm21<< H2, which is necessary for the realisation of the new inflationary 
universe scenario. In this case, from the results of Bunch and Davies (1978) it follows 
that 

3 H4 
(cp') =8.rrz" (8.4) 

From equation (8.4) it follows that ( c p 2 ) +  CO for m2+ 0. The physical reason for such 
a pathological behaviour of (p') at m2+ 0 in the exponentially expanding universe is 
connected with the anomalously large density of long-wave fluctuations in de Sitter 
space. The leading contribution to (p2) comes from fluctuations with momenta Ikl<< H 
and is given by 

(Vilenkin and Ford 1982, Starobinsky 1982, Linde 1982d), where A m 2 ( T )  is the 
temperature-dependent contribution to m', Am2( T )  - O(g2T2).  At T = 0 this yields 
the Bunch-Davies result (8.4). At T >> H this anomalous contribution disappears and 
(cp')= T2/12 just as in Minkowski space (Linde 1979). In the intermediate region 
0 < T<< H (in which Am2( T )  exponentially decreases due to the expansion of the 
universe) the value of (cp') in (8.5) is given by 

where to is the time at which the value of m'( T )  = m2 +Am2( T )  becomes smaller than 
2H'. Note that at f - to<<. 3H/2m2 fluctuations of the field cp (8.6) grow linearly in time: 

The value of (cp') in the theory with m2 < 0 at small t - to also grows linearly, but at 
t - to 3 3 H/2m2 it grows exponentially: 

It is very unusual and very important that the leading contribution to (p') (8.4)-(8.8) 
comes from the fluctuations of the field cp with an extremely large wavelength. For 
example, from equation (8.5) it follows that at T=O the leading contribution to (p') 
(8.4) comes from the fluctuations with the wavelength 1 - H-'  exp(3H2/2m2). The 
leading contribution to (9') (8.7) comes from the fluctuations with the wavelength 
I - H-' exp[H( t - t o ) ] .  This means, for example, that in the regime (8.7) the fluctuations 
of the field cp at a length scale 1 < H-' exp[H( t - to) ]  are practically indistinguishable 
from the homogeneous classical field cp with magnitude 
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(see figure 7). The domains filled with an almost homogeneous field cp play, in this 
scenario, the same role as the bubbles of the classical field cp in the first version of the 
inflationary universe scenario (Linde 1982b, d, Starobinsky 1982, Hawking and Moss 
1983). 

Figure 7. Spatial distribution of fluctuations of the scalar field p with mass m2<< H 2  in the inflationary 
universe at the stage of linear growth of (p2) (8.7).  

Equations (8.4)-(8.8) are valid only at the first stages of the process of the growth 
of the fluctuations (cp’), at which the back-reaction of these fluctuations on the effective 
mass of the field cp is unimportant. With a growth of (cp ’ )  the effective mass squared 
of the field cp acquires a negative time-dependent contribution: 

m 2 ( t ) =  m2-3A(cp2) (8.10) 

which speeds up the growth of (cp‘) .  Let us assume for simplicity that m2 = 0. In this 
case it can be shown (Linde 1982d, Starobinsky 1982) that the linear growth of (9’) 
(8.7) persists only during the time 

- 
J 2 T  
Jh H 

A t =  t - t o - -  (8.11) 

after which the growth of (cp’) becomes very rapid and stops only when the value of 
c p = ( ( c p  )) becomes of the order of cpo, where cpo corresponds to the minimum of 
V(cp). The duration of the process of symmetry breaking in such a theory is of the 
same order as A t  (8.1 1). During this time the universe expands exp(HAt) times, where 

exp(HAt)+ e x p ( h T / A ) .  (8.12) 

This means that the universe expands more than exp(70) times only if the constant A 
is sufficiently small: 

A =S 4 x (8.13) 

A similar investigation for the SU(5) Coleman-Weinberg theory shows that with the 
realistic values of the coupling constants the universe during the stage of exponential 
expansion grows less than exp(70) times (Linde 1982d, Starobinsky 1982, 1984a). 

2 1/2 
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The situation becomes even more complicated if one reconsiders the homogeneity 
problem in this scenario with an account taken of the quantum fluctuations of the field 
cp. The point is that the field cp in this scenario is not exactly homogeneous (see figure 
7). During the growth of the field cp these inhomogeneities are amplified, which gives 
rise to perturbations of density after inflation. 

The theory of generation of density perturbations after inflation has been developed 
by many authors (Mukhanov and Chibisov 1981, 1982, Hawking 1982, Starobinsky 
1982, Guth and Pi 1982, Bardeen et a1 1983, Hawking and Moss 1983, Brandenberger 
and Kahn 1984). The main idea of these papers is that the field cp in different regions 
of the inflationary universe reaches its equilibrium value cpo at different times due to 
the inhomogeneity of the initial distribution of the field cp (figure 7). The universe 
will be reheated up  to the same temperature TR in different regions of the universe, 
but at different times, which just implies the appearance of density perturbations after 
inflation. We will not discuss here the details of the theory of generation of density 
perturbations, which is rather involved, but will just present the final result for the 
spectrum of density perturbations S p l p  (Hawking 1982, Starobinsky 1982, Guth and 
Pi 1982, Bardeen et al 1983): 

(8.14) 

where k is the momentum, corresponding to the density perturbation Sp( k )  at the end 
of inflation and cp* is the value of the field cp = (((P’))”~ at the moment at which the 
momentum k of this perturbation was equal to k,  = H. (Some authors take k$ - 
dZV/dcp21,=,,, but for most theories this yields the same result for Sp(k ) /p  with 
logarithmic accuracy.) The behaviour of the field cp at the stage of linear growth of 
(cp ’ )  is governed by equation (8.7), whereas at later stages the field cp obeys the equation 
of motion of a classical homogeneous field cp in the exponentially expanding universe 
(8.1): 

4 + 3 H 4  = -dV/dcp. (8.15) 

(The second term in equation (8.15) appears due to the expansion of the universe.) 
By means of equations (8.14) and (8.15) it can be shown that in the theory (8.2) after 
inflation: 

(8.16) 

This spectrum is almost scale-independent, Just such a flat spectrum is necessary as 
a spectrum of initial density perturbations in the theory of galaxy formation (Zeldovich 
1972). However, the amplitude of density perturbations at a galactic scale should be 
very small, S p / p  - 

h - 10-l2. (8.17) 

For the SU(5) Coleman-Weinberg theory the value of 6 p l p  (8.16) at the galactic scale 
proves to be 0 ( 5 0 ) ,  which is absolutely unacceptable. 

After this discrepancy was revealed there were many attempts to suggest either 
another realistic theory of elementary particles, in which a condition of the type (8.17) 
could be satisfied, or another version of the inflationary universe scenario. The first 
of these two directions has led to the realisation of the new inflationary universe 

This condition is satisfied in the theory (8.3) only for 
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scenario in the context of supergravity (Ellis et al 1983a, b, Nanopoulos et a1 1983a, 
b, Linde 1983c) and the second direction has led to the chaotic inflation scenario 
(Linde 1983d, e). Both these directions are now unified in the context of the chaotic 
inflation scenario in supergravity (Linde 19838, Goncharov and Linde 1984a, b, d). 

However, before describing these versions of the inflationary universe scenario we 
would first like to discuss one more scenario, closely related to the inflationary universe 
scenario-the Starobinsky model (Starobinsky 1979, 1980, 1983b). 

9. The Starobinsky model 

Two years before the formulation of the inflationary universe scenario a very similar 
scenario was suggested by Starobinsky (1979, 1980). It is known that de Sitter space 
(8.1) with the scalar curvature R = 12H2- G-’ = M ;  is a self-consistent solution of 
the Einstein equations with quantum corrections (Dowker and Critchley 1976). 
Starobinsky has pointed out that such a solution is unstable and de Sitter space 
eventually evolves into the hot Friedmann universe. The theory of this transition 
(Starobinsky 1980, 1983c) is very similar to the theory of the phase transition in the 
new inflationary universe scenario (Linde 1982d, Starobinsky 1982). 

The main aim of the Starobinsky model was to solve the singularity problem. This 
has not been completely realised so far. However, in the course of the investigation 
of the Starobinsky model it became clear that, in the context of this model, one can 
also solve many of the problems which can be solved in the context of the inflationary 
universe scenario. At the same time it was realised that the first version of the 
Starobinsky model (Starobinsky 1979, 1980), just as the first version of the new 
inflationary universe scenario (Linde 1982a, b, c, d, Albrecht and Steinhardt 1982), 
was far from being perfect. For example, the universe in the Starobinsky model was 
assumed to be absolutely homogeneous and isotropic ab initio. On the other hand, 
the density perturbations, which arise after the reheating of the universe in this model, 
prove to be too large, just as in the model discussed in the previous section (Mukhanov 
and Chibisov 1981, 1982, Starobinsky 1983b). The temperature of the universe after 
the reheating in the first version of the Starobinsky model (1979, 1980) was much 
greater than the critical temperature T,, of the SU(5) phase transition, TR >> T,, - 
l O I 5  GeV, and therefore it was impossible to solve the primordial monopole problem 
in this scenario. The main difficulty of this scenario was the following. De Sitter space 
is non-singular and has an infinite lifetime, -CO< t <  +CO, whereas the de Sitter stage 
in the Starobinsky model, just as in the inflationary universe scenario, can exist only 
during some finite time interval. This means that before the de Sitter stage the universe 
should have been in some other state. In the first versions of the inflationary universe 
scenario the de Sitter stage appears as a result of the supercooling of the phase cp = 0. 
However, in the Starobinsky model the universe was assumed to be in a pure vacuum 
state before the transition to the hot Friedmann universe. Therefore it was rather 
difficult to understand what was before the de Sitter stage in this scenario. One possible 
way of answering this question is that the de Sitter stage in the Starobinsky model 
appears as a result of an anisotropic collapse of the universe (Gurovich and Starobinsky 
1979). Another possibility, suggested by Zeldovich (1981), is that the de Sitter universe 
as a whole is created from ‘nothing’ due to quantum gravity effects. Such a realisation 
is possible not only for the Starobinsky model but for the inflationary universe scenario 
as well. (See a discussion of this question in § 13.) However, the theory of quantum 
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creation of the universe is far from being completely elaborated. Therefore the inflation- 
ary universe scenario, which can be realised in the context of a more usual approach, 
based on the hot universe theory and described in the previous sections, was somewhat 
simpler than the Starobinsky model. 

Recently the status of the Starobinsky model has changed. It was understood that 
the perturbations of density in this scenario can be of the necessary magnitude 
6 p / p  - if one adds to the Einstein Lagrangian of the gravitational field -R/ 1 6 ~ G  
a term of the type R2/  M 2 ,  where M - loL4 GeV (Starobinsky 1983b). At M - lOI4 GeV 
the reheating temperature in this model becomes much smaller than the temperature 
of the SU(5) phase transition, and therefore no monopoles and domain walls appear 
after reheating. As for the problem of the origin of the de Sitter stage in this model, 
this problem can be solved not only with the help of the idea of quantum creation of 
the universe, but also in the context of a scenario similar to the chaotic inflation 
scenario (Kofman et a1 1984) (see 0 11). Therefore at present the scenario based on 
the Starobinsky model (Starobinsky 1979, 1980, 1983b) can be considered as a viable 
alternative to the inflationary universe scenario, and it is not excluded that the future 
theory of the early stages of evolution of the universe will be based on some synthesis 
of the inflationary universe scenario and the Starobinsky model (Kofman et a1 1984). 

10. Supergravity and inflation 

Now let us return to the inflationary universe scenario and try to understand how one 
can reduce the density perturbations in this scenario. The simplest way to do this 
(Linde 1982d) is connected with supersymmetric versions of the Coleman-Weinberg 
model. Indeed, in the usual Coleman-Weinberg model the effective coupling constant 
A = id4V/dq4 is of the order of e4 due to the vector boson contribution to V(q) 
(Coleman and Weinberg 1973). However, the fermion contribution to V(q) has the 
opposite sign. In theories with (broken) supersymmetry the contributions from bosons 
and fermions (partially) cancel each other, which may lead to a very small effective 
coupling constant A (q ) .  A first realisation of this possibility was suggested by Albrecht 
et a1 ( 1953) in the context of the Witten-Dimopoulos-Raby inverted hierarchy model 
(Witten 1981, Dimopoulos and Raby 1983). It proved possible to have enough inflation 
and small density perturbations in this model (Albrecht et a1 1983). However, the 
effective potential in this model is too flat and therefore no baryon asymmetry can be 
produced in this model after inflation (Ellis et a1 1982). For the same reason large 
inflation in this model proves to be incompatible with efficient reheating after inflation 
(Albrecht et a1 1983, Ovrut and Steinhardt 1983). 

The problems of reheating and baryon generation can be solved more easily if the 
inflationary phase transition occurs at a large mass scale of the order of Mp - lOI9 GeV 
(primordial inflation). This possibility was first suggested in the context of a globally 
supersymmetric theory by Ellis et a1 (1983a). Later it was suggested that the idea of 
primordial inflation in the context of N = 1 supergravity coupled to matter be imple- 
mented (Nanopoulos et a1 1983b). 

The idea that supergravity rather than grand unified theories may be responsible 
for the most fundamental features of the structure of the universe seems very natural 
and attractive. However, there were some difficulties, which hampered a direct realisa- 
tion of the original version of the primordial inflation scenario. These difficulties and 
their possible resolution in the context of the chaotic inflation scenario in supergravity 
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(Linde 1983c, g, Goncharov and Linde 1984a, b) will be discussed in this section and 
also in 8 12. 

Let us start with the investigation of the original version of the primordial inflation 
scenario based on the theory of a chiral superfield C coupled to supergravity N =  1 
(Nanopoulos et a1 1983b). According to Cremmer et a1 (1979), the effective potential 
V(z, z*) of the first (scalar) component of this superfield is given by 

(10.1) 

where g, = dg/dz, g(z)  is some arbitrary function called the superpotential which can 
be represented in the following form: 

where p is some mass parameter and f (z )  is an arbitrary dimensionless function of 
the fieNz. To simplify the notation in this section we use the system of units in which 
M P / J 8 n  = 1 (Cremmer et al 1979). 

Nanopoulos et aI (1983a, b) have assumed that, due to high-temperature effects in 
the very early universe, the field z initially was zero (or almost zero), and then the 
inflationary phase transition with the generation of the classical field cp = cpo occurred, 
where cp is the real part of the field z. It is clear, however, that such a scenario could 
be realised only for some particular choice of superpotential g(z).  In the first papers 
on primordial inflation the function f (  z) was written as follows: 

(10.3) 

and it was assumed that A 0 3  0, A ,  > 0. The effective potential V(cp) in this theory is 
given by 

V(cp) = p6(a +pcp + yp2 + scp3 +. . .) ( 10.4) 

where CY, p, y, 6 are some functions of A,. It was assumed that by a proper choice of 
the constants A, one may choose an effective potential V(z, z*) which has an absolute 
minimum at cp = cpo = 1. It was also assumed that V(cpo) = 0 (in order to have a vanishing 
cosmological constant at present) and that g( cpo) = 0 (to avoid large breaking of 
supersymmetry at cp = cpo, see § 12). One could expect that, due to the freedom of 
choice of different constants A,, all these conditions can be satisfied simultaneously. 
Unfortunately, however, these conditions prove to be incompatible with each other 
(Ovrut and Steinhardt 1983, Goncharov and Linde 1984a, b). 

To make our investigation as simple as possible we introduce the function 

$(z) = exp(z2/41f(z) (10.5) 

and rewrite the effective potential (10.1) as follows: 

V(Z, z*) = p6 exp[-$(z - z*)'](2/+, + ~ ( z - ~ * ) $ 1 ~ - 3 3 / + l ~ )  ( 10.6) 

where +, = d+/dz. At the real axis z = cp the effective potential acquires a very simple 
form: 

V(cp) = P6(2$z,-3+2). (10.7) 
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Now let us note that in the theories discussed above $ ( O )  =f(O) = A o 2  0, $,(O) = f , ( O )  = 
A I  > 0, $(cpo) = 0. However, the conditions $ ( O )  3 0, $,(O) > 0 imply that the condition 
$(cpo)=O can be satisfied only if $, vanishes at some point 6 between cp = O  and 
cp = cpo, in which $( 4) # 0. From (10.7) it follows that V( 6) < 0, which means that the 
point cp = cpo is not the absolute minimum of V(cp), and that a deeper minimum with 
V(4)  < 0 lies somewhere between cp = 0 and cp = cpo. Therefore it seems impossible to 
come from the point cp = 0 to the local minimum of V(cp) at cp = cpo after inflation in 
such theories. 

Another realisation of the inflationary universe scenario in the contsxt of super- 
gravity was suggested in Linde (1983c, g). In these papers we have not assumed that 
g(cpo) = 0 (see, however, 0 12) and have considered the simplest effective potential 
which satisfies the condition V( cpo) = 0: 

V(cp) = 3p6 1 - a2q* +Tcp * ( a 4  .> (10.8) 

The minimum of V(p)  occurs at cp = cpo =&/a. Such a potential with respect to cp 
can be obtained from (10.1) by a proper choice of g ( z ) .  

Let us assume now, as usual, that the universe initially was in the state cp = 0 (for 
a discussion of this point see, however, the next section). With the expansion of the 
universe the temperature decreases, the effective potential acquires the form (10.8) and 
the phase transition with the growth of the classical field cp starts. A typical time, 
which is necessary for the field cp to grow from cp = 0 to cp = cpo ,  proves to be O ( P - ~ ~ - ~ )  
(see below). During this time the vacuum energy is approximately equal to V(0) = 3 p 6  
and the universe expands exponentially, a(  t )  - exp( Ht) ,  where the Hubble constant 
H = ((87r/3Mg) V ( ( P ) ) ” ~  = p3 (in units of M,/&T = 1). To be more precise, one 
should note that in the case under consideration the classical field cp = (cp) is not 
generated, but the field (9’) is. However, as was explained in § 8, the leading contribu- 
tion to (cp’) is given by fluctuations with exponentially large wavelengths and therefore 
the fluctuations of the field cp are almost indistinguishable from the homogeneous 
classical field cp = ((cp )) . According to (8.8), the amplitude of the field cp = ((cp2))i’2 
grows as follows: 

2 1/2 

P 3  cp = -{exp[4p3a2( t - to) ]  - 1}1’2 
4lTa (10.9) 

Fluctuations of the field cp give rise to the density perturbations after inflation, which 
at the galactic scale for a = 0 (lo-’) have the magnitude (Linde 1983c, g): 

6p p3 exp( 102a2) 
P 20a 
-- (10.10) 

Therefore the desirable value 6 p / p  - lo-. can be obtained, e.g. at a - lo-’, p3 - lo-., 
which seems quite reasonable. 

Now let us estimate the duration of inflation At .  The value of A t  approximately 
coincides with the time necessary for the field cp to increase to cp - cpo = $/a.  From 
(10.9) one obtains 

A t  - 6p-3a-2 - 600H-I - (3 x 10” GeV)-’. (10.11) 

From (10.10) and (10.11) it follows that in the theory (10.8) one may obtain both a 
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sufficiently large inflation (since At >> 70H- ' )  and the desirable value of S p / p  - low4, 
which was the most difficult problem of the new inflationary universe scenario. 

Now let us consider the primordial monopole problem in this scenario. In the first 
papers on primordial inflation it was assumed that the phase transition with breaking 
of SU(5) and with the monopole production occurs after primordial inflation, and 
therefore one should find some other method to solve the primordial monopole problem 
in this scenario (Ellis et a1 1983a, Nanopoulos et a1 1983b). Note, however, that the 
temperature of the universe during inflation almost vanishes, and the typical time, 
which is necessary for the SU(5) symmetry breaking to occur (if supercooling in this 
phase transition is not anomalously large), is T- (10" GeV)-', which is much smaller 
than the duration of the inflation (10.11). Therefore the SU(5) phase transition with 
monopole production occurs not after inflation but long before the end of inflation, 
which solves the primordial monopole problem in this scenario. 

To be more precise, one should note that in the minimal supersymmetric model 
(Fradkin 1980, Dimopoulos and Georgi 1981, Sakai 1982) the supercooling is very 
large indeed. The process of symmetry breaking and the solution of the primordial 
monopole problem in the minimal SU(5) theory coupled to supergravity will be 
discussed in 8 12. 

One could argue, however, that if the reheating of the universe occurs during the 
time T R S  H-' after inflation, as in the SU(5) Coleman-Weinberg theory (Dolgov and 
Linde 1982), then all the vacuum energy V(0) transforms into heat and the temperature 
of the universe increases to the reheating temperature TR- Vt&'- 10'' GeV. At such 
a temperature the SU(5) symmetry would be restored, and then with the cooling of 
the universe the SU( 5) symmetry breaking phase transition with monopole production 
would occur again. 

Fortunately, this process does not actually occur in the theories under consideration 
because of the very slow reheating in these theories. The particles of the field cp are 
very weakly coupled to each other and to all other matter fields, and therefore 
thermalisation occurs at a very late time, and the reheating temperature TR in this 
scenario is typically of the order of 10" GeV, which is much smaller than the critical 
temperature of the SU(5) phase transition (Nanopoulos et a1 1983a, Linde 1983c, g). 
The baryon asymmetry of the universe in this scenario can be generated by decay of 
the Higgs bosons and fermions with masses m - 10" GeV (Nanopoulos et al 1983a, 
Krauss 1983). One should note that the existence of the Higgs bosons H5 with 
mH- 10" GeV may be incompatible with the large lifetime of the proton, ~~3 lo3' yr 
(A Yu Smirnov 1984 private communication), whereas the existence of fermions with 
m, - 10" GeV is not forbidden but is not very natural. However, in the inflationary 
universe scenario the baryon asymmetry can be generated even at TR<< m, since the 
heavy Higgs bosons and fermions in this scenario can be copiously produced before 
the reheating (Dolgov and Linde 1982). In such a case the baryon asymmetry generation 
is suppressed by a factor of Tdm, but one should remember that in the inflationary 
universe scenario the baryon production may be one or two orders of magnitude more 
efficient than in the standard baryosynthesis scenario (Dolgov and Linde 1982). 
Moreover, by a slight variation of the shape of V( c p )  near cp = cpo one can make TR as 
large as 10I6 GeV, which makes it possible to generate the baryon asymmetry by decays 
of superheavy Higgs bosons (Linde 19838). Unfortunately, the version of the inflation- 
ary universe scenario discussed above is still incomplete for some other reasons (see 
the next section). An improved version of this scenario will be discussed in 8 12. 
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11. Chaotic inflation scenario 

Our previous discussion of phase transitions in SU(5) theory, supergravity, etc, was 
based on the implicit assumption that the universe initially was in the state correspond- 
ing to a minimum of the effective potential V(cp, T ) .  Such an assumption at first sight 
seems absolutely natural, since any non-equilibrium field cp eventually rolls down to 
a minimum of V(cp, T). Let us, however, investigate this question in a more detailed 
way. 

A typical curvature of the effective potential, which arises due to the high- 
temperature effects, in the high-temperature limit is given by 

d' V 
dcp 

m 2 ( T )  =?= cT2 (11.1) 

see equation (3.2). Here c is some combination of coupling constants: c = A/4 for the 
theory (A/4)cp4 (2.1), whereas in the theory (10.8) c - p 6 a 2 .  The time necessary for 
the field cp to drop to the minimum of V ( q )  exceeds 7 - m-'(  T) - c -~ '~T- ' .  On the 
other hand, the age of the hot universe t is given by equation (4.10), where the typical 
number of particle species is N 3 2 x 10': 

1 MP t S - - .  
50 T2 

By comparison of T and t one concludes that 
high-temperature effects only at 

(11.2) 

the field cp can be influenced by 

T S  T*- 1O-'C'/*Mp ( 1  1.3) 

or, equivalently, at the moment at which the energy density of the hot matter p (4.6) 
becomes sufficiently small: 

(11.4) 

However, if the effective potential V (  cp, T) is sufficiently flat, and if the universe initially 
was in the state with V (  cp) B p*, then at T s T* the universe becomes exponentially 
expanding and the temperature T vanishes before it could have any effect on the value 
of the field cp. For example, let us consider the theory (10.8) with any field cp S q0/2. 
The value of V(cp) at c p ~  ~ 0 / 6  is given approximately by 3 p ' ( M , / J 8 ~ ) ~ ,  which is 
much greater than p* - lOW5p6a2M; - 10-7p6M:. Therefore the high-temperature 
effects cannot lead to the symmetry restoration in this theory. (Another way to show 
it is to note that the 'critical temperature' in this theory T,- a-'Mp is much greater 
than T* - 10-'p3aMp( 11.3).) Similarly, it can be shown that the high-temperature 
effects cannot influence the behaviour of the field cp in the theory (A/4)cp4 if the field 
cp was initially greater than 0(10-'A'/4Mp) (Linde 1983e). 

More generally, this means that in the theories with large values of V ( q )  and with 
sufficiently small values of coupling constants (and just such theories are of the most 
interest for us, see, for example (8.17)) the inflationary universe scenario cannot be 
realised in a standard way, based on the theory of high-temperature phase transitions 
(Guth 1981, Linde 1982a, Albrecht and Steinhardt 1982). However, the same reason 
which leads to the failure of the standard version of the inflationary universe scenario 
simultaneously makes it possible to suggest a much better scenario, which can be 
naturally implemented in a large class of realistic theories (Linde 1983d, e). 
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To explain the main idea of the new scenario, which we have called the chaotic 
inflation scenario for reasons soon to become clear, let us try to understand how the 
classical field cp(x) could be distributed in the very early universe. 

Of course, one could just assume that the field cp initially was exactly at the minimum 
of V(cp, T )  near cp = 0. However, such an assumption would be even less reasonable 
than the assumption that the universe was initially in an absolutely symmetric, 
homogeneous and isotropic state. Indeed, one can easily verify that the value of the 
effective potential V( cp, T )  at the Planck time t ,  - Mp’, at which the classical description 
of evolution of the universe becomes possible, is defined only with an accuracy of 
O(M:) due to the uncertainty principle. Therefore one may expect that in the hot 
universe at t - t ,  any field cp(x) such that V(cp) 5 M:, (8,~)~s M: can appear in any 
point x with an almost cp-independent probability (or at least that there is no strong 
suppression of the fields cp(x) such that V(cp)s M:). Moreover, even the constraint 
V( cp) 5 M: does not seem obligatory, since according to the classical theory of evolution 
of the universe the total energy of matter, including V(cp), near the singularity was 
infinitely large (Hawking and Ellis 1973, Zeldovich and Novikov 1975). Therefore we 
will assume that the initial distribution of the field cp in the universe was more or less 
chaotic and will not impose any constraints on the field cp, except for a possible 
constraint V( cp) 5 M:. 

Now let us study the evolution of such an initial distribution of the field cp(x) in 
the simplest model with V(cp)=(A/4)cp4 (without the term (Rep', where R is the 
curvature scalar). We will be especially interested in the evolution of the domains of 
the universe in which the field cp was initially sufficiently homogeneous (at a scale 
12 H - I )  and sufficiently large (cp 2 M,). As will be shown below, the field cp in such 
domains decreases very slowly. Consequently, the space inside such a domain behaves 
as the interior of the quasiexponentially expanding universe with a scale factor 

a=a,exp({ot H ( t ) d t )  (1 1.5) 

where h < c  H 2 ,  and the Hubble ‘constant’ is given by 

H =  ( -V(cp) 8~ )”’ - - (2;A)1’2 - - c p 2  
3 M i  MP‘ 

( 1  1.6) 

It is important that if the size of such a domain exceeds 2 H - ’ ,  where H-’ is the 
radius of the event horizon in de Sitter space, the evolution of the homogeneous field 
cp inside the domain does not depend on the evolution of this field in the nearby 
domains (Gibbons and Hawking 1977). The equation of motion of the homogeneous 
field cp (8.15) in the theory (A/4)cp4 looks as follows: 

(11.7) 

An investigation of this equation shows that at cp 2 Mp/3 the behaviour of cp practically 
does not depend on the initial value of 4. If 4 initially was not too large one can 
neglect the term (b: in ( 1  1.7), which yields 

.- 

(11.8) 

where cp = cp,  at t = 0. Note that at cp >> M,/3 the kinetic energy f4’ of the field (1 1.8) 
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is much smaller than the potential energy V(cp), and therefore equation (1 1.6) is 
approximately valid. From (1 1.5) and ( 1  1.6) it follows that at large a the scale factor 
of the universe is given by 

a =ao  exp {z [ 1 -exp ( -Js?T 2JAMp t ) ] }  

Thus, at small t 

(1 1.9) 

(11.10) 

(compare with (1 1.5)). During the time of quasiexponential expansion (1 1.9) and 
( 1  1.10) the universe expands approximately exp (.rrcp:/Mg) times. This means that the 
universe expands more than exp (70) times if cpl 5: 5MP. 

As we have mentioned above, the only possible constraint on the initial value of 
cp is the condition V(cpl) = (A/4)cp?5 M i .  The field cp = cpI - 5Mp is quite possible if 
A 5 This constraint can be satisfied in many reasonable theories including the 
Glashow-Weinberg-Salam theory. 

Analogous results are valid for a rather wide class of effective potentials V(cp). 
Indeed, let us assume again that at large cp(cp h Mp) one can neglect the term 4 in 
( 1  1.7) (which can be verified a posteriori). In such a case, from equation (1 1.7) it 
follows that 

dcp 1 d V  
d t  3 H  dcp' 
_- - -- - (11.11) 

The duration of the rolling of the field cp = cp, down to cp = 0 can be roughly estimated 
as 

t -cp1($1  Q'QI ) - I .  (11.12) 

For a wide class of potentials V(p) (in particular for all polynomial potentials) at 
large cp one can use an estimate 

From (11.11)-(11.13) it follows that 

cp: 
V M:, 

8 7 ~ -  tH--- 3 H2p: 

(1 1.13) 

(11.14) 

which, together with equation (1 l S ) ,  is in qualitative agreement with equation (1 1.9). 
(This agreement for the theory V(cp) = (A/4)cp4 becomes almost complete if one takes 
into account that in this theory dV/dcp = 4V/cp.) This means that, in a wide class of 
theories in which the estimates ( 1  1.12) and (1 1.13) are reasonable, the domains of the 
universe filled with the field cp h Mp expand quasiexponentially ( A  << H 2 ) ,  and the 
chaotic inflation scenario can be realised. From this point of view inflation is not a 
peculiar phenomenon which is desirable for a number of reasons discussed in 5 5. In 
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a wide class of theories discussed above, inflation proves to be a natural, and maybe 
even an inevitable, consequence of the chaotic initial conditions in the very early 
universe. 

Thus we see that the original problem of obtaining a sufficiently large inflation in 
the context of some natural theory of elementary particles is not a problem any more. 
There still remains the problem, though, of obtaining sufficiently small density perturba- 
tions after inflation, 6 p l p  - in the 
chaotic inflation scenario it is sufficient, for example, to introduce any field cp weakly 
interacting with all other fields, which at cp -4Mp has an effective coupling constant 
A - (8.17). The existence of such a weakly interacting field does not contradict 
any experimental data. In our opinion the introduction of one new field is a very low 
price to pay for solving about ten different cosmological problems. A possible candidate 
for the role of such a field is the field cp coupled to supergravity and discussed in the 
previous section. We will continue the discussion of this possibility in the next section. 
However, this possibility is certainly not unique and we will consider it just as an 
example of a more or less realistic model which can be completely investigated. We 
would also like to note that the field cp is not necessarily an elementary scalar field. 
It can be a composite field such as a condensate of fermions (or vector bosons) of the 
type ($4) (or (G;vGZv)). It can also be the curvature scalar R. An assumption of a 
chaotic initial distribution of R can lead to a local realisation of the Starobinsky model 
similar to the chaotic inflation scenario (Kofman et a1 1984). 

Before proceeding further let us derive some approximate equations for 6 p / p  in 
the chaotic inflation scenario, which may be useful, since they are valid for a rather 
wide class of theories. Thus, from equations (8.14) and (11.6) it follows that 

However, in order to obtain S p / p  - 

From the estimate (1 1.13) it follows that 
,- 

(11.15) 

(11.16) 

A typical value of cp* corresponding to fluctuations on a galactic scale in the chaotic 
inflation scenario in the theories with V(q) - cp" is O(5MJ. For example, in the theory 
V(q) = (A/4)cp4, (o* -4Mp. Therefore, from equation (1 1.16) it follows that the density 
perturbations on the galactic scale in this scenario can be roughly estimated by the 
following expression: 

(11.17) 

This means that S p l p  - in the theories in which 

V(cp*)- V(cp-4Mp)- 10-I'M:. (11.18) 

For the theory (A/4)cp4 this yields the same value of A as the value obtained in 0 8: 

A - lo-''. ( 1 1.19) 
In conclusion we would like to remind the reader that the very idea of chaotic 

initial conditions in the very early universe is rather old (Wheeler 1964, Misner 1969a, b, 
Rees 1972) (see also the discussion of this question in 0 5). However, the main aim 
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of the previous works was to obtain a globally homogeneous and isotropic universe, 
which is hardly possible. In our approach the universe as a whole remains 
inhomogeneous and anisotropic after expansion, but it contains many exponentially 
large domains, in each of which space is almost homogeneous and isotropic. Equation 
( 1  1.9) suggests that the main part of the physical volume of our universe appears as 
a result of expansion of the domains filled initially with the largest possible field cp = c p I .  
If the maximal value of cpl is determined by the condition V(cpl) = Acpf/4- M:, then 
from equation (11.9) it follows that the typical size of the above-mentioned 
homogeneous and isotropic domains of the universe after expansion exceeds 

( 1  1.20) 

which for A - yields 

l e e x p  (10’) cm. (11.21) 

Thus, though we cannot guarantee equally good conditions everywhere in the 
universe, according to the chaotic inflation scenario many rather comfortable domains 
(mini-universes) should exist of a size 12 exp (lo’) cm, which is much greater than 
the size of the observable part of the universe. We cannot guarantee also that we live 
in the best of the domains. However, as will become clear from the discussion of the 
large-scale structure of the universe in the next section, one should think twice before 
crossing the boundary of his own domain. 

12. Chaotic inflation in supergravity 

Now let us return to the discussion of the inflationary universe scenario in supergravity. 
As was shown in the previous section, the inflationary universe scenario cannot be 
implemented in the context of supergravity in a standard way, based on the theory of 
high-temperature phase transitions. However, this does not invalidate the results 
obtained in § 10. According to the chaotic inflation scenario, all these results remain 
valid for domains of the universe in which the field cp was initially sufficiently small, 
cp<< cpo (Linde 19838). Moreover, the main results of 0 10 (the value of S p / p ,  the 
reheating temperature TR, etc) remain practically unchanged for the domains of the 
universe in which the field cp was initially sufficiently large, cp 2 5Mp +2p0 (Linde 
19838). 

However, the model (10.8) is still not perfect. As was mentioned in § 10, the 
superpotential g ( z )  in this model does not vanish at z = cpo. Though such a behaviour 
of g(z) is quite possible, it may not be very good, since in the theories under 
consideration the mass of the gravitino is proportional to g( cpo) and is usually assumed 
to be very small, m 3 / 2 -  1 2 G e V  (Ellis and Nanopoulos 1982), or m, /2 -  10-l6 in the 
units used in § 10 (MP/J8= = 1). This is necessary in order to obtain a comparatively 
simple solution to the gauge hierarchy problem in the context of supergravity (Ibanez 
1982, Barbieri et a1 1982, Nath et a1 1982) (see 0 5). Therefore, one must either solve 
the gauge hierarchy problem in some other way or keep g( z)  = 0 in the minimum of 
V(z, z*) which corresponds to the vacuum state at present, z = p0. 

In the paper by Ovrut and Steinhardt (1983) it was claimed that it is impossible 
to implement the inflationary universe scenario in supergravity with V( cpo) = 0, g( cpo) = 
0. However, their statement was based on the investigation of high-temperature 
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corrections to V(z, z*) in this theory (Gelmini et a1 1983, Ovrut and Steinhardt 1983), 
which are irrelevant for the realisation of the inflationary universe scenario in super- 
gravity (Linde 19838) (see § 11). As will be shown below, in the context of the chaotic 
inflation scenario one can have both V(cp) = 0 and g(cp) = 0 in the absolute minimum 
of the effective potential (Goncharov and Linde 1984a, b). We will not try to propose 
here a realisation of the chaotic inflation scenario in a theory with the most natural 
superpotential, since at present we have no criterion for making a choice between 
different possible functions g(z). We would just like to show that superpotentials of 
the necessary type do actually exist and to reveal some basic features of the chaotic 
inflation scenario in supergravity. 

As an example of an appropriate superpotential let us consider the function 
g(z)  = p3 exp (-z2/4)$(z) (10.5), where 

Here 

$(z) = tanh [ sinh [ [=[+iT. 

5 = J:(z - cpo) 

(12.1) 

(12.2) 

and cp, is some real number (se_ebelow). (In this section, just as in § 10, we use the 
system of units, in which M , / ~ ~ I T  = 1.) 

It is seen that $(z) = 0 at z = pa. The effective potential (10.1) in the new variables 
looks as follows: 

(12.3) 

With the superpotential (12.1) the effective potential (12.3) at the real axis is given by 

2 
3 cosh2 5-3 cosh4 5 (12.4) 

This potential has a minimum at 6 = 0 (cp = pa) with V(cp,) = 0. At large 151 the effective 
potential grows and asymptotically approaches 9p6. In the complex plane V([, [*) is 
positive semi-definite, V ( [ , l * )  = 0 only at [ = i m  ( n  = 0, * I ,  *2, . . .). Due to the 
presence of the factor exp [2(Im [)2/3] in (12.3), the potential V([, [*) is exponentially 
large everywhere outside the narrow region near the real axis. The only exceptions 
are the exponentially narrow holes (of width of the order of exp (-27r2n’/3)) near the 
above-mentioned points n = * 1, k2, . . . . 

The chaotic inflation scenario can be implemented in the theory with the effective 
potential (12,1)-( 12.4) as follows. Almost independently of the initial value of the 
figld z in the universe, this field exponentially rapidly drops to the real axis, [ = 5 = 
&cp - cp,). After this process the main part of the universe becomes filled with some 
real field cp, which typically is very large, Icp - ‘pol >> 1. (The probability of dropping to 
the holes near = i m ,  n = * 1, *2, . . . , or directly to the minimum at [ = 0 is negligibly 
small.) Then the field cp exponentially slowly rplls along the real axis down to the 
minimum of V(cp) at cp = ‘pa. If the field 6 = &cp - p0) is initially sufficiently large 
(151 s l) ,  then the value of V(p) at that time is given by 9 p 6  (12.4) and the domains 
of the universe filled with a field 161 Z 1 expand exponentially: 

a( t ) -exp (Htl-exp (J5F3t) .  (12.5) 
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The effective potential at large 161 can be approximated by the asymptotic formula 

V(cp)=9p6(1 -$exp (-J61cp-cpo/)). ( 12.6) 

From equations (8.15), (12.5) and (12.6) it can be shown that, during the rolling from 
some initial field cp = cpl down to cp = cpo the universe expands as follows: 

a(cp = 90) - 4cp = c p l )  exp (A exp (12.7) 

This means that the universe expands more than exp (70) times (which is necessary 
for the realisation of the inflationary universe scenario) if the value of Icp -pa( was 
initially sufficiently large, (cp - cpol 2 2. 

In the chaotic inflation scenario in the theory with effective potential (12.7) any 
initia! value of cp can exist in a given domain of the universe with the probability 
which is almost cp-independent, at least for sufficiently large cp. Therefore, a consider- 
able part of the universe (presumably the main part of the universe) was initially in a 
state with Icp - pol 2 2. The regions of the universe with Icp - pol h 2 exponentially expand 
and acquire the size exceeding the size of the observable part of the universe, 1 - lo2* cm. 

- Pol). 

The spectrum of density perturbations in this model is given by 

(12.8) 

which yields for the fluctuations at the galactic scale ( k -  exp ( - 5 0 ) ~ ' )  

( 12.9) SP -- 30p3. 
P 

This means that S p / p  - 10-4if p3 - 3 x i.e. p - lo-', which seems quite reasonable. 
In this theory, unlike all other theories considered up to now, we do not need any 
other small parameters to obtain a sufficiently large inflation and the small value of 
density perturbations S p / p  - As for the parameter cpo, it determines the rate of 
decay of particles cp to other particles, F a  - p3cpg (Nanopoulos et al 1983a, Goncharov 
and Linde 1984a), and with an appropriate choice of this parameter one can get an 
adequate temperature T R  of the universe after reheating, which is important for the 
solution of the gravitino problem in this scenario. In particular, at cpo = 1 in our scenario 
T R -  10'o-lO1l GeV and the decrease (increase) of p0 leads to the decrease (increase) 
of T R  proportional to pa. At small T R  the process of gravitino production after inflation 
is inefficient ( S  Weinberg 1983 private communication, Nanopoulos et a1 1983a), which 
may help us to solve the primordial gravitino problem (Ellis et a2 1982). However, 
for a complete solution of this problem it might be necessary to have T R  as small as 
lo9 GeV (Khlopov and Linde 1984). It is still possible to generate the baryon asymmetry 
of the universe at T R -  lo9 GeV (see D lo), but one must confess that it is not very 
easy (Khlopov and Linde 1984) and it would be much better to make the gravitino 
heavy and harmless, m3,2h lo4 GeV (Weinberg 1982a). 

As was shown above, the observable part of the universe in our scenario was formed 
when the field cp was in the region Icp - pol 5 2. Therefore this scenario can be realised 
not only in the theory with superpotential (12.1), but in many theories in which $(z) 
is approximately given by (12.1) at Iz-cpo152. This means, in particular, that the 
effective potential V( cp) should not be absolutely flat at Icp - cpol +CO (12.6), it may grow 
(though not too rapidly) at Icp - (pol 5.2. Thus, we have found a rather wide class of 
superpotentials, which have all the properties necessary for the realisation of the chaotic 
inflation scenario in supergravity (Goncharov and Linde 1984a, b). 
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Now let us study the problem of symmetry breaking in the supersymmetric SU(5) 
theory coupled to supergravity in this scenario. As was noted in § 5 ,  the effective 
potential V(@) in the minimal version of this theory has several different minima with 
V(@) = 0: SU(5) invariant minimum (a = 0), SU(4) x u (  1) minimum and SU(3) X 
SU(2) x U( 1 )  minimum (see figure 5). Supergravity makes the values of V(@) in these 
minima slightly different from each other, but the SU(5) minimum usually remains 
the most energetically favourable one (Weinberg 1982b) and, which is even more 
important, the SU(5) minimum is the only minimum of V(@, T )  at high temperatures. 
Therefore one may wonder how we have succeeded to jump into the SU(3) XSU(2) X 
U( 1) minimum. 

To answer this question let us first assume that, due to the high-temperature effects, 
the field CP was initially equal to zero. Let us assume that the curvature of the effective 
potential V(CP), i.e. the effective mass squared of the field 0, is much smaller than 
H 2 ,  where H is the Hubble constant during inflation in this scenario: mi<< H 2 =  
(8~/3M;)V(cp) .  (Note that inflation is governed not by the SU(5) fields CP, but by 
some other fields cp with a very large value of V(cp) which, in the chaotic inflation 
scenario, can be as large as M:.) In this case from equations (8.6)-(8.9) it follows 
that during the inflation the fluctuations of the field @ grow, which in the exponentially 
large domains of the universe cannot be distinguished from the homogeneous classical 
field @ with magnitude 0 - (Tr(CP2))1'2. With a proper choice of the parameters of the 
model, the magnitude of the field @ after inflation can become much greater than 
m,- 10'5-10'6 GeV. (An opposite statement by Olive and Seckel (1983) was based on 
the investigation of models with small H, whereas in the chaotic inflation scenario the 
inflation typically starts at H 3 M,,.) Note that the growth of the field CP occurs in all 
possible directions in the isotopic space. After the end of inflation the field CP stops 
its growth and becomes convergently oscillating in the vicinity of a nearest minimum 
of V(CP). Therefore, after the end of inflation the universe becomes divided into many 
domains with all possible types of symmetry breaking, the typical size of each domain 
being many orders of magnitude greater than the size of the observable part of the 
universe, 1 - cm. In particular, there will be many (in an open universe, infinitely 
many) domains of the phase SU(3) xSU(2) x U ( l ) ,  in one of which we now live (Linde 
1983f). 

We would like to emphasise the difference between the above-mentioned mechanism 
of symmetry breaking (Linde 1983f) and the standard one. Usually it is assumed that 
it is impossible for the phase transition to occur from the global minimum of the 
effective potential V(cp) to any local minimum of V(cp). From our results it follows, 
however, that such a phase transition becomes effectively possible in the inflationary 
universe scenario due to the anomalous growth of the long-range scalar field fluctuations 
in the exponentially expanding universe. Usually the phase transition proceeds to one 
preferred phase in the whole universe. In our case the phase transition proceeds with 
a comparable probability to many different phases. Each of these phases fills a domain 
(mini-universe) of a size exceeding the size of the observable part of our universe. All 
these phases with a non-negative vacuum energy density are practically stable. The 
only phase in which life of our type may exist is the phase SU(3) x U( 1) with vanishing 
vacuum energy. This phase appears after symmetry breaking in the SU(3) x SU(2) x 
U( 1) domains and proves to be absolutely stable in the theories under consideration 
(Weinberg 1982b). 

Note that in the versions of the inflationary universe scenario in which the value 
of V( cp) in some domains was initially sufficiently large, high-temperature effects could 
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not lead to the symmetry restoration in the SU(5) theory due to the rapid decrease of 
temperature in such domains (see the previous section). Therefore the field (D may 
take different values in different domains of the universe not only due to the anomalous 
growth of the fluctuations of the field @ in the inflationary universe scenario, but also 
due to the chaotic initial distribution of the field (D in different parts of the universe. 
In both cases the universe after inflation becomes divided into many mini-universes, 
in which all possible symmetry breaking patterns of the SU(5) theory can be realised. 

The large size of domains, just as the large size of bubbles in the first version of 
the new inflationary universe scenario (Linde 1982a), implies that no monopoles appear 
in the observable part of the universe after inflation in this scenario. This solves the 
primordial monopole problem in the minimal supersymmetric SU(5) theory. As was 
shown in § 10, in the non-minimal SU(5) theory the primordial monopole problem 
can be solved in an even more simple way. 

The results obtained above show that the chaotic inflation scenario can be completely 
realised in the context of N =  1 supergravity coupled to matter (Linde 1983f, g, 
Goncharov and Linde 1984a, b) under several conditions which are necessary to solve 
the gravitino problem and to make possible the baryon asymmetry generation (Khlopov 
and Linde 1984). 

As we have noted in § 11, such a realisation certainly is not unique. One can suggest 
a realisation of the inflationary universe scenario even without any help from supersym- 
metry. For example, in a recent paper by Shafi and Vilenkin (1984) (see also Pi (1984)) 
it was suggested to implement this scenario in a theory of a singlet scalar field cp weakly 
coupled to the SU(5) scalar fields @ and H5. It can be shown that the chaotic inflation 
scenario (though not the new inflationary scenario based on the theory of high- 
temperature phase transitions) can be realised in the models of this type and the value 
6 p / p  - can be obtained. However, as we have argued in § 11, it is now not very 
difficult to suggest a new realisation of the inflationary universe scenario; the real 
problem here is to implement this scenario in the context of a natural and realistic 
theory of elementary particles. It is now widely believed that the theories based on 
supergravity are the best candidates for the role of a realistic theory of all fundamental 
interactions. This is the main reason why we have discussed inflation in supergravity 
in this section and in § 10. 

The models considered above were based on the simplest version of spontaneously 
broken N =  1 supergravity. For a discussion of inflation in other theories such as 
SU( 1, 1 )  supergravity see Gelmini et al (1984) and Goncharov and Linde (1984d). 

To conclude this section we would like to note that the appearance of the domain 
structure of the universe after inflation, which was discussed above, may help us to 
answer some other questions, including the question of why our universe is four- 
dimensional. As we have noted in § 5 ,  in the Kaluza-Klein theories it is assumed that 
our space originally had dimension d > 4, but extra d - 4 dimensions are spontaneously 
compactified (see, for example, Cremmer and Sherk 1976, Witten 1981). One may 
wonder, therefore, why just d - 4 dimensions are compactified, and not d - 3 or d - 5 ?  

A possible answer is that, due to some properties of the Kaluza-Klein theories, 
the only possible compactification is just d + 4 (Freund and Rubin 1980, Freund 1982). 
The inflationary universe scenario suggests another possible solution to this problem 
(Linde 1983a). Let us assume that space, after compactification, may have any number 
of dimensions including d = 4. It is clear that the process of compactification (or 
decompactification?) proceeds independently in different causally unconnected 
domains of the universe. Therefore, the universe after compactification becomes 
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divided into many different domains, in which the number of uncompactified 
dimensions may be different. (There is nothing paradoxical in such a possibility, since 
locally (i.e. at a scale A l s  M i 1 )  the number of dimensions everywhere remains equal 
to the initial number d.) After inflation the universe becomes divided into many 
mini-universes, each of which may have a different number of uncompactified 
dimensions. Now let us note that the conditions necessary for the existence of life 
(or, at least, of our kind of life, based essentially on electromagnetic and gravitational 
interactions) can be realised just in four-dimensional space-time. Indeed, as was noted 
by Ehrenfest many years ago (Ehrenfest 1917), in a space with d > 4 electrostatic and 
gravitational forces decrease too rapidly with the increase in distance between interact- 
ing objects, and therefore any bounded states such as atoms or planetary systems at 
d > 4 are impossible. On the other hand, according to general relativity theory, the 
gravitational attraction between far-removed objects at d < 4 vanishes altogether. 
Therefore, according to our scenario, the universe may consist of many mini-universes 
with a different number of dimensions, and we live in the four-dimensional universe 
since life of our type is impossible in domains with any other number of uncompactified 
dimensions. 

One could notice that in this section we have used the anthropic principle several 
times, which was criticised in § 5. However, after the formulation of the inflationary 
universe scenario the status of the anthropic principle was changed. First of all, the 
inflationary universe scenario makes it possible to answer some questions which could 
not be answered by means of the anthropic principle alone (why the universe is almost 
isotropic and homogeneous, why the spectrum of inhomogeneities in the universe is 
almost scale-independent, etc (see § 5)). On the other hand, the inflationary universe 
scenario provides the conditions which are necessary for the implementation of the 
anthropic principle. Our universe after inflation becomes divided into many domains 
(mini-universes) with different properties of elementary particles inside each of them, 
with different values of the vacuum energy (of the cosmological term) and may even 
have a different number of dimensions, and life can exist only in some of these 
mini-universes which are sufficiently suitable for it. The anthropic principle can be 
developed even further in the context of quantum cosmology, which will be discussed 
in the next section. 

13. The inflationary universe scenario and quantum cosmology 

The standard assumption which is usually made in the inflationary universe scenario 
is that the exponential expansion starts after some earlier stage of expansion and 
cooling of the hot singular universe. However, one may wonder what was before the 
beginning of the universe expansion (if such a question makes any sense) (see 9 5). 
Here we would like to describe some attempts to answer this question based on the 
idea of quantum creation of the inflationary universe. 

The possibility of the quantum creation of the universe from ‘nothing’ or from 
‘some other universe’ has been extensively discussed during the last ten years (see, for 
example, Tryon (1973, Fomin (1973,1975), Brout et al(l978,1979), Zeldovich (1981), 
Grishchuk and Zeldovich (1982), Sato et al (1982), Vilenkin (1982, 1983a, b), Hartle 
and Hawking (1983), Moss and Wright (1983), Linde (1984c, d)  and Starobinsky 
(1984a, b, c)). The theory of such processes is far from being completely developed, 
and even the very concept of creation from ‘nothing’ or from ‘some other universe’ 
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deserves a more detailed examination (Linde 1983a). Nevertheless some simple qualita- 
tive description of these processes can easily be suggested (Zeldovich 198 1, Grishchuk 
and Zeldovich 1982, Linde 1984c, d). 

It is usually believed that space is foam-like at small scales (Wheeler 1964, Hawking 
1978), which means that at a scale AZS Mi’ quantum gravity effects lead to very large 
fluctuations of the metric and of all matter fields. Now let us assume that, as a result 
of such fluctuations, there appears a domain filled with a slowly changing field cp with 
the energy density V(cp). If the size of this domain A1 is greater than the horizon 
radius H-l=  (3M:/S~V(cp))l”, the interior of this domain exponentially expands as 
a de Sitter space independent of any events outside this domain (Gibbons and Hawking 
1977). Since the typical size of such a domain is A l -  M i ’ ,  quantum gravity effects 

which yields 
can lead to a creation of an inflationary universe if Mil 2 H-l=  (3 M:/ 8 TV( cp )) 

whereas creation of an inflationary universe with V( cp) << M; should be strongly 
suppressed. Note that in all early versions of the inflationary universe scenario (Guth 
198 1 , Albrecht and Steinhardt 1982, Linde 1982a) inflation occurs only at V( cp) << M;, 
whereas in the scenario discussed in P 11 (Linde 1983d, e) inflation can occur even at 
V( cp) 2 M:. This makes quantum creation of the inflationary universe possible (Linde 
1984c, d). 

These qualitative arguments are rather general and can be applied both to the 
process of creation of the universe from ‘nothing’ or from ‘some other universe’. In 
what follows we will concentrate on the investigation of the first of these possibilities. 
Note that the condition AZS Mil implies, in particular, that the Friedmann universe 
created from ‘nothing’ should be closed. 

A first attempt at quantitative investigation of the creation of a closed inflationary 
universe from ‘nothing’ was made by Vilenkin (1982, 1983a). However, in our opinion 
(Linde 1983a) his approach to this problem, being intuitively appealing, was not well 
motivated. As a result, he obtained the expression for the probability of the universe 
creation P- exp (3M;/8V(cp)), from which it would follow that quantum gravity 
effects become stronger at small V( cp) and that quantum fluctuations of metric become 
greater at greater length scales. Such a conclusion would be in contradiction with the 
well-known fact that quantum gravity effects at large scales (at small momenta) are 
negligibly small. 

Recently a very interesting approach to the problem of quantum creation of the 
universe was suggested by Hartle and Hawking (1983). This approach is based on the 
computation of the ground-state wavefunction qo(a ,  cp) of a closed universe with a 
scale factor a filled with a homogeneous field cp (DeWitt 1967, Wheeler 1968) which, 
according to Hartle and Hawking (1983), in the semiclassical approximation is given 
by 

(13.2) 

Here SE( a, cp) is the Euclidean action corresponding to the Euclidean solutions of the 
Lagrange equations for a(.) and cp(.) with the boundary conditions a(0) = a, cp(0) = p. 
The main idea behind the derivation of equation (13.2) can be explained as follows. 
Let us consider the Green function of a particle, which moves from the point (0, t’) 
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to the point (x, 0): 

(x, 010, t ’ )  = ?,(X)F,(O) exp (iE,t’) 
n 

= J dx( t )  exp [is(x(t))]  (13.3) 

where *,(A!) is a complete set of energy eigenstates corresponding to the energies 
E, 3 0. To obtain Wo(x) one should make a rotation t + iT and take the limit as T’+ -a. 
In the sum, only the term n = 0 with Eo = 0 survives and the integral transforms into 
5 dx(7) exp [ - & ( x ( T ) ) ] .  A generalisation of this result for the case of interest in the 
semiclassical approximation would yield equation ( 13.2). 

A possible Euclidean solution, corresponding to the quantum creation of an 
inflationary universe with a slowly changing scalar field cp, is the Euclidean section of 
a closed de Sitter space with a( . )  = H-’(cp) cos HT. Here H(cp) = [ ( 8 ~ / 3 M ; )  V(cp)]’” 
and 0 s  H T S  ~ / 2 .  The corresponding action is SE(a ,  cp) = -3M4,/ 16 V(cp). According 
to Hartle and Hawking (1983), this means that the probability of quantum creation 
of a closed inflationary universe with a( t )  = H(cp) cosh Ht is given by P - lVo(a, (p)I2- 

exp (3M;/8 V(cp)),  which would coincide with the result of Vilenkin (1982, 1983a). 
However, the negative sign of the action suggests that something should be improved 
in this approach. The point is that the Lagrangian of the scale factor a in the 
mini-superspace approach used by Hartle and Hawking (1983) has a ‘wrong’ sign 
(Gibbons et al 1978). The part of the action which depends on a can be written as 
follows (Hartle and Hawking 1953): 

(13.4) 

where r) is the conformal time, r) = l d t / a ( t )  and A is the cosmological constant, 
A = 8 ~ V ( c p ) /  Mi for a slowly changing field Q. Equation (13.4) implies that the energy 
of ‘excitations’ of the scale factor a near a = 0 is negative, E,  S 0. This is related to 
the fact that the total energy of a closed universe is zero, being a sum of the positive 
energy of matter and the negative energy of the scale factor a. In such a case, as far 
as the evolution of the field cp can be neglected, to obtain qo( a, cp) by means of equation 
(13.2) one should rotate t not to -iT but to +iT, which leads to the following result: 

(13.5) 

(Linde 1984c, d). 
We would like to point out that no general Euclidean prescription is known at 

present for the quantisation of interacting fields with both positive and negative energies, 
since the vacuum state of such a theory is unstable due to the gravitational interaction 
of species of both types (Linde 1984a). Fortunately, during the process of creation of 
the inflationary universe the evolution of the scalar field cp is unimportant (+/ cp << d/  a, 
+2<< V(cp)), its effective potential V(cp) serves just as a cosmological constant in the 
action of the scale factor S ( a )  (13.4), and equation (13.5) is valid. However, at present, 
when the universe is very large and the evolution of the scale factor a is extremely 
slow, the situation is reversed. The evolution of the scale factor is unimportant for 
quantisation of all other fields, and one can use the standard Euclidean formalism 
with rotation t +  -iT for the quantisation of all other fields with positive energy. 
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Another subtle point is that, due to the gauge invariance with respect to the choice of 
the time scale, there are no physical degrees of freedom (no particles) associated with 
the scale factor a, and therefore one should take into account the contribution of the 
corresponding ghosts to q,,(a, cp) (Hawking 1984~).  However, just as in the theory of 
instantons, in the semiclassical approximation one can forget about ghosts and consider 
the gauge field a as a real physical field with negative energy. 

Equation (13.5) has also recently been obtained by a different method (Starobinsky 
1984b). The wavefunction which describes the creation of the universe from ‘nothing’ 
is given by the amplitude of tunnelling from the point a = 0 to the point a = IT’( cp). 
The Lagrange equations for the scale factor a coincide exactly with the Lagrange 
equations in the theory with $ ( a )  = -(2/3rM;)S(a) (Linde 1984a) (see also appendix 
2). Therefore the semiclassical tunnelling amplitude coincides with the tunnelling 
amplitude in the theory $ ( a )  with the usual sign of energy of the scale factor a. This 
corresponds to the tunnelling from a = 0 to a = H-’ through the potential barrier 

+(a )  =- 2 Y a*-- ::> a4 
(13.6) 

which leads again to equation (13.5). 
Note that the amplitude of creation of a universe with A s 0  vanishes, since 

tunnelling from a = 0 in the theory ( 13.6) with A s  0 is impossible. 
Now let us apply our results to the theory of quantum creation of the inflationary 

universe. From equation (13.5) it follows that the wavefunction of the universe with 
a scale factor a filled with a slowly changing homogeneous field cp is given by 

(13.7) 

This equation implies that quantum creation of an inflationary universe with V( cp) << M: 
is exponentially suppressed, just as we expected. However, there is no exponential 
suppression of creation of an inflationary universe with V(cp) B Mi. In particular, in 
the theory V(cp)=(A/4)p4 with A S  there is no suppression of creation of the 
universe with cp 3 A-”4Mp 3 5Mp, which expands more than exp (70) times during the 
exponential expansion stage (see D 11). This means that the process of quantum 
creation of the universe in a wide class of elementary particle theories with a large 
probability leads to the creation of the inflationary universe which, after inflation, 
acquires the size 1 b loz8 cm (Linde 1984c, d). 

The results obtained above seem rather plausible. They are in agreement with the 
qualitative scenario of quantum creation of the universe suggested by Zeldovich (1981) 
and Grishchuk and Zeldovich (1982). One should bear in mind, however, that the 
derivation of equations (13.2) and (13.5) is based on some reasonable assumptions 
about the ground-state wavefunction of the universe, but this derivation is still far 
from being completely rigorous (Hartle and Hawking 1983, Linde 1984c,d). The 
physical interpretation of these results is even less definite but is strikingly interesting. 

One could imagine that the metric g,, is some physical field which depends on the 
coordinates (xo, x l , .  . .) and which, just as the scalar field cp, may or may not have a 
classical part. The scalar field cp acquires a classical part due to the instability of the 
state cp = 0 in the theory (2.1) with M 2  = -p2 < 0. Any quantum fluctuation of the field 
cp with a momentum Ikl< M grows exponentially, Scp(k) - exp [ ( p 2 -  which 
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finally leads to the appearance of the classical field c p = c p o ,  corresponding to the 
minimum of V( cp) (Linde 1979) (see also the discussion of the generation of the ‘almost 
classical’ field cp = ( ( c p 2 ) ) ” 2  in § 8). A similar effect occurs with any fluctuation of the 
metric which gives rise to the inflationary universe. Any fluctuation of the metric at 
a scale A1 3 H-’(cp) = (3M;/8~V(cp))”* containing the field cp b 5Mp grows as a closed 
de Sitter space (a (  t )  - H-’ cosh Ht) ,  and at large t the metric g,, acquires an exponen- 
tially large classical part (8.1). As we mentioned at the beginning of this section, such 
fluctuations can appear with a large probability if AI 6 M i 1  or, equivalently, if V( cp) b 
M;,  which is in agreement with equation (13.7). 

At later stages of expansion the instability of the initial distribution of the field cp 
leads to reheating of the universe. Thus, the possibility of the existence of life, according 
to this scenario, appears as a combined effect of the gravitational instability (exponential 
expansion) and the instability with respect to the field cp. Even later the closed universe 
contracts again to a singularity, and the ‘classical part’ of g,, disappears again. From 
such a point of view the universe looks like a quasivirtual state, as a quantum fluctuation, 
which, due to the existence of the stage of inflation, has an exponentially large lifetime. 
Such fluctuations may appear again and again, which leads to a scenario similar to 
the eternally oscillating universe scenario suggested by Markov (1981, 1983, 1984) (see 
also Linde (1983a) and Hawking (1984d)). In a different interpretation one should 
not speak about an oscillating universe : all these oscillations represent the same universe 
which is split into infinitely many slices according to the many-world interpretation 
of quantum mechanics (Everett 1957, DeWitt 1967, Wheeler 1968, Hartle and Hawking 
1983, Hawking 1984~) .  Actually, however, there may be no difference between these 
interpretations. Indeed, the concept of time is well-defined only at a sufficiently large 
a, when the semiclassical description of evolution of the universe is possible, and 
therefore one cannot say whether it is the next oscillation that starts after the singularity 
or whether it is just another slice of the same dniverse. This is a possible answer to 
the question of what was before the cosmological singularity. 

One should note that the chain of oscillations can be broken if a universe is created 
in which, after the symmetry breaking, V( cp) remains positive (A > 0). Such a universe 
remains exponentially expanding forever. However, this does not preclude a further 
process of quantum creation of universes, since the process of quantum creation of 
universes from the universe with A > 0 remains possible. 

A more difficult problem arises if one considers the entropy behaviour in the 
oscillating universe scenario, namely, after the end of inflation the universe acquires 
a huge total entropy S 3 1 Os’ and therefore it will be not in the ground state To( a, cp) 
but rather in some highly excited state. The total energy E of all matter fields in the 
universe (and, correspondingly, the energy of the scale factor a )  in this state is extremely 
large, and it increases towards the singularity ( E  - a-’ - ( t  - t,)-’/* in the hot collapsing 
universe, where t, is the time at which the universe becomes singular). Therefore one 
could argue that the behaviour of the wavefunction of the universe * (a ,  cp) after 
inflation is essentially semiclassical, and thus the quantisation of the scale factor of 
the universe does not save us from the final cosmological singularity unless the structure 
of the energy-momentum tensor at high densities drastically changes (e.g. TWy + g,,M; 
at p + M: (Markov 1982), see appendix 1). Since the collapsing universe is not in the 
ground state, the universe which appears after the collapse may also be created not 
in the ground state, and the total entropy of the universe will increase in each new 
cycle, which would lead to the well-known difficulties of the oscillating universe scenario 
(Zeldovich and Novikov 1975). 
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A possible answer is that in the very vicinity of the singular point one could not 
measure either the total energy E (since the indefiniteness of the total energy - 
( t -  tJ-’ >>E - ( t -  t , )-”*) or the total entropy, and the concept of time is also ill- 
defined, since there is no clock which could work at t-,  ?,. Therefore, there is no 
reason to believe that the total entropy of the universe must grow with each new cycle; 
the growth of the entropy may be a quasivirtual effect, which occurs only inside each 
quasivirtual universe in the semiclassical stage of its evolution. Another possible 
solution of the entropy problem is discussed in appendix 1. 

If one takes a risk to discuss a manifold without any classical part of g,, one can 
take another step and consider spaces with different possible signatures of gPY. From 
such a point of view, a newly born universe can have the Euclidean signature ( + + + +), 
or it can have the signature ( -  - + +), or it can consist of different domains with 
different signatures of g,, (Sakharov 1984). One can also imagine that the manifold 
(x,,, x l , .  . .) has a number of dimensions much greater than four, but some of the 
classical components of g,,, are very small (compactification) or they have no classical 
part at all, whereas the other components of g,, may have a different signature in 
different parts of the manifold (xo, x,, . . .) (Sakharov 1984). It is worth noting that 
life of our type in the Euclidean universe would be impossible due to the absence of 
particle-like states. This is a possible reason why we live in the Minkowski slice of 
the universe, which is four-dimensional for the reasons discussed in the previous 
section. 

Thus we see that the investigation of quantum cosmology reveals many interesting 
possibilities which have not been explored so far. At present we do not know which 
of these possibilities will be realised in a future theory, but in any case it seems very 
likely that something similar to the inflationary universe scenario should be present 
in a complete cosmological theory as a bridge between the creation of the universe 
and its later stages of evolution as described by the hot universe theory. 

14. Conclusions 

During the three years of its existence the inflationary universe scenario has been 
considerably modified. According to the first version of this scenario, inflation occurs 
before the symmetry breaking phase transition from some strongly supercooled vacuum 
state (Guth 1981). Then it was realised that this scenario leads to some unacceptable 
cosmological consequences. In 1982 the new inflationary universe scenario was sug- 
gested, which was free of the main difficulties of the ‘old’ scenario (Linde 1982a, b, c, d, 
Albrecht and Steinhardt 1982). According to the new scenario, inflation occurs during 
the symmetry breaking phase transition. In 1983 it was discovered that the idea of 
inflation can be realised in a much better way in the chaotic inflation scenario (Linde 
1983c, d), which was not based on the theory of high-temperature phase transitions 
in the early universe, and this scenario was implemented in the context of N = 1 
supergravity coupled to matter (Linde 19838, Goncharov and Linde 1984a, b, d). Very 
recently a new version of the chaotic inflation scenario was suggested, which was based 
on the idea of quantum creation of the universe (Hawking 1984c, d, Linde 1984c, d). 
We do not know what will be the next modification of the inflationary universe scenario. 
We do  not know what impact new theories of the type of extended supergravities, 
Kaluza-Klein theories, etc, will have on this scenario (see, for example, Shafi and 
Wetterich ( 1983)). However, whereas the details of the inflationary universe scenario 
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will certainly be modified with the development of elementary particle theories, some 
of the basic features of this scenario discussed in the present paper will presumably 
remain intact. 

One may wonder whether the inflationary universe scenario can be experimentally 
tested. The answer to this question is two-fold. First of all, as we have noted in the 
introduction, the only laboratory in which particles with energies E - loL5 GeV have 
ever interacted with each other is our universe at the very early stages of its evolution. 
The main results of this cosmological experiment are the flatness, homogeneity, isotropy 
aqd baryon asymmetry of the universe, the absence of primordial monopoles and 
ddmain walls and the existence of galaxies. All of these experimental data can be 
explained in the context of the inflationary universe scenario, and no other possibility 
of explaining simultaneously all these data (except the new version of the Starobinsky 
model (Starobinsky 1983b, Kofman et a1 1984)) is known to us at present. 

However, the inflationary universe scenario not only explains a large set of existing 
experimental data, it also predicts some new ones. According to the inflationary 
universe scenario, the density of matter p in the observable part of the universe should 
now be almost exactly equal to the critical density pc- 10-29g ~ m - ~ :  f l = p / p c =  
1 +0( loW4) (Guth 1983). (The term O( appears due to the density perturbations 
in the observable part of the universe.) Though it is practically impossible to verify 
this prediction by a direct measurement of p, one can verify it indirectly by measuring 
the masses of neutrinos. Indeed, the neutrino density in the universe can be theoretically 
evaluated by means of the hot universe theory (Zeldovich and Novikov 1975) and it 
can be shown that the neutrino energy density in the universe would exceed the critical 
density pc if m,> 25 eV. Thus the measurement of the neutrino mass (Lubimov et a1 
1980, 1983) can be considered as an experimental test for the inflationary universe 
scenario. This test is not crucial, since there exist some ways to considerably reduce 
the theoretical estimate of the present neutrino density in the universe (Doroshkevich 
and Khlopov 1984a, b). However, it would not be very easy to reconcile the inflationary 
universe scenario with the existence of a stable neutrino with m, 3 lo3 eV (M Yu 
Khlopov 1984 private communication). 

Another possible test is related to the large-scale fluctuations of the microwave 
background radiation temperature AT/ T, which should not be much smaller than 0.3 
6 p / p  - 3 x according to the theory of galaxy formation from adiabatic perturba- 
tions with the scale-independent spectrum 6 p / p  - and fl = p / p , -  1 (Rubakov et 
a1 1982, Shandarin et a1 1983, Starobinsky 1983b, Mukhanov and Chibisov 1984). 
Meanwhile, from the present observational data it follows that the large-scale fluctu- 
ations AT/ T are rather small, AT/ T 6 (4-6) x (Ceccarelli et a1 1983, Fixsen et a1 
1983). These results are still not in disagreement with the inflationary universe scenario, 
but in a few years time with an increase of accuracy in the measurement of AT/ T we 
will have a chance of verifying one of the important predictions of the inflationary 
universe scenario: the almost scale-independent spectrum of density perturbations, 
6 p / p  - lop4. This test is also not absolutely crucial. One can have both S p / p  - 
and AT/ Ta in the theory with heavy unstable neutrinos (Doroshkevich and 
Khlopov 1984a, b, Turner et a1 1984). Another possible way of reducing the large-scale 
fluctuations AT/ T is to suggest a version of the inflationary universe scenario in which 
6 p / p  - lop4 at the galaxy scale, but S p / p  << at larger length scales. This is actually 
possible in some theories, though it does not seem to be very natural. Finally, one 
can imagine, for example, that the density perturbations after inflation are very small, 
6 p / p  << and the perturbations of density with a slightly different spectrum 6p(  k ) / p  
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are generated by cosmic strings (Zeldovich 1980, Vilenkin and Shafi 1983). However, 
this would diminish the aesthetic attractiveness of the inflationary universe scenario. 

It is very difficult to make any predictions concerning the future development of 
the inflationary universe scenario. Two years ago, the difficulties of this scenario 
seemed absolutely insurmountable. A year ago, it was not quite clear whether the new 
version of this scenario would be sufficiently good or not. At present, it seems that 
there are no difficulties which would prevent a consistent realisation of the inflationary 
universe scenario, but it is not excluded, of course, that some better scenario will be 
suggested later. However, whatever the fate of the inflationary universe scenario, its 
very existence may have irreversible consequences for the development of the theory 
of evolution of the universe. During the last three years it has been understood that 
it is possible to solve simultaneously about ten different cosmological problems in the 
context of one comparatively simple scenario. It was shown that the theory of the 
very early stages of evolution of the universe may differ considerably from the usual 
hot universe theory. It became clear that the universe at very large scales may consist 
of many locally isotropic and homogeneous mini-universes, and inside each of these 
mini-universes the properties of elementary particles, the vacuum energy and even the 
dimensionality of space-time may be very different. 

There still remain many problems to be solved, related both to cosmology and to 
elementary particle physics, some of which we will discuss in the appendices to this 
review. However, in our opinion, the new results which have already been obtained 
during the investigation of the inflationary universe scenario clearly indicate how many 
interesting and important effects can be revealed by the investigation of the cosmological 
consequences of elementary particle theory. 
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Appendix 1. The oscillating inflationary universe and gravitational confinement 

As we have emphasised in § 5 ,  one of the most important and intriguing cosmological 
problems is the problem of a general cosmological singularity. The most difficult aspect 
of this problem is not the existence of the singularity itself, but the question of what 
was before the singularity and what will be after the collapse of the universe (which 
will eventually occur if the universe is closed with cosmological constant A = 0). This 
problem lies somewhere at the boundary between physics and metaphysics. For 
example, from the point of view of an Oriental philosopher the singularity problem 
would not be much of a problem at all. He would recall that, according to the theory 
of reincarnation the ‘soul complex’ (or the ‘principle of consciousness’) survives after 
bodily death, and then reincarnates again in a new body, which is sufficiently suitable 
for it (Evans-Wentz 1980). Usually the reincarnated person does not remember his 
previous incarnation, at least consciously. Similarly, one could consider the universe 
as a ‘body’ for something like a world-soul, which after the collapse reincarnates inside 
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some new universe which is sufficiently suitable for it. It may be rather difficult to 
reconcile such a philosophy with the usual scientific approach, but one must confess 
that there is a striking similarity between this philosophy and the anthropic principle, 
combined with the idea of an eternally oscillating (or splitting) universe considered 
in § 13. 

One of the virtues of the inflationary universe scenario is that it provides a simple 
physical solution to many problems which, for a long time, have seemed almost 
metaphysical. Since the necessary ingredient of the inflationary universe scenario is 
the de Sitter stage, and de Sitter space is known to be non-singular (Hawking and 
Ellis 1973), it is very tempting to speculate about a possible connection between this 
scenario and the singularity problem. Unfortunately, it does not seem possible to solve 
the singularity problem in the context of the inflationary universe scenario without 
taking into account quantum gravity effects (Linde 1983a). The most interesting 
approach to the singularity problem which is known to us at present is related to what 
can be called ‘quantum cosmology’ (see § 13). However, a complete quantum descrip- 
tion of evolution of the universe is rather complicated, especially in the absence of a 
consistent quantum theory of gravity. Therefore, in the meantime one may try to 
suggest a phenomenological description of the effects which might appear when the 
energy density of the universe becomes of the order of pp - M: and quantum gravity 
effects become important. Here we would like to discuss a possibility related to the 
eternally oscillating universe scenario first suggested by Markov (1981, 1983, 1984). 

Markov assumed that the universe is closed, and that at the moment of maximal 
contraction the energy-momentum tensor of matter becomes Twy - gwypp, so that the 
universe enters a de Sitter stage. Closed de Sitter space is non-singular, a ( t ) =  
H-’ cosh Ht, where H - [(8.rr/ Mi)pp]”2 - Mp, and after the moment of maximal 
contraction t = 0 the universe becomes expanding again. After a period of exponential 
expansion the de Sitter universe transforms into the hot Friedmann universe as in the 
inflationary universe scenario. Then the closed Friedmann universe contracts again, 
and again transforms into the de Sitter one, etc. 

The possibility of an eternally oscillating non-singular inflationary universe scenario 
seems very attractive. The main problem of this scenario is that the hot Friedmann 
universe cannot evolve into de Sitter space without violation of the second law of 
thermodynamics. Indeed, the pressure p in the hot universe is given by 

p = - F = T s - p  (Al . l )  

where p is the energy density, s is the entropy density and F is the free energy density. 
Therefore, in order to have p = - p  ( Twy - g,,p) one should have vanishing entropy s 
at the end of the universe contraction. This means that, at the end of the universe 
contraction, the entropy of the universe should be decreasing, which would contradict 
the second law of thermodynamics (a similar possibility had been suggested earlier 
by Sakharov in his version of the oscillating universe scenario (Sakharov 1967, 1970, 
1979, 1980)). 

In the hot universe theory one could argue that at the temperature T exceeding 
Mp- lOI9 GeV the time remaining before the singularity is of the order of AMp/ T2<< 
T-I. At that time the standard thermodynamic quantities become ill-defined at the 
classical level, since during the time At << T-l one cannot register a particle with energy - i7 In particular, one cannot measure the entropy of the universe at T > Mp, and it 
is even less clear what is the entropy of the universe in the singular state (see § 13). 



978 A D Linde 

However, these arguments do not apply to the non-singular oscillating universe 
scenario, in which we have a lot of time to take measurements. 

A possible solution of this problem is connected with a dynamical violation of the 
second law of thermodynamics in a non-linear quantum field theory, in which there 
exists an upper bound on the energy density, p s pp (Markov 1982). Here we would 
like to suggest one more possibility, which may help to realise the non-singular 
oscillating inflationary universe scenario (Linde 1983a). It is known that at R b G-’ 
perturbative results in quantum gravity become unreliable (here, R is the curvature 
tensor and all indices are omitted). The only other non-Abelian theory which is 
well-known to us is quantum chromodynamics. Perturbative results in QCD are unre- 
liable at small momenta, which is an indication of the colour confinement. The only 
objects which can exist as free particles (in- and out-states) are colourless, i.e. do not 
interact directly with the Yang-Mills field. Quarks are assumed to interact with each 
other with a force which (asymptotically) does not depend on the distance between 
them. Therefore, any isolated quark would have an infinite energy, which just means 
that quarks cannot exist as free particles. Phenomenologically the existence of the 
distance-independent forces between two quarks can be described as the interaction 
between two quark currents j ,  and j ,  of the type of j ,  (k, - k)j,( k2 + k ) /  k4 in momentum 
space (though such an interpretation of the quark interactions in QCD is not quite 
precise). A similar term of the type R z ( k , -  k ) R 2 ( k z + k ) / k 4  has been obtained by 
Green et a1 (1982) and Grisaru and Siege1 (1982) as the one-loop correction to the 
effective action in O(8) supergravity. We will not speculate here about a possible 
phenomenological significance of this result, but just assume that at sufficiently large 
curvature R b G-’ in quantum gravity there occurs a phase transition to the gravitational 
confinement phase. We are unable to prove or disprove this conjecture at present, 
since it would require a much deeper understanding of quantum gravity than we have 
at present. Some estimates indicate that the regime of gravitational confinement may 
occur even at R << G - ’ ,  but the confinement length in these cases is much greater than 
the size.of the observable part of the universe. We hope to discuss this question 
elsewhere, and here we shall only try to understand which consequences our assumption 
may lead to. 

First of all, let us try to understand what the hypothesis of gravitational confinement 
could mean. As we have already mentioned, any isolated coloured particle in QCD 
would have an infinite energy, and therefore only colourless particles can exist as free 
particles in QCD. However, all particles are coloured with respect to the gravitational 
interaction. Therefore, in the gravitational confinement phase (if such a phase can 
exist) any particle would have infinite energy. In other words, the gravitational 
confinement phase is a vacuum state in curved space, in which no free particles 
and, more generally, no inhomogeneities of the curvature tensor (which are also 
gravitationally ‘coloured’) can exist. Therefore, after the phase transition to the 
gravitational confinement phase the universe should transform into the maximally 
symmetric and homogeneous space with p - pp and without particles, i.e. into de Sitter 
space. 

In order to investigate the possible cosmological consequences of our hypothesis 
let us consider a hot closed universe contracting to a would-be singularity. The 
temperature of the universe increases, and at T 3  1015 GeV the phase transitions with 
symmetry restoration in grand unified theories occur. When the density of matter 
becomes greater than pp = G-’, the curvature tensor becomes of the order of G-’ and 
the phase transition to the gravitational confinement phase occurs. In this state no 
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real particle excitations can exist (though virtual particles, in general, can exist) and 
the entropy of the universe in this state vanishes. This does not contradict the second 
law of thermodynamics, since any thermodynamical description of the gravitational 
confinement phase is impossible because of the absence of particles and of any 
possibility of the disorder of matter. Since the universe is closed, after the transition 
to the gravitational confinement phase it evolves into the closed de Sitter universe, 
which contracts to the minimal value of the scale factor a - H-'  and then expands as 
H-' cosh Ht. Such a universe is stable with respect to the deconfining phase transition 
at the contraction stage but is unstable at the expansion stage. Indeed, any bubble of 
the non-confining phase (with p 4 pp), which may appear inside the confining phase, 
at the contraction stage automatically transforms into the confining phase due to the 
increase in density during the contraction. On the other hand, at the exponential 
expansion stage sufficiently large bubbles with p 8 pp grow, the density inside them 
decreases and all the universe eventually transforms into the hot Friedmann universe 
filled with the ordinary (non-confining) phase with p < p p .  If this phase transition 
occurs slowly enough, the inflationary universe scenario can be realised at this stage 
of expansion of the universe. The inflationary universe scenario can also be realised 
later (see 0 0  10-12). After inflation the closed Friedmann universe expands to some 
large radius, contracts and again transforms into the de Sitter universe in the confine- 
ment phase. 

We have suggested, therefore, a possible realisation of the Markov non-singular 
oscillating inflationary universe scenario. Since the duration of the de Sitter stage 
fluctuates from cycle to cycle, there will be large fluctuations in the duration of each 
cycle, but the average duration will be time-independent. This is one of the most 
important differences between the scenario discussed above and the usual oscillating 
universe model, in which the duration of each cycle grows infinitely with the number 
of cycles due to the growth of the total entropy of the universe in each cycle (see, for 
example, Zeldovich and Novikov 1975). In our case the universe does not remember 
anything about its previous 'incarnations'. All entropy and all inhomogeneities of the 
contracting universe disappear in the purgatory of the de Sitter stage and are then 
generated anew in each new cycle. 

Our discussion of the gravitational confinement hypothesis and of its cosmological 
consequences is, of course, far from being rigorous. It is also quite possible that this 
hypothesis is not necessary for the realisation of the oscillating inflationary universe 
scenario (see, for example, Markov (1981, 1983, 1984), Hawking (1984d) and 0 13). 
However, the problem we are discussing now is extremely complicated and, just as in 
the theory of quark confinement, in the absence of a complete theory it might be useful 
to have several different models which may describe different aspects of the same 
physical reality. 

Appendix 2. The cosmological constant problem 

As was pointed out in 0 5, one of the most difficult problems related both to cosmology 
and to elementary particle physics is the cosmological constant problem. There have 
been many attempts made to understand why the vacuum energy at present is almost 
precisely zero (Dolgov 1983, Zee 1983, Rajeev 1983, Rubakov and Shaposhnikov 1983, 
Cremmer et al 1983, Hawking 1984a, b), but in our opinion the problem is still not 
solved. 
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In this appendix we would like to discuss two different possibilities to solve the 
cosmological constant problem. The first possibility is connected with a doubling of 
all matter fields (Linde 1984a). Let us assume that the total Lagrangian of matter can 
be written as follows: 

(A2.1) 

where - R/  161rG is the Einstein Lagrangian, L( cp) is the Lagrangian of matter fields 
cp, -L ($ )  is the Lagrangian of the same functional form as L(cp) but is a function of 
the other fields (2; and it enters into 2 (A2.1) with a negative sign. 

At first sight, the theory (A2.1) is unstable with respect to the generation of infinitely 
large fields due to the negative sign of L($) .  However, all Lagrange equations for the 
field $ are the same as for the field cp and there is no instability in the classical theory 
- L ( $ ) .  The only difference between these theories is that the field cp in the theory 
L(cp) will be in the minimum cpo of the effective potential V(cp), whereas the field 6 
will be in the maximum (at $ =Go) of the effective potential V ( $ ) .  Since the 
Lagrangians L(cp) and L ( $ )  are of the same functional form, cpo = Go and V(cpo) = 
-V($o). Therefore, the total vacuum energy density of the theory (A2.1) will be zero 
independently of the value of V(  cpo): 

Pvac = V(cp0) + V(Cp”0) = 0. (A2.2) 

This is exactly what is needed for a solution of the cosmological constant problem. 
One may wonder whether the new particles 6, which we call ‘down’ particles to 

distinguish them from the usual ‘up’ particles cp, are harmless. To answer this question 
let us note that ‘up’ and ‘down’ particles interact with each other only gravitationally. 
Therefore, only very large inhomogeneously distributed amounts of ‘down’ matter (like 
planets) could affect us in some way. Moreover, in the inflationary universe scenario 
one could see no ‘down’ particles at all. Indeed, let us consider a domain of the field 
cp B 5Mp in which the field $ was initially much smaller than cp. Such a domain will 
exponentially expand (see D 11). If $cc cp, then the process of $-particle production 
finishes before the end of inflation, and then inflation pushes all ‘down’ particles away 
from the observable part of the universe. 

There still exist many problems associated with our suggestion. First of all, there 
is the vacuum instability due to gravitational interaction between ‘up’ and ‘down’ 
particles. Indeed, a pair of ‘down’ and a pair of ‘up’ particles can be produced from 
the vacuum without violation of energy conservation. However, this process does not 
produce any energy density and does not lead to the creation of a preferred reference 
frame; this is just a vacuum reconstruction process. A preliminary investigation of 
this question indicates that such a boiling of the vacuum state may not lead to any 
unacceptable observational consequences. 

Another problem may be even more difficult. It is possible to double the matter 
fields cp, but unless gravity is doubled as well, quantum gravity corrections to V(cp) 
and V ( $ )  can violate equation (A2.2), though it might be possible to make quantum 
gravity corrections to V (  cp) and V (  6) small if these potentials are sufficiently flat near 
their minima. 

We realise that the possibility of having ‘up’ and ‘down’ worlds may sound absolutely 
crazy, but at least at the level at which quantum gravity effects can be neglected we 
see no reasons why such a scenario could not work. Quantum gravity effects may lead 
to considerable complications of this scenario, but the general idea of the vacuum 
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energy cancellation between the ‘up’ and ‘down’ vacua seems so simple and natural 
that it would be a pity to abandon such a possibility without a detailed investigation. 

Another possible way of solving the cosmological constant problem is related to 
quantum cosmology. The vacuum energy density may depend on the topology of the 
compactified part of space (Sakharov 1984) and on some classical fields of the type 
of the antisymmetric tensor field APVh (Ogievetsky and Sokatchev 1980, Duff and van 
Nieuwenhuizen 1980, Aurelia et a1 1980). This field, just as the scalar field cp, appears 
simultaneously with quantum creation of the universe (Hawking 1984a, b). However, 
contrary to the scalar field cp, the field strength FPVhr of the field ApYh, which gives the 
contribution V( F )  to the vacuum energy V( cp, F )  = V( cp) + V( F ) ,  remains constant 
during the subsequent classical evolution of the universe (Ogievetsky and Sokatchev 
1980, Duff and van Nieuwenhuizen 1980, Aurelia et a1 1980). As follows from equation 
(13.7), the universe is created most probably in a state with V(cp, F )  3 M :  (Linde 
1984c, d, Starobinsky 1984b). However, this does not impose any constraints on the 
value of V ( F )  = V( cp, F )  - V( cp) since the value of V( cp) at the initial stages of inflation 
can be arbitrarily large (see Q 11). Therefore, after symmetry breaking any value of 
vacuum energy density V( po, F )  = V( cpo) + V( F )  may appear with approximately the 
same probability. At I V( Po, F)I >> g cm-3 life of our type would be impossible. 
The value I V( cpo, F)l S g cm-3 a priori does not seem very probable. The eternally 
oscillating universe scenario is not of much help here, since the closed universe with 
V (  cpo, F )  > 0 can expand forever, which would break the chain of oscillations (see 
0 13). What may occur, however, is a multiple quantum production of ‘new’ universes 
from the ‘old’ ones. Such a process looks like an infinite chain reaction, which is 
possible due to the gravitational instability discussed in Q 13 (see also a paper by 
Englert and Nicolai (1983) in which similar ideas were suggested). During this process 
infinitely many universes can be produced, in some of which 1 V(vo, F)I < lo-*’ g cm-3 
and life of our type may exist. This is a possible solution of the cosmological constant 
problem based on the implementation of the anthropic principle in quantum cosmology. 
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