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ABSTRACT
One way of evaluating social choice (voting) rules is through a

utilitarian distortion framework. In this model, we assume that

agents submit full rankings over the alternatives, and these rank-

ings are generated from underlying, but unknown, quantitative

costs. The distortion of a social choice rule is then the ratio of the

total social cost of the chosen alternative to the optimal social cost

of any alternative; since the true costs are unknown, we consider

the worst-case distortion over all possible underlying costs. Anal-

ogously, we can consider the worst-case fairness ratio of a social
choice rule by comparing a useful notion of fairness (based on ap-

proximate majorization) for the chosen alternative to that of the

optimal alternative. With an additional metric assumption – that

the costs equal the agent-alternative distances in some metric space

– it is known that the Copeland rule achieves both a distortion and

fairness ratio of at most 5. For other rules, only bounds on the dis-

tortion are known, e.g., the popular Single Transferable Vote (STV)

rule has distortionO (logm), wherem is the number of alternatives.

We prove that the distinct notions of distortion and fairness ratio

are in fact closely linked – within an additive factor of 2 for any

voting rule – and thus STV also achieves anO (logm) fairness ratio.
We further extend the notions of distortion and fairness ratio to

social choice rules choosing a set of alternatives. By relating the

distortion of single-winner rules to multiple-winner rules, we es-

tablish that Recursive Copeland achieves a distortion of 5 and a

fairness ratio of at most 7 for choosing a set of alternatives.
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1 INTRODUCTION
Social choice theory studies the aggregation of agent preferences

into a single collective decision via a social choice rule. Often these
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preferences are expressed as total orderings over a set of possible al-

ternatives, and a social choice rule maps any instance of preferences

to one or more alternatives. The traditional approach to evaluating

the quality of social choice rules has been a normative, axiomatic

one. A great deal of work has been done to propose various axioms

or properties that social choice rules ought to satisfy – such as

strategy-proofness or the majority winner criterion – and evalu-

ate different rules by which criteria they meet [4]. Unfortunately,

even small sets of natural axioms may be impossible to satisfy si-

multaneously. For instance, the celebrated Gibbard-Satterthwaite

Theorem rules out the existence of strategy-proof, non-dictatorial

social choice rules with more than two alternatives [20, 32]. Thus

we must either accept social choice rules which fail to satisfy some

natural properties, or make assumptions which limit the possible

agent preferences but permit strategy-proof rules [6, 29].

An alternative to the axiomatic approach, which has lately re-

ceived much attention in the field of computational social choice

[9, 12, 31], is to adopt a utilitarian view – agents express their

ordinal preferences by ranking the alternatives, but have latent

cardinal preferences over the alternatives. In particular, much work

[2, 3, 33] has been done on the metric distortion problem [2]. Un-

der this model, agents and alternatives are assumed to lie in an

unknown, arbitrary metric space, and an agent’s cost for an al-

ternative is given by the distance between the two. Social choice

rules are viewed as approximation algorithms trying to choose the

alternative with the lowest social cost, given access to only the

ordinal preferences of agents. Similar to the competitive ratio of

online approximation algorithms, the quantity of interest here is

the worst-case value (over all possible underlying costs) of the dis-
tortion – the ratio of the social cost of the chosen alternative to that

of the optimal alternative, chosen omnisciently [2]. In this setting,

the best known positive result for deterministic social rules is that

the distortion of the Copeland rule is at most 5 [2]. Another recent

result establishes that the distortion of the Single Transferable Vote

(STV) rule, which is widely used in practice, isO (logm) [33], where
m is the number of alternatives.

Under the metric distortion approach, another important ques-

tion is to quantify how “fair” choosing a particular alternative is.

Since the costs incurred could vary widely among the agents, min-

imizing the total cost might not be the only useful objective. For

instance, imagine there are two agents and two alternatives, and the

costs for the agents are {1, 3} for the first alternative, and {2, 2} for

the second. It is natural to expect that under any reasonable notion

of fairness the second is more desirable than the first. Although

many notions of fairness exist, not all are applicable in this setting,

and some cannot even be bounded for any social choice rule [2, 21].

We use the fairness ratio [21], which is a simultaneous bound, over

all k , on the distortion of the social cost objective given by the sum
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of the k largest agent costs. This definition of fairness is based on

the notion of approximate majorization [23], which generalizes the

various notions of fairness that have been studied in the context of

routing, bandwidth allocation and load balancing problems [24–26].

For instance, it includes as special cases both total cost minimiza-

tion (utilitarianism), when k = N (where N is the total number

of agents), and max-min fairness (egalitarianism), when k = 1. A

bound on the fairness ratio also translates to an approximation

guarantee on a wide class of convex objective functions [21]. For

example, a constant factor bound on the fairness ratio implies the

same bound on the distortion of social cost objectives such as the

geometric mean, or any lp norm of the agent costs [21]. Thus, this

interesting notion of fairness captures a wide range of desirable

properties.

It is known that Copeland achieves a fairness ratio of at most 5,

thereby yielding a constant-factor approximation for a large class

of convex objectives [21]. Since it also achieves a distortion of at

most 5, a natural question arises as to whether the distortion and

fairness ratio are inherently connected. For many popular voting

rules – such as scoring rules and STV – bounds are known on the

distortion but not the fairness ratio. Could the distortion bounds

for these rules extend to the fairness ratio as well, as is the case

with Copeland? In particular, does any bound on distortion directly

imply a bound on the fairness ratio? The primary aim of this paper

is to answer this question.

The majority of previous work on the metric distortion problem

looks only at social choice rules that choose a single alternative and

not those that choose a set of alternatives. To address this lacuna,

we also study the problem of establishing bounds on the distortion

and fairness ratio for the case of choosing a set of winners, given

the size of the desired set. Applications of multi-winner elections

are quite diverse such as proportional representation in parliament

[8, 28], selecting a diverse committee [13] (e.g. locations of fire

stations), offering a selection of movies to passengers on a flight

[27], and shortlisting candidates for a job interview [7, 15]. We

will focus on settings where a set of resources has to be chosen to

serve a community of voters. Some examples of these setting are

choosing overlay networks in the Internet [1], or a set of public

projects to implement given a fixed budget [10, 22]. We will also

assume in such settings that the preferences are additive – the total

cost for an agent is just the sum of her costs over the chosen set

of alternatives. It is fairly straightforward to see that a repeated

application of Copeland to choose a set of winners yields a bound

of 5 on the distortion. In fact, we establish that any single-winner

rule can be applied recursively to obtain a multiple-winner rule

with the same bound on distortion. However, it was not known

if a constant-factor bound on the fairness ratio is possible in this

case. We answer this question in the positive by extending the

distortion-fairness relationship to rules choosing a set of winners,

thus establishing that the set chosen by a repeated application of

Copeland achieves a bound of at most 7 on the fairness ratio.

1.1 Our Results
Our primary focus in this paper will be to quantify the relationship

between the distortion and fairness ratio for social choice rules

that choose a single winner, which also leads to new results for

any rules where bounds are known on the distortion but not the

fairness ratio. We then extend these results to rules that choose a

set of winners, and characterize upper bounds on distortion and

fairness in this setting. We also provide a lower bound on the gap

between the distortion and fairness ratio.

Note: All our proofs are in the appendix due to space constraints.

1.1.1 Distortion and Fairness for Single-Winner Rules. Given the

ordinal preferences of the agents, the distortion of an alternative

is the worst case value (over all possible underlying metrics) of

the ratio between the sum of agent costs for it, and the sum of

the agent costs for the optimal alternative. For studying fairness

under the metric distortion framework, we instead consider the

ratio of the sum of the k largest agent costs for an alternative to

the k largest costs for the optimal alternative, and take the maxi-

mum value among these ratios over all possible values of k . The
overall fairness ratio is the worst case value of this quantity over

all possible underlying metrics. Since for k = N we get the sum of

costs objective, the fairness ratio is at least as large as distortion.

Ourmain result is that the distortion and fairness ratio are closely

related. For any given ordinal preferences, and any alternative,

we show that the fairness ratio cannot be much larger than the

distortion.

Result 1 (Theorem 3.2). Given the ordinal preferences of the
agents, the fairness ratio of any alternative is at most 2 more than its
distortion.

We also present instances where the “obvious” winner for any

reasonable social choice rule (which is also the distortion minimiz-

ing alternative) has a distortion-fairness gap approaching 2.

Result 2 (Theorem 3.3). There exist instances where the gap
between the distortion and fairness ratio of the distortion-optimal
alternative approaches 2.

In fact, because the above results hold for any set of preferences

and any metric space, they also imply that for any social choice

rule, the worst-case fairness ratio is at most 2 more than its worst-

case distortion. This implies novel bounds on the fairness ratio of

several social choice rules, including STV, for which only bounds

on distortion were previously known [33].

Result 3 (Corollary 3.4). The fairness ratio of STV is O (logm)

and Ω(
√
logm).

1.1.2 Distortion and Fairness for Multiple-Winner Rules. We also

consider the case where a social choice rule selects a set of winners

(of a given size). Here, the cost of an agent for any set of alternatives

is the sum of her costs over the alternatives in the set, and the social

cost is the sum of the individual agent costs, as before.

It is straightforward to see from previous results [2] that choos-

ing the desired set by a repeated application of the Copeland rule

achieves a worst-case distortion of 5. In fact, we show that recursive

application of any single-winner rule – where a set of given size

ℓ is selected by first choosing the winner when the rule is applied

over the entire set ofm alternatives, then over the remainingm − 1
alternatives, and so on until we have chosen ℓ alternatives – results

in an ℓ-winner rule with the same distortion bound.
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Result 4 (Theorem 4.1). Recursive application of a single-winner
social choice rule gives an ℓ-winner rule (for any ℓ) achieving the
same bound on distortion.

Although this result does not directly extend to the fairness ratio,

we do establish that our main result relating distortion and fairness

does apply to multiple-winner rules. Combining this and the above

result concerning recursive social choice rules, we show that it is

possible to achieve, using Recursive Copeland, a constant-factor

bound on the multiple-winner fairness ratio.

Result 5 (Corollary 4.4). Recursive Copeland achieves a worst-
case distortion of at most 5, and a worst-case fairness ratio of at most
7.

However, note that we do not know of a better lower bound

than 5 for the worst-case fairness ratio of Recursive Copeland. The

lower bound of 5 follows from previous work – the upper bound of

5 for both the distortion and fairness ratio of Copeland is known to

be tight [2, 21].

1.2 Related Literature
Within the general model of agents with cardinal preferences who

report only ordinal information, several ways of bounding distor-

tion have been studied in the literature [30]. It is usually assumed

that agents’ ordinal rankings straightforwardly match the order of

their cardinal utilities, with the most-preferred alternative ranked

first. In this case, it is known that when the underlying utilities

are unrestricted, or simply normalized, the worst-case distortion

of any deterministic social choice rule is large [31]. With random-

ized mechanisms, it is possible to achieve an expected distortion of

O (
√
m log

∗m), wherem is the number of alternatives [9]. However,

if the mechanism has control over how agents’ utilities are trans-

lated into rankings, it is possible to design randomized rules with

very low distortion [12]. The preceding results are not restricted to

strategy-proof voting rules, but it is possible to construct a truthful-

in-expectation mechanism whose worst-case distortion is O (m3/4)
[19].

One way to improve these distortion results is to make spatial

assumptions on the underlying cardinal preferences, a technique

which has a long history in social choice [16, 29]. Such models,

especially those using Euclidean spaces, have naturally also been

studied in the approximation algorithms literature on facility loca-

tion problems [5, 14]. In these models, the cost of an agent for an

alternative is given by the distance between the two.

As mentioned earlier, our work follows the literature on the

analysis of distortion of social choice rules under the assumption

that agent costs form an unknown metric space [2, 3]. Several lower

and upper bounds for the sum of costs and median objectives are

known, in both deterministic and randomized settings [2, 3]. For

example, in the deterministic case, Copeland achieves a distortion

of at most 5 [2], and the distortion of STV is O (logm) [33]. In the

special case of Euclideanmetrics, it possible to design low-distortion

mechanisms, with the additional constraint of their being truthful-

in-expectation [18].

Social choice rules choosing sets of alternatives rather than a

single winner have been studied for some time [13, 17, 28], but

recently they have also been evaluated within the distortion frame-

work [11]. In most of these settings, the value of a set for an agent

is determined by her favorite item in the set. Such rules have been

evaluated both using distortion of utilities and an additive notion of

approximation, regret; the distortion in this setting remains large –

Θ(
√
m) – at least when the number of winners is small compared

to the number of alternatives [11]. To the best of our knowledge,

multiple-winner rules have not been studied under the metric costs

model.

In the distortion framework, both the interpersonal comparison

of utilities, and the goal of utility maximization, are implicitly as-

sumed to be valid. While the interpersonal comparison of utilities

is more meaningful in some contexts than others [9], we take it for

granted.

In addition to distortion, we borrow from the various notions of

fairness studied in the context of network problems such as band-

width allocation and load balancing [25, 26], of which approximate

majorization is the most general [24]. The notion of approximate

majorization has been used in the metric distortion setting to study

the fairness properties of social choice rules in the form of the

fairness ratio [21]. Copeland is known to achieve a fairness ratio

of 5 [21], and a bound on the fairness ratio translates to a bound

on social cost objectives belonging to a general class of convex

functions [21, 23].

2 PRELIMINARIES
2.1 Social Choice Rules
Let V be the set of agents and C the set of alternatives. We will

use N to denote the total number of agents, i.e., N = |V |, andm
the number of alternatives, i.e.,m = |C|. Every agent v ∈ V has a

strict (no ties) preference ordering σv on C. For any c, c ′ ∈ C, we
will use c ≻v c ′ to denote the fact that agent v ∈ V prefers c over
c ′ in her ordering σv . Let S be the set of all possible preference

orderings on C. We call a profile of preference orderings σ ∈ SN

an instance.
Based on the preferences of the agents, we either want to deter-

mine a single alternative as the winner, or a set of alternatives of a

given size ℓ. A (deterministic) single-winner social choice rule is

a function f : SN → C that maps each instance to an alternative.

An ℓ-winner social choice rule is a function f : SN → {S ⊆ C :

|S | = ℓ} that maps each instance to a set of ℓ alternatives.

To define the social choice rules that we use in this paper, we

need one additional definition. We say that an alternative c pairwise
beats c ′ if |{v ∈ V : c ≻v c ′}| ≥ N

2
, with ties broken arbitrarily.

• Copeland: Given an instance σ , define a score for each al-

ternative c ∈ C given by |{c ′ ∈ C : c pairwise beats c ′}|.
The alternative with the highest score (the largest number

of pairwise victories, with ties broken arbitrarily) is chosen

as the winner.

• Recursive rules: For any single-winner rule f , we define
the ℓ-winner “Recursive f ” (e.g., Recursive Copeland). Given
an instance σ , choose ℓ winners as follows: First pick the

winner c1 under rule f among all alternatives C, then pick

the winner c2 under f among C \ {c1}, and so on until cℓ .
The set of winners is given by {c1, c2, . . . , cℓ }.
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• STV: Given an instance σ , repeatedly eliminate the alter-

native ranked first by the fewest agents and remove this

alternative from every ranking. The last remaining alterna-

tive is the winner.

2.2 Metric costs
We assume that the agent costs over the alternatives are given by

an underlying metric d on C ∪ V , such that d (v, c ) is the cost of
an agent v for an alternative c .

Definition 2.1. A function d : C ∪V ×C ∪V → R≥0 is a metric

if and only if ∀x ,y, z ∈ C ∪V , we have the following:

(1) d (x ,y) ≥ 0

(2) d (x ,x ) = 0

(3) d (x ,y) = d (y,x )
(4) d (x , z) ≤ d (x ,y) + d (y, z)

We can do with a much simpler yet equivalent assumption on

the agents’ costs. We need to first define a q-metric (“q” for quadri-

lateral) by replacing the triangle inequalities by “quadrilateral” in-

equalities (Condition 2 in the definition below).

Definition 2.2. A function d : V × C → R≥0 is a q-metric if and

only if ∀v,v ′ ∈ V , and ∀c, c ′ ∈ C, we have the following:

(1) d (v, c ) ≥ 0

(2) d (v, c ) ≤ d (v, c ′) + d (v ′, c ′) + d (v ′, c )

The following equivalence has been shown in earlier work [21].

Lemma 2.3 (Goel et al. [21]). If d is a q-metric, then there exists
a metric d ′ such that d (v, c ) = d ′(v, c ) for all v ∈ V and c ∈ C.

Henceforth, we will use the terms metric and q-metric inter-

changeably.

2.3 Distortion
We say that a metric d is consistent with an instance σ , if whenever
any agent v prefers c over c ′, then her cost for c must be at most

her cost for c ′, i.e., c ≻v c ′ =⇒ d (v, c ) ≤ d (v, c ′). We denote by

ρ (σ ) the set of all metrics d that are consistent with σ .
The social cost, ϕ, of an alternative is defined as the sum of

the agent costs for it. For any metric d , and any alternative c ∈
C, we define ϕ (c,d ) =

∑
v ∈V d (v, c ). The social cost of a set of

alternatives is the sum of social costs of the constituent alternatives.

For any set of alternatives S ⊆ C, we define

ϕ (S,d ) =
∑
v ∈V

∑
c ∈S

d (v, c ).

Below, we will define distortion in terms of choosing sets of alterna-

tives. The corresponding definitions for single-winner social choice

rules are obtained by using singleton sets instead.

We view social choice rules as trying to approximate the optimal

set of alternatives of a given size ℓ, with knowledge of only the

rankings σ , but not the underlying metric cost d that induces σ . To
measure how close a social choice rule gets to the optimal set of

size ℓ in terms of social cost, we define the distortion of any given

set S of size ℓ to be the ratio of the social cost of S to the cost of the

optimal set according to d :

distortion(S,d ) =
ϕ (S,d )

minT ⊆C: |T |=ℓ ϕ (T ,d )
.

The worst-case distortion of a set alternatives S ⊆ C for a given

instance σ is given by

distortion(S,σ ) = sup

d ∈ρ (σ )
distortion(S,d ).

The distortion of a social choice rule f is said to be at most β , if for
any instance σ , we have distortion( f (σ ),σ ) ≤ β . In other words,

the worst-case distortion of the set of alternatives chosen by f , over
all possible instances σ , and all metrics d ∈ ρ (σ ) that are consistent
with it, is at most β .

2.4 Fairness
Given an underlying metric, based on the alternative chosen, the

costs incurred might vary widely among the agents. We want to

formally quantify how “fair” choosing a particular alternative is.

For this purpose, we look at social cost defined as the sum of k
largest agent costs, for all 1 ≤ k ≤ N . For any metric d and S ⊆ C,
we define

ϕk (S,d ) = max

V ⊆V : |V |=k

∑
v ∈V

∑
c ∈S

d (v, c ).

We measure fairness by a worst-case bound on how well a social

choice rule approximates (simultaneously for all k) the optimal

set of alternatives in terms of the social cost given by ϕk , with
knowledge of only the rankings σ , but not the underlying metric d .
To this end, we define the fairness ratio of a given set of alternatives

S of size ℓ as

fairness(S,d ) = max

1≤k≤N

ϕk (S,d )

minT ⊆C: |T |=ℓ ϕk (T ,d )
.

The worst-case fairness ratio of a set of alternatives S of size ℓ, for

a given instance σ then becomes

fairness(S,σ ) = sup

d ∈ρ (σ )
fairness(S,d ).

Furthermore, the fairness ratio of a social choice rule f is said to

be at most β , if for any instance σ , we have fairness( f (σ ),σ ) ≤ β .
Another reason for studying the fairness ratio is that for deter-

ministic social choice rules, a bound on the fairness ratio translates

to an approximation result with respect to a broad class of convex

cost functions (see Goel et al. [21])

3 RELATING DISTORTION AND FAIRNESS
In this section, we establish ourmain result, which ties the distortion

and fairness ratio closely together (within an additive factor of

2). This result additionally implies bounds on the fairness ratio

for several popular social choice rules for which only bounds on

the distortion were previously known, including k-Approval, Veto,
Plurality, Borda, and STV. Until Sect. 4, we consider only single-

winner social choice rules f : SN → C.

We will prove that the distortion-fairness gap is at most 2 for

any fixed metric, which in turn implies the gap is at most 2 for

any instance (taking the supremum over all metrics) and for any

rule (taking the supremum over all instances). Perhaps surprisingly,

although this relationship is established on the level of a specific

metric, we will show that it is tight on the level of instances, i.e.,

there exist instances for which the distortion-fairness gap of a given

alternative approaches 2.
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v c2 V \v c1

1 1 1 − δ

Figure 1: A graph metric inducing a series of instances σN
for any N = |V |, where c2 ≻v c1 and c1 ≻v ′ c2 for all v ′ , v.
This metric shows that fairness(c1,σN ) ≥ 3 (letting δ → 0);
however distortion(c1,σN ) → 1 as N → ∞.

First, we note the following trivial relationship between the

distortion and fairness ratio.

Theorem 3.1. For any instance σ and alternative c ,

distortion(c,σ ) ≤ fairness(c,σ ).

Theorem 3.1 also implies that if the fairness ratio of a single-

winner rule f is at most β , then the distortion of f is at most β .
Next, we establish a corresponding lower bound on distortion,

giving the desired gap of 2. Again, we establish the bound for fixed

instances by proving it for individual metrics, and this also implies

that the same bound applies to any single-winner rule f .

Theorem 3.2. For any instance σ and any alternative c ,

fairness(c,σ ) − 2 < distortion(c,σ ).

Theorem 3.2 also implies that if the distortion of a single-winner

rule f is at most β , then the fairness ratio of f is at most β + 2.
Additionally, the bound of Theorem 3.1 is tight, in the sense that

there exists a series of instances and an alternative c for which

the distortion-fairness gap approaches 2 as the number of agents

approaches∞. One such series of instances is illustrated in Fig. 1.

Theorem 3.3. For the series of instances σN illustrated in Fig. 1,
fairness(c1,σN ) − distortion(c1,σN ) → 2 as N → ∞.

This example also implies that choosing the alternative with

lowest distortion (in this case, c1) can result in a distortion-fairness

gap approaching 2. Indeed, any reasonable social choice rule should

choose c1, which beats c2 by an overwhelming majority, and thus

would have a distortion-fairness gap approaching 2 for this instance.

In fact, this gap makes sense when we note that fairness(c,σ ) is
always at least 3 unless c is ranked first by every agent. Otherwise,

let v be an agent that prefers some alternative c
adv

above c , i.e.,
c
adv
≻v c , and consider a metric d such that

d (v ′, c ′) =



3 if v ′ = v, c
adv
≻v c ′

1 otherwise

. (1)

It is not hard to see that this metric satisfies the quadrilateral in-

equality and is consistent with σ . For this metric and k = 1, we

have

ϕ1 (c,d )

minc ′∈C ϕ1 (c ′,d )
=

3

1

= 3.

Since this consistent metric achieves a fairness ratio of 3, we con-

clude that fairness(c,σ ) ≥ 3 unless every agent ranks c first. Since
distortion can approach 1 without this strict requirement, a gap of

2 naturally arises. (However, note that this flooring effect is not the

only reason for a distortion-fairness gap; such a gap may still exist

when the fairness ratio is larger than 3.)

3.1 New Bounds on the Fairness of Specific
Rules

Now that we have established a close relationship between the

distortion and fairness ratio – within a constant additive factor –

we immediately get new results for any single-winner rule where

distortion is known but fairness is not. These include many rules

in common use: both simple rules such as k-Approval, Veto, Plu-
rality, and Borda [2]; and more complex ones such as STV and the

general class of scoring rules, i.e., rules where each position on an

agent’s ballot is worth a certain number of points and the alterna-

tive with the most points is the winner [33]. The following corollary

arises directly from these known bounds and Theorems 3.1 and 3.2

establishing the relationship between the distortion and fairness

ratio.

Corollary 3.4. For an instance σ with N agents andm alterna-
tives,

(1) The fairness ratio of k-Approval and Veto is Θ(N ).
(2) The fairness ratio of Plurality and Borda is Θ(m).
(3) The fairness ratio of the harmonic scoring rule 1 is O ( m√

logm
)

and Ω( m
logm ).

(4) The fairness ratio of any scoring rule is Ω(
√
logm).

(5) The fairness ratio of STV is O (logm) and Ω(
√
logm).

3.2 Calculating Fairness
For completeness, we can give a straightforward way to calculate

the fairness ratio exactly, similar to the program given by Goel

et al. [21] for calculating distortion. Although we do not have a

polynomial time algorithm for calculating the fairness ratio, it can

be computed by means of a binary linear program. We provide

details in the Section 6.2 in the Appendix.

4 DISTORTION AND FAIRNESS FOR
MULTIPLE-WINNER RULES

The notions of distortion and fairness ratio extend naturally to

choosing a set of winners rather than a single alternative. In this

section, we show that the same distortion bounds for single-winner

rules can also be obtained for multiple-winner rules (under the

sum of costs objective), and thus we can use Recursive Copeland to

achieve a distortion of 5 even for multiple-winner rules. Addition-

ally, we note that the close relationship between the distortion and

fairness ratio extends to multiple-winner rules, and thus Recursive

Copeland has a fairness ratio of at most 7.

First, we demonstrate a simple way to turn a single-winner social

choice rule f into an ℓ-winner rule f ′ for any ℓ and which has the

same distortion bound.

Theorem 4.1. Let f be a single-winner social choice rule having
distortion at most β . Let ℓ > 1. Then the ℓ-winner social choice rule
f ′ = “Recursive f ” has distortion at most β .

Thus any distortion results obtainable for single-winner social

choice rules can also be obtained for ℓ-winner rules when we care

about the sum of distances from an agent to each chosen alternative.

Unfortunately, the results for fairness cannot be easily extended in

1
see Skowron and Elkind [33] for a definition.
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the same way. In particular, the last few steps of the preceding proof

relied on the ability to decompose the numerator and denominator

in the calculation of distortion by separating out the costs for the

individual alternatives. That is, we used the fact that

ϕ (c1,d ) + ϕ (c2,d ) = ϕ ({c1, c2},d ).

The analogous statement for fairness does not hold, i.e.,

ϕk (c1,d ) + ϕk (c2,d ) , ϕk ({c1, c2},d ),

because the specific set of agents used to calculate the social cost ϕk
can differ in these three cases unless k = N . Thus the left hand side

of this equation could conceivably be larger than the right hand side,

e.g., if the sets of agents farthest from c1 and those farthest from

c2 have little overlap. Intuitively, this suggests that the iterative
rule f ′ might perform worse than the original rule f in terms of

fairness ratio, because even if each chosen alternative individually

has a low fairness ratio, combining the adversarial alternatives into

one set could decrease the denominator.

Nevertheless, it turns out that the fairness ratio of the iterative

social choice rule f ′ can’t be too much worse than the fairness ratio

of f , because the relationship between the distortion and fairness

ratio extends to multiple-winner rules.

Theorem 4.2. For any instance σ any set of alternatives S ,

fairness(S,σ ) − 2 < distortion(S,σ ) ≤ fairness(S,σ ).

Corollary 4.3. Let f be a single-winner social choice rule which
has fairness ratio at most β . Let ℓ > 1. Then ℓ-winner social choice
rule f ′ = “Recursive f ” has fairness ratio at most β + 2.

This result leads to a low constant-factor bound for the fairness

ratio of Recursive Copeland (though we conjecture that the true

fairness ratio is lower).

Corollary 4.4. The ℓ-winner rule Recursive Copeland has distor-
tion at most 5 and fairness ratio at most 7.

5 CONCLUSION
We demonstrated that the distinct notions of distortion and fair-

ness ratio are in fact closely linked – within an additive factor of 2.

This further lead to new bounds on the fairness ratio for several

common social choice rules for which only bounds on the distor-

tion were previously known, including STV and various scoring

rules. Additionally, we showed that the distortion of any single-

winner rule can also be obtained by a recursive multiple-winner

rule. Together with the relationship between the distortion and

fairness ratio for multiple-winner rules, this implied that Recursive

Copeland achieves distortion at most 5 and fairness ratio at most

7.
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6 APPENDIX
6.1 All proofs

Proof of Theorem 3.1. Observe that for any fixed metric d ,
ϕN (c,d ) = ϕ (c,d ), and therefore

distortion(c,d ) =
ϕ (c,d )

minc ′∈C ϕ (c ′,d )
≤ max

1≤k≤N

ϕk (c,d )

minc ′∈C ϕk (c
′,d )

= fairness(c,d ) ≤ fairness(c,σ ),

since fairness(c,σ ) is the worst-case fairness ratio over all metrics.

This implies fairness(c,σ ) upper bounds distortion(c,d ) for every
d , and thus by the definition of supremum,

distortion(c,σ ) = sup

d ∈ρ (σ )
distortion(c,d ) ≤ fairness(c,σ ),

as desired. □ □

Proof of Theorem 3.2. Denote the N agents of σ by V and

them alternatives by C. We will establish that for any fixed k and

metric d ,

ϕk (c,d )

minc ′∈C ϕk (c
′,d )
− 2

N − 1

N
≤ distortion(c,d ), (2)

and thus taking the maximum over all k ,

fairness(c,d ) − 2
N − 1

N
= max

1≤k≤N

ϕk (c,d )

minc ′∈C ϕk (c
′,d )
− 2

N − 1

N

≤ distortion(c,d ) ≤ distortion(c,σ ),

since distortion(c,σ ) is the worst-case distortion over all metrics.

Thus by the definition of supremum,

fairness(c,σ ) − 2 = sup

d ∈ρ (σ )
fairness(c,d ) − 2 < distortion(c,σ ),

as desired.

For convenience, we denote the adversarial alternative for fair-

ness by copt = argminc ′∈Cϕk (c
′,d ), and the set of k agents farthest

from c by Vk = argmaxV ⊆V : |V |=k
∑
v ∈V d (v, c ). Furthermore, let

the numerator and denominator of the fairness ratio be denoted

respectively as fk = ϕk (c,d ) and дk = ϕk (copt,d ). Thus we can
rewrite the desired result 2 as

fk
дk
− 2

N − 1

N
=

∑
v ∈Vk d (v, c )

ϕk (copt,d )
− 2

N − 1

N
≤

ϕ (c,d )

minc ′∈C ϕ (c ′,d )
.

We proceed by calculating a lower bound on
ϕ (c,d )
ϕ (copt,d )

, which will

immediately also apply to
ϕ (c,d )

minc′∈C ϕ (c ′,d )
. We divide the agents into

two groups,Vk andV\Vk . Note that by definition,
∑
v ∈Vk d (v, c ) =

fk , and furthermore that∑
v ∈Vk

d (v, copt) ≤ max

V ⊆V : |V |=k

∑
v ∈V

d (v, copt) = дk ,

as shown in Fig. 2.

Now, consider any v < Vk . For any w ∈ Vk , we have d (w, c ) ≤
d (w, copt) +d (v, c ) +d (v, copt) by the quadrilateral inequality. Solv-
ing for d (v, c ) and averaging over all k nodes in Vk , we get

d (v, c ) ≥

∑
w ∈Vk

(
d (w, c ) − d (w, copt) − d (v, copt)

)
k

≥
fk − дk

k
− d (v, copt). (3)

c copt

v

...

Vk

f k

≥ fk −дk
k − d (v, c

opt )

≤ дk

d (v,
copt)

Figure 2: A partial representation of the metric d highlight-
ing the set of k agents farthest from c, Vk , and an arbitrary
agent v < Vk , with distances. Note that the top two distances
refer to total distance to Vk .

We can now calculate a lower bound on the distortion of c relative
to copt.

ϕ (c,d )

ϕ (copt,d )
=

fk +
∑
v<Vk d (v, c )∑

v ∈V d (v, copt)

≥
fk +
∑
v<Vk d (v, c )

N
дk
k

(4)

≥
fk + (N − k )

fk−дk
k −

∑
v<Vk d (v, copt)

N
дk
k

(5)

=
fk
дk
−
N − k

N
−

∑
v<Vk d (v, copt)

N
дk
k

,

where (4) follows because the average distance from an agent to

copt can’t be more than
1

k times the sum of the largest k distances,

and (5) follows from (3). We now consider two cases. In the first,

let k ≤ N
2
. Then |V \Vk | ≥ k so we can repeat the argument that

the average distance from an agent inV \Vk can’t be more than
1

k
times the sum of the largest k distances for any agents. Thus

ϕ (c,d )

ϕ (copt,d )
≥

fk
дk
−
N − k

N
−

∑
v<Vk d (v, copt)

N
дk
k

≥
fk
дk
−
N − k

N
−

(N − k )
дk
k

N
дk
k

=
fk
дk
− 2

N − k

N
≥

fk
дk
− 2

N − 1

N
,

as desired. (Note that the last inequality is tight when k = 1.) On

the other hand, if k ≥ N
2
, then |V \ Vk | ≤ k so we can only say∑

v<Vk d (v, copt) ≤ дk . Thus

ϕ (c,d )

ϕ (copt,d )
≥

fk
дk
−
N − k

N
−

∑
v<Vk d (v, copt)

N
дk
k

≥
fk
дk
−
N − k

N
−

дk

N
дk
k

=
fk
дk
− 1 ≥

fk
дk
− 2

N − 1

N
,
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as desired, where the last inequality holds provided N ≥ 2. (When

N = 1, distortion and fairness are identical so the desired result

holds regardless.) □ □

Proof of Theorem 3.3. As shown in Fig. 1, for σN , we let C =

{c1, c2} where one agent v votes c2 ≻v c1 and the remaining N − 1
agents vote c1 ≻v ′ c2 forv

′ ∈ V \ {v}. As N → ∞, the distortion of

c1 approaches 1, but as the example metric shows, the fairness ratio

of c1 is 3. Thus fairness(c1,σN ) − distortion(c1,σN ) approaches 2
as N approaches∞. □ □

Proof of Theorem 4.1. We wish to show that for any instance

σ with N agentsV andm ≥ ℓ alternatives C, distortion( f ′,σ ) ≤ β .
Equivalently, for any fixed metric d and adversarial set T of size ℓ,

we wish to show

ϕ ( f ′(σ ),d )

ϕ (T ,d )
≤ β .

Let f ′(σ ) = {c1, . . . , cℓ } in the order in which they are selected

by Recursive f . Furthermore, order T as {c ′
1
, . . . , c ′

ℓ
} such that the

elements f ′(σ ) ∩T (if any) appear first and in the same order as

in f ′(σ ). Note that this implies if any c j = c ′i ∈ T , then i ≤ j.
Let σi = σ \ {c1, . . . , ci−1} be the instance obtained from σ by

deleting candidates {c1, . . . , ci−1} from every ranking, so ci = f (σi ),
and analogously let Ci be the set of alternatives remaining in σi ,
Ci = C \ {c1, . . . , ci−1}. Then we know that

sup

d ∈ρ (σi )

ϕ ( f (σi ),d )

minc ∈Ci ϕ (c,d )
≤ β ,

simply because the distortion of f is at most β .
However, observe that the specific metric d we are considering

satisfies d ∈ ρ (σ ) ⊆ ρ (σi ) (because any consistent metric for σ is

also consistent when considering only the alternatives Ci remaining

in σi ). Additionally, we must have c ′i ∈ Ci = C \ {c1, . . . , ci−1}
because of the way we ordered the alternatives of T – otherwise,

wewould have c ′i = c j for some j < i , which is a contradiction. Thus,
we can look specifically at the metric d and adversarial alternative

c ′i to get

ϕ ( f (σi ),d )

ϕ (c ′i ,d )
≤ β .

Since this holds for every i , we can combine these equations to

obtain

ϕ ( f (σ1),d ) + · · · + ϕ ( f (σℓ ),d )

ϕ (c ′
1
,d ) + · · · + ϕ (c ′

ℓ
,d )

≤ β∑
c ∈f ′ (σ ) ϕ (c,d )∑
c ∈T ϕ (c,d )

≤ β

ϕ ( f ′(σ ),d )

ϕ (T ,d )
≤ β,

as desired. □ □

Proof of Theorem 4.2. As with single-winner rules,

distortion(S,σ ) ≤ fairness(S,σ )

holds because fairness bounds the largest k agent costs simultane-

ously for all k , including k = N which is equivalent to distortion.

To show fairness(S,σ ) − 2 < distortion(S,σ ), we first observe
that the quadrilateral inequality holds for fixed-size sets of al-

ternatives. That is, if we define d (v, S ) =
∑
c ∈S d (v, c ) then for

any v,w ∈ V , S,T ⊆ C, |S | = |T | = ℓ, we have d (v, S ) ≤
d (v,T ) +d (w, S ) +d (w,T ). This can be established from the quadri-

lateral inequality d (v, c1) ≤ d (v, c2) + d (w, c1) + d (w, c2) applied
to every pair c1 ∈ S, c2 ∈ T . Summing these inequalities over the

ℓ2 such pairs and dividing by ℓ gives the desired statement for sets

of ℓ elements. The remainder of the proof is identical to that of

Theorem 3.2 where we replace the single alternatives c, copt with
sets S, Sopt, so we omit the details. □ □

Proof of Corollary 4.4. By Theorem 3.1, if the fairness ratio

of f is at most β then the distortion of f is also at most β . Theo-
rem 4.1 then implies the distortion of f ′ is at most β . Thus using
Theorem 4.2, for any instance σ , we have

fairness( f ′(σ ),σ ) < distortion( f ′(σ ),σ ) + 2 ≤ β + 2.

By definition, this means the fairness ratio of f ′ is at most β + 2, as
desired. □ □

6.2 Calculating Fairness
In what follows, we outline a straightforward way to calculate the

fairness ratio exactly, similar to the program given by Goel et al. [21]

for calculating distortion. Although we do not have a polynomial

time algorithm for calculating the fairness ratio, it can be computed

with the following binary linear program on an instance σ and

alternative c for a fixed k and adversarial alternative copt. (Note
that as with the program of Goel et al. [21], this program could be

used on any specific instance to choose the alternative with lowest

worst-case fairness ratio – though in this case the resulting social

choice rule would not necessarily run in polynomial time.) Here

we use {vi : i ∈ [N ]} to represent the agents.

Algorithm 1 A binary linear program for calculating fairness.

max

N∑
i=1

di

s.t. di ≤ d (vi , c ) ∀i
di ≤ Mbi ∀i

N∑
i=1

bi ≤ k

binary bi

kt +
N∑
i=1

d
(opt)
i ≤ 1

d
(opt)
i ≥ 0 ∀i

d
(opt)
i ≥ d (vi , copt) − t

d ∈ ρ (σ )

In the above program, M is any sufficiently large number, e.g.,

3
m

wherem is the number of alternatives. Recall that ρ (σ ) is the set
of all valid metrics consistent with σ ; this requirement can also be

encoded with a polynomial number of inequalities on the distances

d (vi , c j ) for i ∈ [N ], j ∈ [m] [21].
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We will say a word about the choice ofM . The program above

essentially works by allowing the di ’s to represent the k largest

distances d (vi , c ), and 0 for any other distances. (Meanwhile, the k

largest distances d (vi , copt) are represented by d
(opt)
i , normalized so

that their sum is at most 1; thus maximizing

∑N
i=1 di is equivalent

to maximizing the worst-case fairness ratio.) Thus when bi = 0, we

have di ≤ Mbi = 0, so vi is not included in the largest k distances,

and when bi = 1 we want di ≤ Mbi = M to be unrestrictive. That

is, we would like M to be sufficiently large that, subject to the

normalization of the distances to copt, d (vi , c ) ≤ M for any i and
metric d .

Strictly speaking, no M can guarantee this, because for some

instances σ the fairness ratio can be unbounded. However, the

following lemma gives a simple way to tell whether the fairness

ratio of one alternative over another is unbounded, which will also

allow us to give an upper bound onM when it is bounded.

Lemma 6.1. Consider an instance σ with |C| =m alternatives ci
and |V | = N agents vi . Furthermore, consider a directed graph on
C, D = (C,E), where (ci , c j ) ∈ E whenever at least one agent prefers
ci over c j , i.e., whenever ∃vci ≻v c j . Then the fairness ratio (and
therefore the distortion) of an alternative c

alg
over copt is bounded if

and only if there exists a directed path c
alg
→ copt in D.

Proof. ( =⇒ ) We prove the contrapositive, namely, that if no

directed path c
alg
→ copt exists, then the fairness ratio is unbounded.

Let S be the set of vertices (alternatives) which have a directed path

to copt; by assumption c
alg
< S . Consider the following metric: S

andV are co-located at one point, and the remaining alternatives

C\S , are co-located at another; the distance between the two points
is 1. (Alternatively, we can say the distance between any pair of

“co-located” points is ϵ ≪ 1.) It is not hard to see that this satisfies

the triangle inequality. Furthermore, it is consistent. This holds

because every agent must rank every alternative in S above every

alternative in C \ S ; otherwise there would exist v, c ∈ C \ S, c ′ ∈ S
such that c ≻v c ′, implying (c, c ′) ∈ E. But this, along with the

existence of a directed path c ′ → copt, implies the existence of a

path c → copt, which contradicts c < S . Thus we have defined a

consistent metric, and in this metric, the fairness ratio is
1

ϵ which

approaches∞ as ϵ → 0.

(⇐= ) Consider an arbitrary edge (ci , c j ) ∈ E, and let dj be any
upper bound dj ≥ d (v, c j ) ∀v . Since (ci , c j ) ∈ E, there must exist

some agent v ′ such that ci ≻v ′ c j . Thus using the quadrilateral

inequality, for any agent v , we have

d (v, ci ) ≤ d (v, c j )+d (v
′, ci )+d (v

′, c j ) ≤ d (v, c j )+2d (v
′, c j ) ≤ 3dj

Thus inductively, if there exists a path c
alg
→ copt, which must

have length at most |C| = m, then d (v, c
alg

) ≤ 3
m−1dopt where

dopt is any upper bound on d (v, copt). For instance, we can set

dopt = maxv ∈V d (v, copt). Then the fairness ratio of c
alg

over copt
for any metric is at most

max

1≤k≤N

ϕk (calg,σ )

ϕk (copt,σ )
≤

N 3
m−1dopt

dopt
= N 3

m−1,

and thus is bounded. □ □

The above proof incidentally suggests a way of settingM to be

unrestrictive when the distortion and fairness ratio are bounded.

Specifically, since our binary linear program normalizes

max

V ⊆V : |V |=k

∑
V

d (v, copt) ≤ 1,

we can upper boundd (v, copt) withdopt = 1which impliesd (v, c ) ≤

3
m−1dopt = 3

m−1
if the fairness ratio is bounded. Thus we can set

M = 3
m
, and we will get the correct answer whenever the fairness

ratio is bounded (and the output will be k3m if and only if the

fairness ratio is unbounded).
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