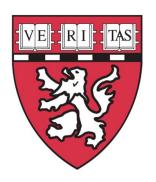


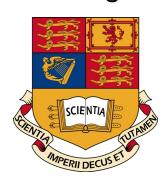
Tutorial on Medical Robotics

Please fill out this poll now: http://etc.ch/2mQp

If you have questions during the tutorial but are too shy to ask, enter them here: http://tinyurl.com/medrobtut



ICRA 2016 Tutorial on Medical Robotics


Allison Okamura
Stanford University

Nobuhiko Hata Harvard Medical School

Etienne Burdet
Imperial College London

About this tutorial

- Focus of this tutorial: Design and control of robots and associated technology for medical applications, focusing on surgery, interventional radiology and neurorehabilitation
- We expect that you are in the fields of engineering and computer science; no medical background is necessary.
- Audience: Who are you?

About us

Allison

Mechanical Engineering PhD
Stanford University
Dextrous manipulation
Immersion, Inc. (Haptics)
Professor at Johns Hopkins,
Stanford

ME & Computer Science PhD
Tokyo University
Brigham and Women's Hospital
+ Harvard Medical School
"Engineer in scrubs"

Etienne

Theoretical physics, PhD in robotics ETHZ (Switzerland)
Postdoc in Canada/Japan/USA in neuromechanics
Research in medical robotics & neuroscience at NUS Singapore Professor, Imperial College London

Structure of this tutorial

- 8:10-9:00 am
 Lecture I: Design Considerations for Medical Robots
- 9:00-9:50 am
 Lecture 2: Kinematics and Control of Medical Robota
- 9:50-11:10 am

 Lecture 3: Image-Guided Interventions
- 11:10-12:10 pm
 Lecture 4: Collaborative Robots for Mobility Assistance
 and Rehabilitation
- 12:10-12:30 pm
 Discussion

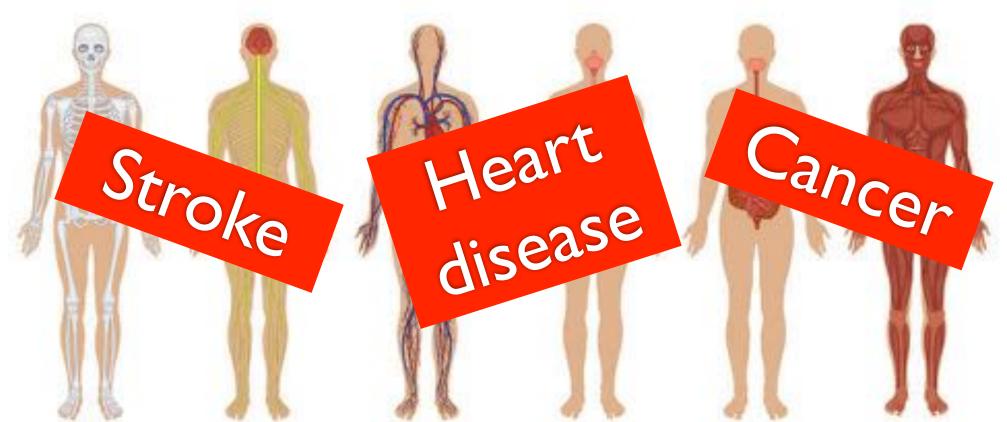
Learning Objectives

Lectures I & 2 (Allison)

- Define surgery and minimally invasive surgery
- Explain the function and advantages/disadvantages of current commercial robot-assisted surgical systems
- Highlight design features of current and future generations of robotic devices
- Understand the kinematic structures of medical robots
- Identify common types of sensors and actuation technologies used in medical robots
- Identify control strategies used for human-in-the loop medical robots

Lecture 3 (Noby)

- Understand the fundamentals of medical imaging
- Understand the role of medical imaging to guide therapy and diagnosis Image Guided Therapy
- Learn role of robotics in Image Guided Therapy research and key enabling technologies


Lecture 4 (Etienne)

- Learn the main factors for collaborative robots physically interacting with human movements
- Know how robots can be used to investigate human sensorimotor control
- Understand some aspects of human-robot interaction

Why use medical robots?

Diseases and disorders

brain/ nervous system respiratory/ lungs muscular system

orthopedic

circulatory

liver, kidney, gastrointestinal

Robots are...

- Accurate and precise; Untiring
- Smaller or larger than people (as needed for access)
- Remotely operated (as needed)
- Connected to computers, which gives them access to information
- Not able to operate autonomously in highly complex, uncertain environments (yet)

→ Need for human interaction

Potential Impact of Medical Robotics

level of challenge

TODAY:

Treatments are both qualitatively and quantitatively limited by human abilities

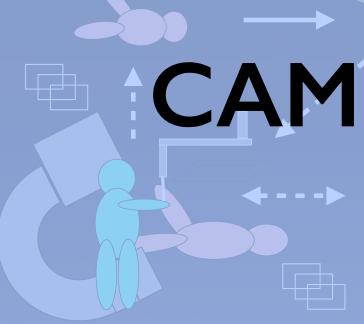
WITH ROBOTICS:

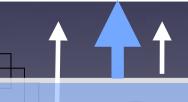
More clinicians can perform more difficult (and even new) procedures; more patients can be rehabilitated

number of patients treated

Preoperative

computer-assisted planning


patient-specific modeling



update model

update plan

real-time computer assistance

patient

Postoperative

database assessment

Key features of robot-assisted interventions

- Quantitative descriptions of patient state
- Use of models to plan intervention
- Design of devices, control, and processes to connect information to action (= robotics)
- Incorporate human input in a natural way

Ultimate goal: Improve health and quality of life

Safety and Reception

Safety of industrial robots is ensured by keeping humans out of the workspace.

Medical robots come in contact with both patients and clinicians/caregivers.

Approaches include:

- Low force and speed
- Risk analysis (eliminate single points of failure)
- Fault tolerance (hardware and software)
- Fail safe design (system fails to a safe state)
- Redundant sensing

Tutorial on Medical Robotics

Please fill out this poll now: http://etc.ch/2mQp

If you have questions during the tutorial but are too shy to ask, enter them here: http://tinyurl.com/medrobtut