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Sentential prominence

O Words in English sentences show degrees of prominence:
And this is my solemn pledge

George W. Bush'’s first inaugural, January 20, 2001, transcribed by a native

speaker, degrees of prominence (0, 1, 0, 2, 2, 3) visualized by font size

O What explains these degrees of prominence?
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Two key predictors of sentential prominence

O 1. Mechanical stress: Syntax and lexical stress predict phrasal
and sentential prominence to a good approximation.

O Nuclear/Compound Stress Rules (NSR/CSR, Chomsky et al. 1956;
Chomsky and Halle 1968; Liberman and Prince 1977; Cinque 1993)

O Alternative: The pitch accent view [not addressed in this talk]
(Gussenhoven 2011)
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Two key predictors of sentential prominence

O 2. Meaningful stress: Informative (i.e., new, highlighted, focused)
words are prominent (Bolinger 1972). Informativity can be
approximated in various ways:

O Average predictability (Cohen Priva 2015):

Informativity in cold storage (= the lexicon) that does not vary across contexts

0O Contextual probability from LLMs:
Informativity computed on the fly using the context

O Logits (unnormalized, raw scores)
O Log probabilities (log of normalized probabilities)
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The Present Study

LLMs are good at predicting the next word, which should help quantify
the word’s informativity, and by hypothesis, predict its prominence.

O Do LLM probabilities help predict a word’s prominence?

O Do LLMs improve on NSR/CSR and average predictability?
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Methods: Data

O The Presidents Project: An ongoing project on the prosody of
presidential speeches, annotated by humans and machines
(Shapiro 2019; Anttila et al. 2020; Anttila and Shapiro 2020; Clapp and Anttila 2021;
Shapiro and Anttila 2021)

O This talk: The first inaugurals of Bush (2001) and Obama (2009)
O 21,686 data points
O Annotated for syntax, phonology, NSR/CSR, informativity, etc.

O Annotated for perceived prominence by 7 native speakers

O 8-point scale (1 least prominent, 8 most prominent)
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Methods: Predictors of Prominence

@ The Nuclear/Compound Stress Rule (NSR/CSR)

O A version of NSR/CSR is implemented in MetricalTree
https://metricaltree.stanford.edu/ (Anttila et al. 2020)

O The algorithm builds on syntax from the Stanford Parser
(Klein and Manning 2003; Chen and Manning 2014; Manning et al. 2014)

[[[John's] [[[black] [board]] [eraser]]] [was stolen]]
1 1 1

1 Lexical stresses
[ 1 2 ] Cycle 1 (CSR)
[ 1 3 2 ] Cycle 2 (CSR)
[ 2 1 4 3 ] Cycle 3 (NSR)
[ 3 2 5 4 1 ] Cycle 4 (NSR)

O 1 = primary, 2 = secondary, etc. Bigger number, less stress.
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Methods: Predictors of Prominence

@ Informativity (Cohen Priva 2015)

O Weighted average of the negative log predictability of seeing word
w given each context c that w follows in the corpus

inform(w) = — ZP(C | w)log, P(w | c)
ceC

O Informativity was added to the corpus by Naomi Shapiro.
We used bigram informativity.

O Bigger number, more information, more stress.
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Methods: Predictors of Prominence

© Contextual probability

O Llama 3.2 3B (Touvron et al. 2023)

O We asked the model to calculate log probabilities of candidate next
words given context, then retrieved the target word’s log probability.

O e.g. Obama (2009) begins with my fellow citizens...

Prompt (context) Candidate next word Log probability

name -2.44
friend -3.36
my ... ...
fellow -7.33
Americans -1.60
my fellow citizens -1.68
students -3.90

Jo, Choi, and Anttila, AMP 2025 LLMs and phrasal stress 9/22



Methods: Predictors of Prominence

© Contextual probability

O Bigger number, higher probability, less stress.

O Rare words not returned by the model were excluded (2.7% of
data).
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Methods: Regression Models

O Mixed effects linear regression using lmer() in Ime4 (Bates et al. 2015):

Perceived Prominence ~ NSR/CSR + Bigram Informativity + Log Probability + (1|Annotator)
O All predictors were scaled for comparability.

O Consistent results were obtained in an ordinal logistic regression
model.
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Results for NSR/CSR (mechanical stress)

O NSR/CSR is negatively correlated with perceived prominence
(r=-0.41, p<0.001) as expected.

Perceived Prominence
- N w B )]

o

NSR/CSR
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Results for informativity (meaningful stress)

O Bigram informativity is positively correlated with perceived
prominence (r=0.47, p<0.001) as expected.

Perceived Prominence
- N w S [6)} (o)} ~ [o¢]

o

Bigram Informativity
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Results for LLM (meaningful stress)

O Log probability is negatively correlated with perceived
prominence (r=-0.23, p<0.001) as expected, but more weakly.

Perceived Prominence
N w B [6)} (o)} ~ [o¢]

-

o

-15 -10 -5 0
Log Probabilities from Llama 3.2
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Correlation matrix

NSR/CSR

NSR/CSR | 1,

=
=

Bigram Info | -0.45

Log Prob
(Llama 3.2)
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Mixed effects linear regression model

O Controlling for other predictors, LLMs help predict perceived
prominence, but the effect is smallish.

Estimate Std. Error tvalue Pr(>[t])

(Intercept) 2.11 0.43 495 <0.001

NSR/CSR -0.47 0.01 -4560 <0.001

Bigram Informativity 0.65 0.01 57.51 <0.001
Log Probability -0.11 0.01 -10.24 <0.001
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Ongoing Work

O We are expanding our data set (~ 80k data points).

O Consistent results were obtained with two other models:

O Llama 2 13B
O Mistral 7B
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Conclusions

O The effect of contextual predictability operationalized through
LLMs is real but remains relatively small.

O The production and perception of phrasal prominence has

» a syntactic basis (NSR/CSR)
> a lexical basis (word stress, average predictability)

that is context-independent.
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