What do harmony-based grammars exclude?

Antón de la Fuente, Sarang Jeong, Arto Anttila (Stanford), and Giorgio Magri (CNRS)

- $\square Maximum entropy grammars are popular models of the empirical frequency \mathbb{P}(y \mid x) with which an underlying form x (say$ *cost me*) is realized as a surface candidate y (say*cos'me*, with t-deletion).
 - Maximum entropy phonology makes two assumptions. The first assumption is that the frequency $\mathbb{P}(y|x)$ is proportional to the harmony score $H(\mathbf{C}(x,y))$ assigned by some harmony function H to the vector $\mathbf{C}(x,y) = (C_1(x,y), \ldots, C_n(x,y))$ of constraint violations $C_k(x,y)$ of the mapping (x, y), as in (1). The second

(1) $\mathbb{P}(\mathbf{y} \mid \mathbf{x}) \propto H(\mathbf{C}(\mathbf{x}, \mathbf{y}))$ (2) $H = \exp\left\{-\sum_{k=1}^{n} w_k C_k\right\}$

assumption is that this harmony function H has a very specific shape, namely it returns the exponential of the opposite of the weighted sum of constraint violations, as in (2). Is the general harmony-based assumption (1) intrinsically restrictive in and of itself without specific assumptions about the harmony H? In other words, given a constraint set \mathbf{C} , are there empirical frequency patterns that contradict assumption (1) no matter the choice of the harmony function H?

- \Box To start with the simplest case, let us suppose that the constraint set **C** does not **compress** mappings: no two candidates of two different underlying forms share the same constraint violation vector. In other words, mappings and their constraint violation vectors are in a one-to-one correspondence. In this case, no matter the frequencies \mathbb{P} , we can trivially construct a harmony function *H* that satisfies (1). Yet, as illustrated below, a reasonable constraint set **C** might compress into the same constraint violation vector two mappings that only differ for properties that are not encoded into **C** because they are irrelevant relative to the phonological problem at hand. Does such compression pose problems for the harmony-basedness assumption (1)?
- \Box To answer this question, we say that a sequence $\langle x_1, x_2, \dots, x_\ell \rangle$ of underlying forms (not necessarily all distinct) is a **cycle** relative to a constraint set **C** provided each underlying form x_i in the
 - sequence shares a constraint violation vector with the following underlying form x_{i+1} and the last underlying form x_{ℓ} shares a constraint violation vector with the first underly- $C(x_2, z_2) = C(x_3, y_3)$ $C(x_{\ell-1}, z_{\ell-1}) = C(x_{\ell}, y_{\ell})$ $C(x_{\ell}, z_{\ell}) = C(x_1, y_1)$
 - $(3) \mathbf{C}(\mathbf{x}_{1}, \mathbf{z}_{1}) = \mathbf{C}(\mathbf{x}_{2}, \mathbf{y}_{2})$ $\mathbf{C}(\mathbf{x}_{2}, \mathbf{z}_{2}) = \mathbf{C}(\mathbf{x}_{3}, \mathbf{y}_{3})$ \vdots $(4) \mathbf{C}(/\mathsf{CCV}, [\mathsf{CV}]) = \mathbf{C}(/\mathsf{CVC}, [\mathsf{CV}])$ $\mathbf{C}(/\mathsf{CVC}, [\mathsf{VC}]) = \mathbf{C}(/\mathsf{VCC}, [\mathsf{VC}])$ $\mathbf{C}(/\mathsf{VCC}, [\mathsf{CVC}]) = \mathbf{C}(/\mathsf{CVC}, [\mathsf{CVCC}])$ $\mathbf{C}(/\mathsf{CVC}, [\mathsf{CVC}]) = \mathbf{C}(/\mathsf{CVC}, [\mathsf{CVCC}])$ $\mathbf{C}(/\mathsf{CVC}, [\mathsf{CVC}]) = \mathbf{C}(/\mathsf{CVC}, [\mathsf{CVCC}])$ $\mathbf{C}(/\mathsf{CVC}, [\mathsf{CVC}]) = \mathbf{C}(/\mathsf{CVC}, [\mathsf{CVCC}])$

ing form x_1 . In other words, each underlying form x_i has two different candidates $y_i, z_i \in Gen(x_i)$ that satisfy the identities (3). To illustrate, we consider the constraint set **C** consisting of the eight constraints ONSET, CODA, MAXC, MAXV, DEPC, DEPV, COMPCODA, COMPONSET. A cycle of length $\ell = 4$ is $\langle/CCV/, /CVC/, /VCC/, /CVC/\rangle$, as verified in (4). For instance, the two mappings (/CCV/, [CV]) and (/CVC/, [CV]) share the same constraint violation vector because they share the same surface form and violate only one faithfulness constraint DEPV.

□ We can now state the result boxed below. The result says that the harmony-basedness assumption
(1) really boils down to a prediction about the empirical frequencies on cycles.

There exists a harmony function H that satisfies the harmony-basedness condition (1) if and only if the empirical frequencies $\mathbb{P}(\mathbf{y} | \mathbf{x})$ satisfy the identity (5) for every sequence $\langle \mathbf{x}_1, \dots, \mathbf{x}_\ell \rangle$ of underlying forms that is a cycle (3) with respect to the constraint set \mathbf{C} . (5) $\prod_{i=1}^{\ell} \mathbb{P}(\mathbf{y}_i | \mathbf{x}_i) = \prod_{i=1}^{\ell} \mathbb{P}(\mathbf{z}_i | \mathbf{x}_i)$

- \Box We can now finally show that the harmony-basedness assumption (1) is restrictive in and of itself without any specific assumptions on the harmony function H. We do this by exhibiting grammars that are (constraint-based but) not harmony-based and that flout this identity (5) that characterizes harmony-basedness. For illustrative purposes, we use Noisy Harmonic Grammar (NHG), which is not harmony-based. We provide two examples summarized in the table on the following page. We discuss the first example in detail; the second example works analogously.
- □ In our first example, the constraint set **C** consists of NOCODA and NOCOMPONSET together with MAXC and DEPV, as in (6). A cycle of length $\ell = 2$ is $\langle /CCV / , /CVC / \rangle$, as verified in (7). For this cycle, the product identity (5) predicted by harmony-based phonology (1) boils down to the

identity in (8). The left-hand side of this identity is the product $\mathbb{P}([\mathsf{CV}] | /\mathsf{CCV}) \cdot \mathbb{P}([\mathsf{CV.CV}] | /\mathsf{CVC})$ between the probability that the complex onset of / CCV / is repaired through consonant deletion times the probability that the coda of / CVC / is repaired through vowel epenthesis. The right-hand side $\mathbb{P}([\mathsf{CV.CV}] | /\mathsf{CCV}) \cdot \mathbb{P}([\mathsf{CV}] | /\mathsf{CVC})$ of the identity is the product of the probabilities of the opposite repairs: the complex onset is repaired through vowel epenthesis and the coda is repaired through consonant deletion. This identity between products would fail in a language that repairs with high probability the onset cluster of / CCV / through deletion but the coda of / CVC / through epenthesis because the product on the left-hand side would be larger than the product on the right-hand side. Imagine a language where the English word *proton* would be nativized [ro.to.ni], where C-deletion removes the onset cluster and V-epenthesis removes the coda. Such examples could not be captured in a harmony-based grammar under our constraints.

- □ We now want to test whether NHG complies with this identity between products as well. Since we cannot compute exactly the NHG probability of a mapping (x, y) given a weight vector \boldsymbol{w} , we estimate it in the usual way: for a certain number N of repetitions, we add Gaussian noise (with standard deviation $\sigma^2 = 1$) to each component of the weight vector \boldsymbol{w} ; we use the noisy weight vector to compute the categorical HG winner \hat{y} for the underlying form x; and we estimate the NHG probability of the mapping (x, y) through the ratio n/N, where n is the total number of times the predicted winner \hat{y} is equal to the intended winner y. Obviously, as the number N of repetitions increases, we get more accurate estimates of the NHG probability of the mapping (x, y).
- □ We consider the constraint weights in (6) obtained through a random search. The blue curve in (9) plots (on the vertical axis) the product between the NHG probability of the mapping (/CCV/, [CV]) times the NHG probability of the mapping (/CVC/, [CV.CV]) as a function of N (on the horizontal axis). Analogously, the orange curve plots the product of the NHG probabilities of the mappings (/CCV/, [CV.CV]) and (/CVC/, [CV]). The figure thus shows that NHG flouts the identity (5) between the two products because the estimates of the two products converge to different values.
- \Box In conclusion, we have reported cases where harmony-based models such as ME are more restrictive than NHG, even without making any specific assumptions about the harmony function H.

	first example	second example
(6)	NoCoda 2.1412628240990808 MaxC 2.5761596520119734 DepV 3.1380702119334614 NoCompOnset 6.676092855818892	IDENT[voice] 8.754864400168293 IDENT[spread] 2.7445353035043576 IDENT[voice]/_V 8.544706252916026 IDENT[spread]/_V 6.460122017813542 *[+voice] 9.506542790584021 *VTV 6.194812329710796 *[+spread] 2.4311096042189595 *[+voice, +spread] 8.287659091134277
(7)	$\mathbf{C}(/CCV/\!\!,[CV.CV]) = \mathbf{C}(/CVC/\!\!,[CV.CV])$	$\mathbf{C}(/d^ha/\!,[da])=\mathbf{C}(/ad^ha/\!,[ada])$
	$\mathbf{C}(/CVC/,[CV]) = \mathbf{C}(/CCV/,[CV])$	$\mathbf{C}(/\mathtt{ad^ha}/,[\mathtt{ad^ha}]) = \mathbf{C}(/\mathtt{d^ha}/,[\mathtt{d^ha}])$
(8)	$ \begin{split} \mathbb{P}([CV] \mid /CCV/) & \cdot \mathbb{P}([CV.CV] \mid /CVC/) = \\ &= \mathbb{P}([CV.CV] \mid /CCV/) \cdot \mathbb{P}([CV] \mid /CVC/) \end{split} $	$\begin{split} \mathbb{P}([d^{h}a] /d^{h}a/) \cdot \mathbb{P}([ada] /ad^{h}a/) = \\ &= \mathbb{P}([da] /d^{h}a/) \cdot \mathbb{P}([ad^{h}a] /ad^{h}a/) \end{split}$
(9)	$\begin{array}{c} 0.13 \\ 0.12 \\ 0.11 \\ 0.10 \\ 0.00 \\ 0.$	0.16 0.14 0.12 0.10 0.10 0.08 2000 4000 6000 8000 10000