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Material and Methods

Data construction

BSS provided us with a list of 75 villages in which they were planning to start operations. The

villages were spread across 5 districts in Karnataka. Prior to BSS’s entry, these villages had

almost no exposure to microfinance institutions, and limited access to any type of formal credit.
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In 2006, six months prior to BSS’s entry into any village, we conducted a baseline survey in

all 75 villages. This survey consisted of a village questionnaire, a full census that collected

data on all households in the villages, and a detailed follow-up survey fielded to a subsample of

individuals.

The village questionnaire was used to collect data on the village leadership, the presence of

pre-existing NGOs and savings self-help groups (SHGs), and various geographical features of

the area (such as rivers, mountains, and roads).

The household census gathered demographic information, GPS coordinates and data on a

variety of amenities (e.g., roofing material, type of latrine, quality of access to electric power)

for every household in each village.

The individual questionnaire was administered to a subsample of households in the village.

A household in the village was considered eligible for administering the individual survey if the

household had a woman aged 18-50 years living there. All the eligible households were sorted

by the religion of the household head. For non-Hindu (Muslim and Christian) households,

all households were selected wherever the group only formed a small fraction of the village.

The individual survey was then administered to the head of the household, his or her spouse,

other adult women between the age 18 and 50 years, and spouses of these women if available.

Hindu households, on the other hand, were grouped based on geography obtained from our GPS

data and then from each of these groups, 50% of were randomly selected for administering the

individual survey. The survey was again given to the same types of individuals – household

head, spouse of household head, other women aged between 18 and 50 years and their spouses

if available. Individual surveys administered in the above fashion yielded a sample of about

46% of all households per village, and we correct some of our measures for missing data. The

individual questionnaire asked for information including age, caste, education, language, native

home, etc.
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The most important module of the individual questionnaire was the social network data.

We collected twelve dimensions of network data including names of (1) those who visit the

respondent’s home, (2) those whose homes the respondent visits, (3) kin in the village, (4) non-

relatives with whom the respondent socializes, (5) those from whom the respondent receives

medical advice, (6) those from whom the respondent would borrow money, (7) those to whom

the respondent would lend money, (8) those from whom the respondent would borrow material

goods (kerosene, rice, etc.), (9) those to whom the respondent would lend material goods, (10)

those from whom the respondent gets advice, (11) those to whom the respondent gives advice,

and (12) those whom the respondent goes to pray with (at a temple, church, or mosque).

This paper makes use of undirected, unweighted networks constructed at the household

level. The network data was constructed as follows. For every village we constructed 12

individual-level adjacency matrices, where a node is a person. We then took the union of this,

indicating that a node is linked to another node if it has any single one of these relationships

with another. Next, we collapsed the data to the household level, constructing a graph between

households in the village where we say one household is linked to another if any of its mem-

bers are linked. Finally, as is standard in the literature, we removed self-loops (links between

household members) for the household level networks. The resulting objects are undirected,

unweighted graphs constructed at the household network for every village in our sample.

In 2007, after we finished data collection, BSS began operations in some of these villages.

By the the time we finished collecting data for this study in early 2011, BSS had entered 43

of the villages. We define a household as having a leader if a member belonged to one of

the following pre-specified categories: self-help group leaders, teachers, shop owners (three

categories alone which comprise 74% of the leaders), as well as doctors, pujaris/elders, or

political/community/organization leaders. We do not have the data to know which specific

households were or were not successfully contacted and convinced by BSS in each village. BSS
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provided us with administrative data over time as to who joined the program, which we matched

with our demographic and social network data. We use the the cross-sectional variation in the

final take-up data to identify our structural model (Tables 1, S4-S6). Additionally, we construct

village-level take-up rates of non-leader households as the outcome variable in the reduced form

regressions (Tables 3, S3). For our time-series validation exercise, we collapse the data to the

trimester-level, as described in the text (Table 2).

Data description

Table S1 provides descriptive statistics. Villages that BSS entered have an average of 223

households. The average microfinance participation rate for BSS is 18.5%, with a cross-village

standard deviation of 8.4%.1 On average, 12% of households have a member designated as a

leader.

One quarter of leaders participate in microfinance, with a standard deviation of 12.5% across

villages. About 21% of households (the standard deviation is 8% across households) include

someone who is a member of some SHG. These SHGs typically conduct female empowerment

programs, including encouragement for savings, skill development (e.g., tailoring), study vis-

its to nearby villages or towns to witness small and medium enterprise development, etc. The

average education is 4.92 standards (i.e. the level of schooling attended up to the end of fifth

grade), with a standard deviation of 0.99. The fraction of respondents who belong to the “gen-

eral” (GM) castes and “other backward castes” (OBC) is 63%, with substantial cross-village

heterogeneity.2 About 39% of households have access to some savings instrument (the standard

deviation is 10%). Leaders tend to be no older or younger than the rest of the population (the

P -value on the difference is 0.415, t test), though their houses tend to have more rooms (2.69

1Participation is measured as a percentage of non-leader households.
2Thus, the remaining 37% are from the scheduled castes and scheduled tribes: groups that historically have

been relatively disadvantaged.
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as compared to 2.28–the difference has a P -value of 0.00, t test).

Turning to network characteristics, the average degree, or number of connections each

household has, is almost 15 while the average degree of leaders is 18. Because our data is

constructed from star subgraph sampling, the average degree estimates are computed only us-

ing surveyed households. These are small worlds, with an average network path length of 2.8

between households, and a graph clustering rate of 26%. This means that the ratio of the number

of closed triples to the number of two-stars is just over a quarter.3

Model and Estimation
Model structure

We formally describe our structural model in this section. The model is simulated in discrete

time periods. At each point in time, a node (household) has two states that we track:

1. Node i’s information status: sit ∈ {0, 1}, indicating uninformed/informed respectively.4

2. Node i’s participation status: mit ∈ {0, 1}. Note that if mit = 1 then sit = 1, as one

cannot participate without being informed.

Let It to be the set of newly informed nodes at t.5 Define I t be the historical stock.

Basic algorithm

1. t = 0:

(a) At the beginning of the period, the initial set of nodes (leaders) are informed. si0 =

1 ∀i ∈ L and si0 = 0 if i /∈ L, where L := {i ∈ N : i is a leader}.
3Here we report the graph clustering, also known as the transitivity ratio. Similar results are true with the

average clustering coefficient. Again we account for the star subgraph sampling in our computation. The clustering
rate is substantially higher than the clustering rate that would be expected in a network in which links are assigned
uniformly at random but such that nodes have the same average degree. In this case, the clustering rate would be
on the order of one in fifteen. Such a significant difference between observed clustering and that expected in a
uniformly random network is typical of many observed social networks (e.g., see (22) and the references in (21).

4Note that therefore si,t+1 ≥ sit for all t.
5That is It := {i : sit = 1, sit−1 = 0}.
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(b) Next, those newly informed agents decide whether or not to participate based on

their characteristics and the participation decisions of their neighbors: mi0 are dis-

tributed as Bernoulli with pi(β, λ), where λmay be set to 0 in the information model

without any endorsement effects, for each i ∈ I0. In the case of endorsement effects,

for the initial period Fi0 = 0.

(c) Next, each i ∈ I0 transmits to j ∈ Ni with probability mi1q
P + (1−mi1) q

N. This

is independent across i and j. Let I1 be the set of j’s informed via this process who

were not members of I0, and let I(j) be the set of i’s who informed j.

2. Iteration at time t:

(a) Newly informed agents are now It.

(b) Newly informed agents decide whether or not to participate based on their charac-

teristics and the decisions of their neighbors: mit are distributed as Bernoulli with

pi(β, λ) for each i ∈ It. In the case of the model with endorsement Fit = |{j|j ∈

I(i, t),mjt = 1}|/|I(i, t)| where I(i, t) is the set of i’s who informed j.

(c) Next, for all nodes i ∈ I t, each i transmits to j ∈ Ni with probability mitq
P +

(1−mit) q
N. This is independent across i and j. Let It+1 be the set of j’s informed

via this process who are not in I t, let I(j, t+ 1) be the set of i’s who informed j.

3. The process repeats for T periods.6

Structural estimation and bootstrap

Let Θ be the parameter space and Ξ a grid on Θ, described below. Put ψ(·) as the moment

function and let zr = (yr, xr) denote the empirical data for village r with a vector of micro-

6We mainly use T as the number of trimesters exposed to BSS with a 0 period for the leaders. We also run
alternative time scales such as quarters and months (see Table S5).
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finance participation decisions, yr, and covariates, xr, that include leadership status and other

covariates included in the model. Define memp,r := ψ(zr) as the empirical moment for village

r and msim,r(s, θ) := ψ(zsr(θ)) = ψ(ysr(θ), xr) as the sth simulated moment for village r at

parameter value θ. Also, put B as the number of bootstraps and S as the number of simulations

used to construct the simulated moment. This nests the case with B = 1 in which we just find

the minimizer of the objective function.

1. Pick lattice Ξ ⊂ Θ. For ξ ∈ Ξ on the grid:

(a) For each village r ∈ [R], compute

d(r, ξ) :=
1

S

∑
s∈[S]

msim,r(s, θ)−memp,r.

(b) For each b ∈ [B], compute

D(b, ξ) :=
1

R

∑
r∈[R]

ωb
r · d(r, ξ)

where ωb
r = ebr/ēr, with ebr iid exp(1) random variables and ēr = 1

R

∑
ebr if we are

conducting bootstrap, and ωb
r = 1 if we are just finding the minimizer.

(c) Find ξ?b = argmin Q?b(ξ), with Q?b (ξ) = D(b, ξ)′ŴD(b, ξ). 7

2. Obtain {ξ?b}b∈B.

3. For conservative inference on θ̂j , the jth component, consider the 1−α/2 and α/2 quan-

tiles of the ξ?bj marginal empirical distribution.

In all simulations we use B = 1000, S = 75. We selected the grid according to the following

algorithm. Let τ denote the time scale (trimesters, quarters, months) by which the model can

be estimated.

7Estimate Ŵ =
(
R−1

∑
r d(r, θ̃)d(r, θ̃)

′
)−1

for a first-stage estimate θ̃ via the same algorithm with identity
matrix weighting.
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1. Select the grid for qNr (τ) and qP (τ) for the information model.

(a) For each village r, estimate an information model, setting qNr (τ) = qPr (τ) = qr(τ).

(b) Begin with qr(τ) = 0 and compute the fraction of informed in the village.

(c) If the informed rate is less than 0.67, increase qr(τ) by 0.000005 and repeat.

(d) Once the informed rate reaches 0.67, stop increasing the step-size and call this q∗r(τ).

(e) Average q∗r(τ) over all R villages, q∗(τ) :=
∑
q∗r(τ)/R.

(f) Round q∗(τ) to the nearest hundredths place and divide by 10 to determine the size

of increments on the grid from 0 to q∗(τ).

(g) Construct the grid for qN(τ) by selecting points in q∗(τ)/10 increments from 0 to

q∗(τ) and 0.05 increments from q∗(τ) to 1. In the trimesters case, this gives the

following grid for qN(τ): [(0 : 0.004 : 0.04), (0.05 : 0.05 : 1)].

(h) Construct the grid for for qP (τ) by allowing it to be fine for a wider portion of the

grid than qN(τ). Select points in 0.005 increments from 0 to 0.1 (0.1 is higher than

q∗(τ) for all τ ) and let the remainder of the grid consist of points in 0.05 increments

up to 1: [(0 : 0.005 : 0.1), (0.15 : 0.05 : 1)].

2. Select the grid for qNr (τ) , qP (τ) and λ in the information model with endorsement.

(a) Because using the above algorithm to construct the grid for the information model

with endorsement would result in a very large number of points, the estimation of

which would be prohibitively slow, we cap the total number of grid combinations

that need to be estimated to 7,000.

(b) The grids for qNr (τ) and qP (τ) are constructed in 0.05 increments from 0 to 0.5 and

0.1 increments from 0.6 to 1: [(0 : 0.05 : 0.5), (0.6 : 0.1: 1)].
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(c) The grid for λ is constructed to allow for estimation of effect sizes of±10 percentage

points from the average probability of participating in microfinance, allowing the

fraction of participating friends to change from 0 to one-half in equation (1). These

effect sizes correspond to λ values of -1 and 1. Points are selected in 0.1 increments

from -1 to -0.3 and from 0.4 and 1 and the grid is finer around 0, where points are

selected in 0.05 increments from -0.25 to 0.3: [(-1 : .1 : -0.3), (-0.25 : .05 : 0.3),

(0.4 : .1 : 1)].

Supplementary Text

Centrality

We construct several measures of average leader centrality, in addition to communication,

diffusion, and degree. We also include eigenvector centrality,8 betweenness centrality, Katz-

Bonacich centrality, decay centrality, and closeness centrality.9

Table S2 presents several regressions where the outcome variable is the average centrality

of the leaders (across various centrality types) and the explanatory variables are demographic

covariates: number of households, self-help group participation rate in the village, savings

participation rate in the village, caste composition, and fraction of village households that are

designated as leaders. These are precisely the demographic controls used in Table 3 of the paper.

Every column presents a different regression and the columns present coefficients and standard

errors on explanatory variables. We find little relationship between the various measures of

centrality and the demographic covariates. The only exception, as expected, is with the number

of households; larger networks are associated with lower average centrality of leaders (P -values

0.041, 0.097, 0.246, 0.000, 0.001, 0.089, 0.004, 0.000, t-test).
8We use an `2 normalization.
9We use parameter 0.8 · 1/λ1 for Bonacich centrality and 0.18 for decay centrality.
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Table S3 presents an expansion of Table 3. Every column presents a regression of the

microfinance take-up rate in a village on various measures of centrality (separately, and then to-

gether). We find that in addition to communication and diffusion centrality being significantly

associated with greater microfinance participation, the average eigenvector centrality of leaders

and the average betweenness centrality of leaders are also significantly associated with partic-

ipation, even conditional on demographic controls (Table S3, Panel C, columns 4-5, P -values

0.08 and 0.001, t-test). However, as presented in Table 3, the once all the measures are included

together, the either communication centrality or diffusion centrality remains significant while

the remainder no longer do so.

Alternative weights

Table S4 presents estimation results from alternative weightings of an individual’s neighbors

participation decisions in (1). We allow an individual i to place weight ωij on individual j by

ωij = dj/(
∑
Aikdk), where dj is the degree of node j, or ωij = ξj/(

∑
Aikξk), where ξj is the

eigenvector centrality of node j.

The results are comparable to those in the Table 1, supporting the hypotheses that qN > 0

and qP > qN at the 5% significance level from the bootstrapped distribution. We find small

negative endorsement effects which are not significantly different from zero at the 5% level for

eigenvector weighting but are marginally significant at the 5% level for degree weighting.

Alternative timing structures

In principle, the model can be estimated using different time scales, as we do not truly observe

the rounds of communication. To check for robustness, we estimated the model on several

scales: trimesters, quarters and months. Table S5 presents the results for quarters and months.

Irrespective of the timing, we find support for the hypotheses that qN > 0 and qP > qN (see
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the 2.5 and 97.5 percentiles of the bootstrapped distribution of the parameter and parameter

difference estimates). The only substantive difference across the various timings is that a finer

time scale tends to skew the bootstrapped distribution of qP, leading to the occasional large

estimate of qP required to match the moments. This leads to larger standard errors for both qP

and qN − qP and an asymmetric distribution, though qN − qP < 0 is robust even at the 5%

significance level (as seen from the quantiles of the bootstrap).
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Tables

Mean Std. Dev. Mean Std. Dev.
(1) (2) (3) (4)

Number of Households 223.209 56.170 165.813 48.945
Degree 14.827 2.558 13.355 2.443
Graph Clustering 0.259 0.046 0.290 0.063
Eigenvector Centrality 0.051 0.009 0.061 0.012
Betweenness Centrality 0.008 0.002 0.010 0.002
Path Length 2.770 0.208 2.714 0.228
Fraction in Giant Component 0.951 0.026 0.951 0.030
First Eigenvalue of Adjacency Matrix 15.080 2.563 13.553 2.491

Degree of Leader 18.101 3.784 16.120 3.190
Eigenvector Centrality of Leader 0.074 0.017 0.088 0.020
Betweenness Centrality of Leader 0.030 0.009 0.018 0.006
Bonacich Centrality of Leader 4.341 0.419 4.404 0.545
Decay Centrality of Leader 5.413 1.085 4.432 0.946
Closeness Centrality of Leader 0.431 0.034 0.420 0.046
Diffusion Centrality of Leader 5.485 1.745 -- --
Communication Centrality of Leader 0.065 0.045 -- --

Microfinance Take-Up Rate 0.185 0.084 -- --
Microfinance Take-Up Rate of Leaders 0.248 0.125 -- --

Self-Help Group Participation Rate 0.207 0.084 0.227 0.124
Fraction with Savings 0.387 0.098 0.418 0.117
Fraction GM or OBC 0.627 0.093 0.653 0.099
Average Education Level 4.920 0.993 5.157 0.935
Average Number of Rooms 2.288 0.404 2.413 0.241
Average Number of Beds 0.867 0.449 0.852 0.449

Table S1. Descriptive Statistics. Sample includes 43 BSS villages and 32 non-BSS villages. Fraction GM or OBC 
refers to share of households that are not SC/ST.

BSS Villages Non-BSS Villages

Panel A: Network Characteristics

Panel B: Outcome Variables

Panel C: Demographic Characteristics
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Communication Diffusion Degree Eigenvector Betweenness Bonacich Decay Closeness
(1) (2) (3) (4) (5) (6) (7) (8)

Number of Households -0.0002 -0.008 0.012 -0.00021 -0.00009 -0.002 0.008 -0.0004
(0.0001) (0.004) (0.011) (0.00004) (0.00003) (0.001) (0.003) (0.00006)

Savings 0.119 4.742 0.581 0.006 0.020 0.300 -0.557 -0.036
(0.072) (3.272) (6.102) (0.017) (0.010) (0.647) (1.781) (0.050)

SHG Participation 0.010 4.361 -3.609 0.017 0.014 1.366 -1.243 -0.056
(0.085) (4.281) (10.548) (0.032) (0.015) (1.134) (2.751) (0.078)

Fraction GM/OBC -0.009 0.112 1.034 -0.005 0.002 -0.181 -0.136 -0.004
(0.010) (0.479) (1.372) (0.004) (0.003) (0.149) (0.376) (0.011)

Fraction Leaders -0.163 -16.886 -7.757 -0.055 -0.065 -2.505 -1.002 -0.012
(0.231) (10.173) (21.777) (0.101) (0.069) (2.898) (6.705) (0.198)

R-squared 0.183 0.177 0.079 0.521 0.368 0.180 0.207 0.425

Table S2. Explaining the Average Centrality of Leaders. This table presents separate regressions (columns) where
the dependent variable is the average centrality of the leaders in a village and the explanatory variables are demographic
covariates.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Communication Centrality 0.882 0.621
(0.314) (0.400)

Diffusion Centrality 0.023 0.015
(0.008) (0.009)

Degree -0.003 -0.005 -0.004
(0.003) (0.005) (0.005)

Eigenvector 2.579 3.728 3.939
(0.616) (2.229) (2.204)

Betweenness 4.661 1.049 0.981
(0.751) (1.600) (1.560)

Bonacich 0.053 -0.075 -0.103
(0.032) (0.067) (0.060)

Decay -0.024 0.013 0.014
(0.010) (0.026) (0.026)

Closeness 0.633 -0.302 -0.087
(0.283) (0.515) (0.517)

R-squared 0.226 0.236 0.025 0.270 0.270 0.069 0.093 0.066 0.468 0.449

Communication Centrality 0.682 0.617
(0.317) (0.407)

Diffusion Centrality 0.019 0.015
(0.007) (0.009)

Degree -0.001 -0.006 -0.005
(0.002) (0.005) (0.005)

Eigenvector 1.774 3.813 4.086
(0.950) (2.343) (2.282)

Betweenness 3.283 1.009 0.904
(1.116) (1.630) (1.612)

Bonacich 0.025 -0.076 -0.105
(0.027) (0.068) (0.060)

Decay -0.009 0.020 0.026
(0.009) (0.044) (0.042)

Closeness -0.220 -0.559 -0.554
(0.360) (1.495) (1.451)

R-squared 0.356 0.378 0.235 0.296 0.327 0.246 0.242 0.237 0.469 0.450

Communication Centrality 0.766 0.713
(0.335) (0.428)

Diffusion Centrality 0.022 0.018
(0.007) (0.009)

Degree -0.001 -0.005 -0.003
(0.002) (0.006) (0.006)

Eigenvector 1.721 3.572 3.692
(0.954) (2.330) (2.265)

Betweenness 3.824 1.709 1.710
(1.086) (1.776) (1.687)

Bonacich 0.024 -0.072 -0.106
(0.029) (0.070) (0.063)

Decay -0.010 0.032 0.034
(0.009) (0.047) (0.045)

Closeness -0.303 -1.077 -0.891
(0.333) (1.551) (1.496)

R-squared 0.406 0.442 0.269 0.324 0.382 0.278 0.281 0.276 0.530 0.515

Panel A: No Controls

Panel B: Only Number of Households

Panel C: All Controls

Table S3. Microfinance Take-Up versus Centralities of Leaders. This table presents coefficients and standard errors from ordinary least
squares regressions (standard errors, which are heteroskedasticity-robust, are denoted in brackets). The dependent variable is the microfinance
take-up rate of non-leader households. The covariates are various measures of centrality and, when noted, control variables. Within a panel, each
column represents a different regression. Panel A includes no controls. Panel B controls for number of households. Panel C controls for number
of households, savings, self-help group participation, fraction of general caste members, and fraction of households that are BSS leaders.
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qN qP λ qN - qP

(1) (2) (3) (4)
Information Model with Endorsement
Degree Weighted 0.050 0.800 -0.300 -0.750
Standard Error [0.0073] [0.2430] [0.1547] [0.2452]
2.5, 97.5 percentiles of bootstrap distr. [0.05, 0.05] [0.2, 1] [-0.4, 0] [-0.95, -0.15]

Eigenvector Weighted 0.050 0.500 -0.250 -0.450
Standard Error [0.0061] [0.2327] [0.1299] [0.2360]
2.5, 97.5 percentiles of bootstrap distr. [0.05, 0.05] [0.2, 1] [-0.4, 0.05] [-0.95, -0.15]

Table S4. Alternative Weights. See caption to Table 1 for explanation of estimation procedure.

15



qN qP qN - qP

(1) (2) (3)
Quarters 0.030 0.200 -0.170
Standard Error [0.0099] [0.0985] [0.0991]
2.5, 97.5 percentiles of bootstrap distr. [0.027, 0.05] [0.1, 0.5] [-0.47, -0.059]

Months 0.010 0.085 -0.075
Standard Error [0.0005] [0.1020] [0.1020]
2.5, 97.5 percentiles of bootstrap distr. [0.009, 0.01] [0.05, 0.55] [-0.54, -0.04]

Table S5. Alternative Timing Estimates. See caption to Table 1 for explanation of estimation
procedure. The grid for qN is [(0:0.003:0.03), (0.05:0.05:1)] in the quarters model and [(0:0.001:0.01),
(0.05:0.05:1)] in the months model.  The grid for qP is [(0:0.005:0.1), (0.15:0.05:1)] in both models.
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qN qP qN - qP

(1) (2) (3)
Case 1 0.050 0.300 -0.250
Standard Error [0.0098] [0.1136] [0.1168]

Case 2 0.050 0.300 -0.250
Standard Error [0.0169] [0.1079] [0.1199]

Case 3 0.050 0.300 -0.250
Standard Error [0.0098] [0.1002] [0.1040]

Table S6. Estimates Dropping Injection Point-Based Moments and Observations. See caption
to Table 1 for explanation of estimation procedure. The grid for qN and qP is [(0:0.05:0.5), (0.6:0.1:1)]
in all cases. Case 1 drops moments 3 and 4 in the estimation procedure. Case 2 is case 1 but
additionally excluding all observations corresponding to injection points. Case 3 is case 2 but
additionally purging injection points from the neighborhoods of all other nodes when computing the
moments.
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0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.25 0.9768 0.9812 0.9818 0.9819 0.9819 0.9819 0.9819 0.9819

0.5 0.9813 0.9897 0.9918 0.9924 0.9926 0.9927 0.9928 0.9928
0.75 0.9841 0.9946 0.9975 0.9985 0.9990 0.9992 0.9993 0.9993

1 0.9858 0.9970 0.9996 1 0.9996 0.9991 0.9983 0.9978
1.25 0.9869 0.9983 0.9999 0.9994 0.9978 0.9962 0.9946 0.9935

1.5 0.9877 0.9989 0.9997 0.9985 0.9962 0.9944 0.9925 0.9915
1.75 0.9883 0.9992 0.9993 0.9977 0.9952 0.9934 0.9916 0.9906

2 0.9888 0.9994 0.9990 0.9972 0.9946 0.9929 0.9911 0.9902

Scale for number of periods

Sc
al

e 
fo

r q

Table S7. Correlation of DC(q,T). This table presents correlation of the diffusion centrality of
leaders evaluated at various values of q and T with those presented in the main text, where q is the
inverse of the first eigenvalue of the adjacency matrix and T is the number of trimesters that a
village was exposed to BSS. We present DC(q,T) with q taking values from 0.25*1/λ to 2*λ with T 
taking values from 0.25*T to 2*T.
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