Anderson Accelerated Douglas-Rachford Splitting

Anqi Fu, Junzi Zhang, Stephen Boyd

EE & ICME Departments
Stanford University

February 26, 2020
Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion
Prox-Affine Form

Prox-affine convex optimization problem:

\[
\text{minimize} \quad \sum_{i=1}^{N} f_i(x_i) \\
\text{subject to} \quad \sum_{i=1}^{N} A_i x_i = b
\]

with variables \(x_i \in \mathbb{R}^{n_i}\) for \(i = 1, \ldots, N\)

\(\blacktriangleright\) \(A_i \in \mathbb{R}^{m \times n_i}\) and \(b \in \mathbb{R}^{m}\) given data

\(\blacktriangleright\) \(f_i : \mathbb{R}^{n_i} \to \mathbb{R} \cup \{+\infty\}\) are closed, convex and proper

\(\blacktriangleright\) Each \(f_i\) can only be accessed via its proximal operator

\[
\text{prox}_{t f_i}(v_i) = \arg \min_{x_i} \left\{ f_i(x_i) + \frac{1}{2t} \|x_i - v_i\|_2^2 \right\},
\]

where \(t > 0\) is a parameter
Why This Formulation?

- Encompasses many classes of convex problems (conic programs, consensus optimization)
- Block separable form ideal for distributed optimization
- Proximal operator can be provided as a “black box”, enabling privacy-preserving implementation
Previous Work

- Alternating direction method of multipliers (ADMM)
- Douglas-Rachford splitting (DRS)
- Augmented Lagrangian method (ALM)
Previous Work

- Alternating direction method of multipliers (ADMM)
- Douglas-Rachford splitting (DRS)
- Augmented Lagrangian method (ALM)

These are typically slow to converge, prompting research into acceleration techniques:

- Adaptive penalty parameters
- Momentum methods
- Quasi-Newton method with line search
Our Method

- **A2DR**: Anderson acceleration (AA) applied to DRS
- DRS is a non-expansive fixed-point (NEFP) method that fits prox-affine framework
- AA is fast, efficient, and can be applied to NEFP iterations – but unstable without modification
- We introduce a type-II AA variant that converges globally in non-smooth, potentially pathological settings
Main Advantages

▶ A2DR produces primal and dual solutions, or a certificate of infeasibility/unboundedness
▶ Consistently converges faster with no parameter tuning
▶ Memory efficient ⇒ little extra cost per iteration
▶ Scales to large problems and is easily parallelized
▶ Python implementation:

 https://github.com/cvxgrp/a2dr
Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion
DRS Algorithm

- Rewrite problem as

\[
\text{minimize } \sum_{i=1}^{N} f_i(x_i) + I_{Ax=b}(x),
\]

where \(I_S\) is the indicator of set \(S\)

- DRS iterates for \(k = 1, 2, \ldots\),

\[
\begin{align*}
x_i^{k+1/2} &= \text{prox}_{f_i}(v^k), \quad i = 1, \ldots, N \\
v^{k+1/2} &= 2x^{k+1/2} - v^k \\
x^{k+1} &= \Pi_{Av=b}(v^{k+1/2}) \\
v^{k+1} &= v^k + x^{k+1} - x^{k+1/2}
\end{align*}
\]

\(\Pi_S(v)\) is Euclidean projection of \(v\) onto \(S\)
Convergence of DRS

- DRS iterations can be conceived as a fixed-point mapping

\[\nu^{k+1} = F(\nu^k), \]

where \(F \) is firmly non-expansive

- \(\nu^k \) converges to a fixed point of \(F \) (if it exists)

- \(x^k \) and \(x^{k+1/2} \) converge to a solution of our problem
Convergence of DRS

DRS iterations can be conceived as a fixed-point mapping

\[v^{k+1} = F(v^k), \]

where \(F \) is firmly non-expansive

- \(v^k \) converges to a fixed point of \(F \) (if it exists)
- \(x^k \) and \(x^{k+1/2} \) converge to a solution of our problem

In practice, this convergence is often slow...
Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion
Type-II AA

- Quasi-Newton method for accelerating fixed point iterations
- **Extrapolates** next iterate using $M + 1$ most recent iterates

\[v^{k+1} = \sum_{j=0}^{M} \alpha_j^k F(v^{k-M+j}) \]

- Let $G(v) = v - F(v)$, then $\alpha^k \in \mathbb{R}^{M+1}$ is solution to

\[
\begin{align*}
\text{minimize} & \quad \| \sum_{j=0}^{M} \alpha_j^k G(v^{k-M+j}) \|_2^2 \\
\text{subject to} & \quad \sum_{j=0}^{M} \alpha_j^k = 1
\end{align*}
\]

- Typically only need $M \approx 10$ for good performance
Adaptive Regularization

- Type-II AA is unstable so we add a regularization term
- Change variables to $\gamma^k \in \mathbb{R}^M$

$$\alpha_0^k = \gamma_0^k, \quad \alpha_i^k = \gamma_i^k - \gamma_{i-1}^k \forall i = 1, \ldots, M-1, \quad \alpha_M^k = 1 - \gamma_{M-1}^k$$

- Stabilized AA problem is

$$\text{minimize} \quad \|g^k - Y_k \gamma^k\|^2_2 + \eta \left(\|S_k\|^2_F + \|Y_k\|^2_F \right) \|\gamma^k\|^2_2,$$

where $\eta \geq 0$ is a parameter and

$$g^k = G(v^k), \quad y^k = g^{k+1} - g^k, \quad Y_k = [y^{k-M} \ldots y^{k-1}]$$

$$s^k = v^{k+1} - v^k, \quad S_k = [s^{k-M} \ldots s^{k-1}]$$
Let $\alpha = H(v, g)$ be the weights produced by stabilized AA

A2DR iterates for $k = 1, 2, \ldots$,

$$v_{DRS}^{k+1} = F(v^k), \quad g^k = v^k - v_{DRS}^{k+1}$$

$$\alpha^k = H(v^k, g^k)$$

$$v_{AA}^{k+1} = \sum_{j=0}^{M} \alpha_j^k v_{DRS}^{k-M+j+1}$$

$$v^{k+1} = \begin{cases} v_{AA}^{k+1} & \text{safeguard passes} \\ v_{DRS}^{k+1} & \text{safeguard fails} \end{cases}$$
Stopping Criterion of A2DR

- Stop and output $x^{k+1/2}$ when $\|r^k\|_2 \leq \epsilon_{tol}$

$$r_{\text{prim}}^k = Ax^{k+1/2} - b$$

$$r_{\text{dual}}^k = \frac{1}{t}(v^k - x^{k+1/2}) + A^T \lambda^k$$

- Dual variable is solution to least-squares problem

$$\lambda^k = \arg\min \|r_{\text{dual}}^k\|_2$$
Convergence of A2DR

Theorem (Solvable Case)

If the problem is feasible and bounded,

\[
\liminf_{k \to \infty} \|r^k\|_2 = 0
\]

and the AA candidates are adopted infinitely often. Furthermore, if \(F \) has a fixed point \(v^* \),

\[
\lim_{k \to \infty} v^k = v^* \quad \text{and} \quad \lim_{k \to \infty} x^{k+1/2} = x^*,
\]

where \(x^* \) is a solution to the problem.
Theorem (Pathological Case)

If the problem is pathological,

\[\lim_{k \to \infty} \left(v^k - v^{k+1} \right) = \delta v \neq 0. \]

Furthermore, if \(\lim_{k \to \infty} Ax^{k+1/2} = b \), the problem is unbounded. Otherwise, it is infeasible.
Preconditioning

- Convergence greatly improved by rescaling problem
- Replace original A, b, f_i with

$$\hat{A} = DAE, \quad \hat{b} = Db, \quad \hat{f}_i(\hat{x}_i) = f_i(e_i\hat{x}_i)$$

- D and E are diagonal positive, $e_i > 0$ corresponds to ith block diagonal entry of E
- D and E chosen by equilibrating A (see paper for details)
- Proximal operator of \hat{f}_i can be evaluated using proximal operator of f_i

$$\text{prox}_{t\hat{f}_i}(\hat{v}_i) = \frac{1}{e_i} \text{prox}_{(e_i^2 t)f_i}(e_i\hat{v}_i)$$

Anderson Acceleration
Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion
Nonnegative Least Squares (NNLS)

\[
\begin{align*}
\text{minimize} & \quad \|Fz - g\|_2^2 \\
\text{subject to} & \quad z \geq 0
\end{align*}
\]

with respect to \(z \in \mathbb{R}^q\)

- Problem data: \(F \in \mathbb{R}^{p \times q}\) and \(g \in \mathbb{R}^p\)
- Can be written in standard form with

\[
\begin{align*}
\begin{array}{c}
f_1(x_1) = \|Fx_1 - g\|_2^2, \\
f_2(x_2) = \mathcal{I}_{\mathbb{R}_+^n}(x_2)
\end{array}
\end{align*}
\]

\[
\begin{align*}
A_1 = I, & \quad A_2 = -I, & \quad b = 0
\end{align*}
\]

- We evaluate proximal operator of \(f_1\) using LSQR

Numerical Experiments
NNLS: Convergence of $\|r^k\|_2$

$p = 10^4$, $q = 8000$, F has 0.1% nonzeros
NNLS: Convergence of $\|r^k\|_2$

$p = 300$, $q = 500$, F has 0.1% nonzeros

Numerical Experiments
Samples z_1, \ldots, z_p IID from $\mathcal{N}(0, \Sigma)$

Know covariance $\Sigma \in \mathbf{S}_+^q$ has sparse inverse $S = \Sigma^{-1}$

One way to estimate S is by solving the penalized log-likelihood problem

$$\text{minimize} \quad -\log \det(S) + \text{tr}(SQ) + \alpha \|S\|_1,$$

where Q is the sample covariance, $\alpha \geq 0$ is a parameter

Note $\log \det(S) = -\infty$ when $S \not\succ 0$
Problem can be written in standard form with

\[f_1(S_1) = -\log \det(S_1) + \text{tr}(S_1 Q), \quad f_2(S_2) = \alpha \|S_2\|_1 \]

\[A_1 = I, \quad A_2 = -I, \quad b = 0 \]

Both proximal operators have closed-form solutions (Parikh & Boyd 2014)
Covariance Estimation: Convergence of $\|r^k\|_2$

$p = 1000, \ q = 100, \ S$ has 10% nonzeros
Multi-Task Logistic Regression

\[
\text{minimize} \quad \phi(W\theta, Y) + \alpha \sum_{i=1}^{L} \|\theta_i\|_2 + \beta \|\theta\|_2^*
\]

with respect to \(\theta = [\theta_1 \cdots \theta_L] \in \mathbb{R}^{s \times L} \)

- Problem data: \(W \in \mathbb{R}^{p \times s} \) and \(Y = [y_1 \cdots y_L] \in \mathbb{R}^{p \times L} \)
- Regularization parameters: \(\alpha \geq 0, \beta \geq 0 \)
- Logistic loss function

\[
\phi(Z, Y) = \sum_{l=1}^{L} \sum_{i=1}^{p} \log (1 + \exp(-y_{il}Z_{il}))
\]
Multi-Task Logistic Regression

- Rewrite problem in standard form with

\[f_1(Z) = \phi(Z, Y), \quad f_2(\theta) = \alpha \sum_{l=1}^{L} \| \theta_l \|_2, \quad f_3(\tilde{\theta}) = \beta \| \tilde{\theta} \|_*, \]

\[
A = \begin{bmatrix}
I & -W & 0 \\
0 & I & -I
\end{bmatrix}, \quad x = \begin{bmatrix}
Z \\
\theta \\
\tilde{\theta}
\end{bmatrix}, \quad b = 0
\]

- We evaluate proximal operator of \(f_1 \) using Newton-CG method, rest have closed-form solutions
Multi-Task Logistic: Convergence of $\|r^k\|_2$

$p = 300, \ s = 500, \ L = 10, \ \alpha = 0.1, \ \beta = 0.1$

Numerical Experiments
Outline

Problem Overview

Douglas-Rachford Splitting

Anderson Acceleration

Numerical Experiments

Conclusion
Conclusion

- A2DR is a fast, robust algorithm for solving linearly constrained convex optimization problems
- Can be easily scaled up and parallelized
- Open-source Python solver:

 https://github.com/cvxgrp/a2dr
Future Work

- More work on feasibility detection
- Expand library of proximal operators
- User-friendly interface with CVXPY
- GPU parallelization and cloud computing