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� Maximum entropy grammars are popular models of the empirical frequency P(y | x) with which an
underlying form x (say cost me) is realized as a surface candidate y (say cos’me, with t-deletion).

(1) P(y | x) ∝ H(C(x, y))
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}Maximum entropy phonology makes two assumptions. The first
assumption is that the frequency P(y | x) is proportional to the
harmony score H(C(x, y)) assigned by some harmony function
H to the vector C(x, y) = (C1(x, y), . . . , Cn(x, y)) of constraint
violations Ck(x, y) of the mapping (x, y), as in (1). The second
assumption is that this harmony function H has a very specific shape, namely it returns the
exponential of the opposite of the weighted sum of constraint violations, as in (2). Is the general
harmony-based assumption (1) intrinsically restrictive in and of itself without specific assumptions
about the harmony H? In other words, given a constraint set C, are there empirical frequency
patterns that contradict assumption (1) no matter the choice of the harmony function H?

� To start with the simplest case, let us suppose that the constraint set C does not compress
mappings: no two candidates of two different underlying forms share the same constraint viola-
tion vector. In other words, mappings and their constraint violation vectors are in a one-to-one
correspondence. In this case, no matter the frequencies P, we can trivially construct a harmony
function H that satisfies (1). Yet, as illustrated below, a reasonable constraint set C might com-
press into the same constraint violation vector two mappings that only differ for properties that
are not encoded into C because they are irrelevant relative to the phonological problem at hand.
Does such compression pose problems for the harmony-basedness assumption (1)?

� To answer this question, we say that a sequence 〈x1, x2, . . . , x`〉 of underlying forms (not necessarily
all distinct) is a cycle relative to a constraint set C provided each underlying form xi in the

(3) C(x1, z1) = C(x2, y2)

C(x2, z2) = C(x3, y3)
...

C(x`−1, z`−1) = C(x`, y`)

C(x`, z`) = C(x1, y1)

(4) C(/CCV/, [CV]) = C(/CVC/, [CV])

C(/CVC/, [VC]) = C(/VCC/, [VC])

C(/VCC/, [CVC]) = C(/CVC/, [CVCC])

C(/CVC/, [CV.CV]) = C(/CCV/, [CV.CV])

sequence shares a constraint
violation vector with the fol-
lowing underlying form xi+1

and the last underlying form
x` shares a constraint violation
vector with the first underly-
ing form x1. In other words, each underlying form xi has two different candidates yi, zi ∈ Gen(xi)
that satisfy the identities (3). To illustrate, we consider the constraint set C consisting of the eight
constraints Onset, Coda, MaxC, MaxV, DepC, DepV, CompCoda, CompOnset. A cycle of
length ` = 4 is 〈/CCV/, /CVC/, /VCC/, /CVC/〉, as verified in (4). For instance, the two mappings
(/CCV/, [CV]) and (/CVC/, [CV]) share the same constraint violation vector because they share the
same surface form and violate only one faithfulness constraint DepV.

� We can now state the result boxed below. The result says that the harmony-basedness assumption
(1) really boils down to a prediction about the empirical frequencies on cycles.

There exists a harmony function H that satisfies the harmony-basedness condition (1) if and

(5)
∏̀
i=1

P(yi | xi) =
∏̀
i=1

P(zi | xi)
only if the empirical frequencies P(y | x) satisfy the identity
(5) for every sequence 〈x1, . . . , x`〉 of underlying forms that
is a cycle (3) with respect to the constraint set C.

� We can now finally show that the harmony-basedness assumption (1) is restrictive in and of
itself without any specific assumptions on the harmony function H. We do this by exhibiting
grammars that are (constraint-based but) not harmony-based and that flout this identity (5) that
characterizes harmony-basedness. For illustrative purposes, we use Noisy Harmonic Grammar
(NHG), which is not harmony-based. We provide two examples summarized in the table on the
following page. We discuss the first example in detail; the second example works analogously.

� In our first example, the constraint set C consists of NoCoda and NoCompOnset together with
MaxC and DepV, as in (6). A cycle of length ` = 2 is 〈/CCV/, /CVC/〉, as verified in (7). For
this cycle, the product identity (5) predicted by harmony-based phonology (1) boils down to the



identity in (8). The left-hand side of this identity is the product P([CV] | /CCV/) ·P([CV.CV] | /CVC/)
between the probability that the complex onset of /CCV/ is repaired through consonant deletion
times the probability that the coda of /CVC/ is repaired through vowel epenthesis. The right-hand
side P([CV.CV] | /CCV/) · P([CV] | /CVC/) of the identity is the product of the probabilities of the
opposite repairs: the complex onset is repaired through vowel epenthesis and the coda is repaired
through consonant deletion. This identity between products would fail in a language that repairs
with high probability the onset cluster of /CCV/ through deletion but the coda of /CVC/ through
epenthesis because the product on the left-hand side would be larger than the product on the
right-hand side. Imagine a language where the English word proton would be nativized [ro.to.ni],
where C-deletion removes the onset cluster and V-epenthesis removes the coda. Such examples
could not be captured in a harmony-based grammar under our constraints.

� We now want to test whether NHG complies with this identity between products as well. Since
we cannot compute exactly the NHG probability of a mapping (x, y) given a weight vector w, we
estimate it in the usual way: for a certain number N of repetitions, we add Gaussian noise (with
standard deviation σ2 = 1) to each component of the weight vector w; we use the noisy weight
vector to compute the categorical HG winner ŷ for the underlying form x; and we estimate the
NHG probability of the mapping (x, y) through the ratio n/N , where n is the total number of
times the predicted winner ŷ is equal to the intended winner y. Obviously, as the number N of
repetitions increases, we get more accurate estimates of the NHG probability of the mapping (x, y).

� We consider the constraint weights in (6) obtained through a random search. The blue curve in (9)
plots (on the vertical axis) the product between the NHG probability of the mapping (/CCV/, [CV])
times the NHG probability of the mapping (/CVC/, [CV.CV]) as a function of N (on the horizontal
axis). Analogously, the orange curve plots the product of the NHG probabilities of the mappings
(/CCV/, [CV.CV]) and (/CVC/, [CV]). The figure thus shows that NHG flouts the identity (5) between
the two products because the estimates of the two products converge to different values.

� In conclusion, we have reported cases where harmony-based models such as ME are more restrictive
than NHG, even without making any specific assumptions about the harmony function H.

first example second example

(6)

NoCoda
MaxC
DepV

NoCompOnset

2.1412628240990808
2.5761596520119734
3.1380702119334614
6.676092855818892

Ident[voice]
Ident[spread]

Ident[voice]/ V
Ident[spread]/ V

*[+voice]
*VTV

*[+spread]
*[+voice, +spread]

8.754864400168293
2.7445353035043576
8.544706252916026
6.460122017813542
9.506542790584021
6.194812329710796
2.4311096042189595
8.287659091134277

(7) C(/CCV/, [CV.CV]) = C(/CVC/, [CV.CV])

C(/CVC/, [CV]) = C(/CCV/, [CV])

C(/dha/, [da]) = C(/adha/, [ada])

C(/adha/, [adha]) = C(/dha/, [dha])

(8)
P([CV] | /CCV/) · P([CV.CV] | /CVC/) =

= P([CV.CV] | /CCV/) · P([CV] | /CVC/)
P([dha] | /dha/) · P([ada] | /adha/) =

= P([da] | /dha/) · P([adha] | /adha/)

(9)


