COLLABORATIVE ROBOTS FOR MOBILITY ASSISTANCE AND REHABILITATION

Etienne Burdet

Imperial College London

COLLABORATIVE ROBOTS - COBOTS

intelligent assistive devices for the industries and for everyday life

from Colgate&Peshkin's research at Northwestern U. to the successful spin-off Stanley Robotics

robot systems for medical interventions

virtual reality based training systems

using haptic interfaces

microsurgery training at NUS

Lokomat for walk neurorehabilitation @ Hocoma

- have to smoothly and efficiently interact with human voluntary movements
- should consider the users' safety, neuromechanics and sensorimotor control, in addition to the requirements of the environment

control

psychology

robotics

neuroscience

physiology

human motor control

human-machine interaction

robot-assisted rehabilitation

virtual reality based surgery training

assistive devices

www3.imperial.ac.uk/ humanrobotics

- motor learning: in humans, for robots
- rehabilitation devices to train the upper limb in neurologically impaired individuals
- dedicated robots to investigate the neural control of movements
- robots for mobility assistance

MOTOR LEARNING: in humans, for robot

understanding muscle coordination learning The Journal of Neuroscience 2008

new strategy to learn optimal interaction control in robots IEEE Transactions on Robotics 2011 Best Award

HUMAN MOTOR LEARNING

- we constantly need to learn new tasks and adapt to changing conditions, e.g. during infancy or with ageing
- similarities between neurorehabilitation and motor learning in healthy subjects as a tool to develop efficient rehabilitation strategies

INTERACTION LEARNING

- in unstable tasks typical of tool use, sensorimotor noise leads to errors and unpredictability
- this requires to compensate for the interaction force and instability by adapting muscles activity

TO INVESTIGATE INTERACTION LEARNING IN UNSTABLE DYNAMICS

point to point movements

TO INVESTIGATE INTERACTION LEARNING IN UNSTABLE DYNAMICS

point to point movements

LEARNING INSTABILITY TYPICAL OF TOOL USE

- the nervous system reorganises muscles activity through learning
- feedforward force compensates for the interaction with the environment
- stiffness increases to counteract the instability

LEARNING MODEL

change of muscle activation

LEARNING MODEL

minimisation of error & effort in muscles predicts the learning observed in experiments

change of muscle activation

LEARNING: FROM HUMAN TO ROBOT

- Our model of motor learning can be used to predict and study the neural control of movement and posture
- in humans, interaction is continuously adapted to minimise error and effort
- human-like guidance adaptation on rehabilitation robots:
 when the patient is improving, robot assistance will relax

[Burdet et al.: J of Neuroscience 2008, IEEE Trans on Robotics 2011, PLoS ONE 2012]

- motor learning: in humans, for robots
- rehabilitation devices to train the upper limb in neurologically impaired individuals
- dedicated robots to investigate the neural control of movements
- robots for mobility assistance

STROKE

a part of the brain does not receive enough oxygen, e.g. due to a clot in a cerebral artery

TYPICAL POST-STROKE REHABILITATION IN THE UK

ROBOT-ASSISTED NEUROREHABILITATION

- number of individuals with motor impairments due to neurological diseases is increasing
- patients with neurological disease receive too little therapy for optimal motor recovery

 robotic devices can provide motivation through games, control training and objectively measure performance

REHABILITATION OF ARM FUNCTION

MIT-Manus to train horizontal arm movements

- information from position, velocity and torque sensors
- assistive/resistive load

MIME (Stanford U) to train arm movements in space

 possibility of teaching mirror movements using the unaffected limb

PASSIVE CONTROL MODALITY

- provides patient with proprioceptive sensory feedback without active muscle fibers or motoneuron activity
- can be used to stretch muscles to increase passive range of motion

GUIDED CONTROL

- provides patient with proprioceptive sensory feedback of errors in force direction
- prevents patient from making hand path errors but does not correct muscle activation patterns

ACTIVE CONTROL

- provide normal proprioceptive feedback during movement
- assistive force allows patients to increase speed or complete difficult movements
- resistive force helps increase strength

ERROR AUGMENTATION

- provides increased (proprioceptive) sensory feedback of errors
- force the patient to correct muscle activation patterns

RESULTS OF CLINICAL TRIALS

- robot-assisted therapy is as effective as conventional therapy
- clinical improvements following intensive robot-assisted therapy of chronic patients are statistically significant but small
- passive movement is insufficient, active participation is required
- training planar movements does not transfer well to functional tasks, e.g. manipulation

IMPORTANCE OF HAND FUNCTION

ARM ROBOTS WITH HAND MODULE

FIND OUT FUNCTIONS THAT STROKE PATIENTS MISS MOST

- knob manipulation
 (to operate ovens, washing machine etc.)
- handwriting
- driving
- card playing, cutting nails and similar fine manipulation

OUR COMPACT ROBOTS TO TRAIN HAND FUNCTION

HandCARE finger coordination and independence, tactile sensation

Haptic Knob hand opening, knob manipulation and grasping

HAPTIC KNOB: OPENING/CLOSING GAME

- passive opening to train finger extension
- training slow grasping along a smooth trajectory
- automatic increase of difficulty (slow movement) with performance

HAPTIC KNOB: PRONOSUPINATION GAME

- score = f(adjustment time)
- automatic adaptation of difficulty level with increase of resistance and required precision

HAPTIC KNOB: CHRONIC PATIENTS TRIAL

- therapists found an improvement of hand and arm functions
- this suggests that compact hand robots offer an alternative to large exoskeleton arm robots

WHICH ROBOT FOR REHABILITATION?

rehabilitation objects

<100£

passive sensorbased systems

100£-5000£

simple robots for decentralised use

~10'000£

complex robots

100'000-1'000'000£

cost, complexity, need for assistance

safety, number of potential users

SITAR system for independent taskoriented assessment and rehabilitation

- a table workbench
- low-cost force touch screen & intelligent objects
- sensors to infer patient's behaviour
- patient's behaviour

Imperial College London

 assessment with partners in London (UCL, Imperial), UPMC Paris, CMC Vellore (India)

FOR REHABILITATION

MYRO®

- interactive therapy device, for one of multiple players
- immersive, with natural visuomotor coordination
- detection of multi-touch and interaction force
- for manipulation with real objects or graphomotor tasks
- ideal for task-oriented training
- audio feedback

COLLABORATIVE ROBOTS

- motor learning: in humans, for robots
- rehabilitation devices to train the upper limb in neurologically impaired individuals
- dedicated robots to investigate the neural control of movements
- robots for mobility assistance

SENSORI-MOTOR ACTIVITY IN PRETERM INFANTS

- up to 10% of babies born prematurely will develop cerebral palsy
- detect abnormal brain activity using functional magnetic resonance imaging (fMRI) and a compatible robot
- (re)habilitation

SENSORI-MOTOR ACTIVITY IN PRETERM INFANTS

- tiny pneumatic wrist robot
- sensing through optical fibre
- passive movement (robot moves)
- premature infants make infrequent spontaneous movements

passive movement yields activity in the contralateral primary sensory cortex

active results cluster in primary motor cortex

[Allievi et al. 2013 IEEE T. Biomedical Engineering]

SENSORY ACTIVITY FROM PRETERM BIRTH TO AGE CORRECTED BIRTH

↑ complexity of functional responses

† involvement of accessory areas and ipsilateral hemisphere

overall response decreases at term

[Allievi et al. 2015 Cerebral Cortex]

SENSORI-MOTOR ACTIVITY
IN PRETERM INFANTS

right/left wrist interface

right ankle interface

using wrist and ankle interface, we can precisely characterise the somatosensory map in infants, which is similar to the adult homunculus

STRUCTURAL AND FUNCTIONAL CONNECTIVITY IN STROKE INFANT

control preterm infant

preterm infant with stroke

[Arichi et al. 2014 Neuroradiology]

COLLABORATIVE ROBOTS

- motor learning: in humans, for robots
- rehabilitation devices to train the upper limb in neurologically impaired individuals
- dedicated robots to investigate the neural control of movements
- robots for mobility assistance

KINEASSIST @ KINEADESIGN

- let the patient in charge of the movement
- allows therapists to safely challenge patients in functional environments with minimal effort

NEED FOR IMPROVED POWER WHEELCHAIR MOBILITY

 of the 1.7 million adults who use wheeled mobility devices in USA, only 9.1% use motorised wheelchairs (Kaye 2000)

- clinical survey (Fehr 2000) revealed that for patients who receive power wheelchair training:
 - 9~10% find it extremely difficult or impossible to use the wheelchair for daily activities
 - 40% find it difficult or impossible to manoeuvre the wheelchair

COLLABORATIVE WHEELCHAIR

help the disabled by:

- relying as much as possible on her or him
- providing guidance along paths defined in software
- allowing them to vary the level of autonomy to suit their ability

Imperial College London

- 26y cerebral palsy
- good understanding but cannot talk clearly
- wide oscillations in the arms
- can only use a manual chair, pushing backward with feet

[Zeng et al. 2009 Neurorehabilitation & Neural Repair]

NAVIGATION TEST

collisions happened with conventional WC for every subject, but no collision with collaborative WC

conventional wheelchair

collaborative wheelchair

[Zeng et al. 2009 Neurorehabilitation & Neural Repair]

ADAPTIVE PATH GUIDANCE

- human-robot collaboration motto:
 "from each according to his ability, to each according to his needs"
 - human: planning, speed control including start/stop
 - machine: assist in manoeuvring by constraining motion along guide paths
- neither complex sensor processing nor a decision system is required: simple and safe robotic system

COLLABORATIVE ROBOTS FOR MOBILITY ASSISTANCE AND REHABILITATION

- do not impose a robotics solution
- experiments with healthy and impaired end users
- major issue: human-machine interaction
- let the impaired users (as much as possible) in charge of the control
- we often come to interesting and challenging robotics problems

EUROHAPTICS

2016

Imperial College www.eurohaptics2016.org

